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Abstract: For critical infrastructures, technological developments regarding real-time data trans-
mission and processing improve the system’s operability and reliability. However, vulnerabilities
are introduced in the case of implementing new remote access methods or where redundancy is
low. At the national level, most critical infrastructures are connected, and, therefore, achieving
a level of security and resilience is based on identifying a multitude of risks. In this respect, the
reduction of risk to acceptable levels directly affects the quality of citizens’ lives and decreases losses
in the industry. This study starts from the threats to power systems, namely cyberattacks, which are
much more dangerous, although less visible, to operators, and almost invisible to the public or the
media. From this point of view, it was proved that the most vulnerable parts of the power system
were human–machine interfaces, electrical equipment, Surveillance, Control, and Data Acquisition
(SCADA) systems. This paper’s main achievements include the simulation of cyberattacks on existing
electrical equipment from a petrochemical plant (case study), which consists of modifying the remote
data transmitted by the SCADA system. Two locations were submitted to simulated cyberattacks
that were considered critical for the overall plant operation. Furthermore, the changes that occur
following each fault resulting from the cyberattack and the influence of the electrical parameter
changes upon the process flow were analyzed. Furthermore, by using Electrical Power System Anal-
ysis Software—ETAP—the changes that occur following each fault due to the cyberattack and the
influence of the electrical parameter changes upon the process flow were analyzed. By considering
the two malfunction events, the resilience assessment of the system was analyzed. In the second case,
only partial resilience action, up to 40%, restored the operability of the industrial power plant.

Keywords: electro energetic system; critical infrastructure; SCADA; electric parameter; power
transformer; simulation and analysis of cyber attack

1. Introduction

The technological evolution recorded in the transmission and online processing of the
parameters of power systems over the last ten years has determined significant improve-
ments in power systems’ operability, control, and reliability.

Concurrently, vulnerabilities arise due to both new methods of remote access and
reduced redundancy. For this reason, almost all the hardware and software components of
a power system are potentially critical infrastructures, exposed to physical or informatics
events naturally occurring or intentionally provoked. Critical infrastructure includes the
energy system (electricity, oil, or gas), the transportation system, the water supply, and
energy distribution.
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Most national power systems are interconnected. The classical definition of power
systems as power infrastructure networks has lost its validity, because nowadays, there is a
significant presence of cyber components within the newer and much more complex config-
urations of power systems. There is a strong presence of cyber elements in all domains of
power systems: generation, transformation, transmission, distribution, consumption. The
concept of cyber-physical power systems has recently gained steam due to the continuous
link and interaction between power equipment and cyber components at several levels
and involving different information content. In recent years, there has been an increasing
concern related to the protection of the critical infrastructures due the constant threat repre-
sented by cyberattacks. Consequently, relevant industries are adopting implementation
measures and procedures to ensure their safety. For example, in [1], a security measure is
presented based on the classification of past attack incidents against control systems and
a big data analysis technique that processes the data generated from individual pieces of
security equipment. One can conclude that there is integration between the power and
cyber systems, in which the digital communications between the remote-control centers
and power systems can satisfy the demand for protection, monitoring, and control [2–4].
Therefore, achieving the security and resilience of these interdependent critical structures
requires the identification of a multitude of risks and their reduction to an acceptable level
in order to minimally impact citizens’ quality of life [5–7]. As presented in [8], security
means physical security, i.e., the security of the power system against calamities or natural
disasters and physical attacks carried out by individuals or organizations to destroy its key
points and disrupt the system, as well as cybernetic security. Cybernetic security refers
to protecting the power system against the threats of theft/destruction/manipulation of
data or databases built on customer information or the handling of sensors and equipment
for interruption of activity. A comprehensive study of how big data and machine learning
can be introduced in electrical power grids and security concerns and their solutions is
presented in [9]. Although different, the two areas (physical security and cyber security)
are interconnected, with complex vulnerabilities. A possible attack aimed at the power sys-
tem’s malfunction is carried out on both planes simultaneously [10]. There are two types of
relationships between the physical and the cyber structures composing the cyber-physical
power system: direct and indirect interaction [11]. For the last kind of interaction, the
failures recorded at the cyber structure level would not determine the immediate turning
off of the power device, yet but downgrade its performance in the event of a failure or a
failure involving an adjacent device.

The effectiveness of a critical infrastructure’s resilience depends on the characteris-
tics that define the resilience concept itself: ability to anticipate, absorb, adapt to, and
recover quickly from a disruptive event. The protection and resilience of critical infrastruc-
tures are complementary and necessary concepts for implementing a comprehensive risk
management strategy [12].

From the power system’s point of view, it is necessary to measure resilience at both
the producer and the distributor. The analysis of power systems with respect to risk
management, emergencies, and cross-sectoral interoperability displays positive aspects
resulting from the power system’s interconnection with other critical infrastructures and
reveals the limitations of these interdependencies. To achieve the desired level of security
and resilience, interdependent critical infrastructure operators must act as partners in order
to collectively identify priorities, namely, in order to achieve common goals, identify risks
and reduce them to an acceptable level so that the direct effect on the quality of life of
citizens will be minimal [13]. Although less visible to power system operators and almost
invisible to the public or the media, cyber threats are much more dangerous. A cyberattack
can lead to huge losses, which are economical and can also endanger people’s safety by
affecting certain aspects of human life. For example, power outages in a hospital may occur
during surgery. Attacks on public traffic control systems can cause chaos, and even traffic
accidents, at crowded intersections [12].
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Therefore, it is necessary to conduct a cyber security analysis of these industrial control
systems (ICS) to identify what kind of attacks could occur on an ICS before an unexpected
situation arises. The syntagma “malware”, used internationally for cyber threats, describes
a software program intended to infiltrate a computer system to either damage the system
or steal its data.

To deal with cyberattacks, [13] proposes a combined error of current and voltage,
and a switching secondary controller is designed. A novel, model-independent, unified
detection strategy based on disagreement Laplacian potential for effective identification of
cyber anomalies in interconnected autonomous direct current (dc) microgrid (MG) cluster
is presented in [14]. Power grid network protection must consider both cyber and physical
aspects. In [15], a local cyber-physical power system is established based on the IEEE-9 bus
system to quantify its operational dynamic vulnerability.

The Stuxnet malware is considered to be the first cyber weapon to be discovered in
2010 by the Kaspersky antivirus solution (Woburn 01801, MA, USA), [16]. The malware
mentioned above has a software architecture, potentially effective against industrial control
systems, human–machine interfaces, electrical devices, and SCADA systems, obviously
posing a danger to critical infrastructures in the power system.

Numerous cases of successful cyberattacks are publicly available, together with pre-
dictions regarding their geopolitical impacts on longer term [17–21].

Cyber security specialists who developing the Kaspersky antivirus solutions applica-
ble in the industry (i.e., power system included) predicted the following consequences: an
increase in general and accidental malware infections, enhanced risk of targeted attacks
requiring ransom, the practice of industrial cyber-espionage, the appearance of a new
branch of crime that focuses on the development of attack services and hacking tools, new
types of viruses, cyber criminals that take advantage of analyses of the vulnerabilities of
industrial control computer systems published by security providers, the development
of regulations on the subject cybersecurity, and industrial insurance [22,23]. A diversified
system is more challenging to destabilize globally. On the other hand, a modular system
has the advantage of flexibility. In the case of problems at critical points (e.g., large trans-
formers), the replacement of the affected parts comes quickly at lower costs, because the
company can afford to maintain a reserve stock without involving high logistical costs due
to diversity of parts and manufacturers [24].

Intrusion Detection Systems in an Industrial Control System (ICS) network is currently
done manually by security experts. Instead of manual intervention, it is important to
update, in real time, the structures of attack graphs, to enable fast isolation of compromised
network to secure the grid [25].

Currently, the implementation of SCADA at the level of connection stations containing
power transformers aims for continuous surveillance monitoring and control of various
equipment, online data acquisition, and processing, as well as performing operations
such as:

- voltage control;
- load-balancing;
- overload situations management;
- protection of transformer faults;
- protection against faults on the bus.

The equipment from SCADA control centers receives data, sends commands to the
remote equipment, or triggers alarms, if the received data exceeds the predefined safety
limits [26–28]. An outside cyber attacker may try a variety of possible ways to enter the
data acquisition, processing, and control system, especially looking for data transmission
devices that have integrated wireless network antennas and processors (WWAN), looking
for a connection to those devices that have been identified with security breaches and have
not yet installed the necessary updates. Essentially, a cyber attacker needs to know the
system components’ architecture and operation to be able to change those parameters that
can cause damage [29,30]. One of the most used ways to secure the information transmitted
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in real-time by the SCADA is data encryption. The application of a performing encryption
method leaves the initial information transparent only to the sender and receiver, present-
ing the perpetrators with a challenging task while trying to decipher it. The application
of algorithms validated, especially by banking transactions, in SCADA provides enough
protection by ensuring the confidentiality, integrity, and availability of data against cyberat-
tacks [31,32]. The injection of false data has been demonstrated to be extremely detrimental
to the smart power grids, causing economical and physical damages [33,34]. Assuming that,
somewhere inside the power system, there could be malware that collects and transmits
data as it propagates, waiting for the attack signal or meeting the predefined conditions in
the source code to initiate the attack, this paper simulates a transformation station subjected
to cyberattack by modifying the data transmitted remotely by the SCADA system. The
study considers a petrochemical plant, while the energy parameters affecting the trans-
formation stations at two different locations inside the plant are modified. The article has
the following structure: after an overview of power system vulnerabilities, the SCADA
system and the transmitted data structure are presented in Section 2. Two applications from
Section 3, developed using the ETAP programming environment, simulate cyberattacks on
critical power system components such as power transformers. Furthermore, the adverse
effects produced by transmitting false values of the transformer’s electrical parameters are
evaluated. The last section contains the conclusions.

2. Critical Infrastructure of Power Systems and Vulnerability of Data
Acquisition Systems

The power system has four subsystems: generation, transmission, distribution, and
supply. The power system’s various pieces of equipment have public and private owners,
and are operated individually for given load conditions while obeying the standards. Such
a system evolves towards the Intelligent Power System, whose structure appears in Figure 1.
This model, suggested by the National Institute of Standardization and Technologies—
NIST, has been adapted to the continuous developments recorded for information and
telecommunication technologies, present in all systems and network components [35].
The contemporary evolution of power systems is towards the smart power grid (Smart
Grid), based on decentralization and bidirectional exchange of energy and information.
This system transition is necessary but challenging to implement because it must happen,
whereas the national power system is in use, without interrupting electricity supply and
without affecting users. The system conversion from a traditional power system based on
a relatively small number of high-power plants to the decentralization and application of
Smart Grid solutions improves its resilience. This eliminates the need for those plants which
operate only during the daytime to support peak consumption. Such a mechanism requires
the decentralization of a part of the generation at the national level to end consumers who
have become prosumers (solar and wind sources in conjunction with battery storage) [36].
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Figure 1. Electro energetic intelligent system and its interactions.

Changes in the spectrum of threats to the power system and the evolution of its com-
ponents demonstrate the importance of implementing measures of reliability, operational
safety, and interoperability from the design stage. One identified the following trends with
a possible impact on the power system [37–41]:

• The implementation of information technology and telecommunications solutions, to-
gether with the increasing of the dependence of the power system on them, influences
the performed operations positively in terms of speed and accuracy, determines fewer
power outages of a small magnitude, and brings new vulnerabilities on the cyber side.

• The development of electronics involves small devices, with increased reliability and
low energy consumption, but increases vulnerability to electromagnetic pulse.

• Interdependence between physical and cyber systems improves operational security
but adds the possibility that a cyberattack may also affect physical systems.

• Outsourcing of equipment and services adds new vulnerabilities if nobody imple-
ments and uses appropriate security protocols.

• The evolution of the electric power system includes alternative methods of genera-
tion, energy storage, and decentralization; such a power system evolution involves
rapid resilience, but adds new potential targets, with a lower level of security than a
conventional plant and adds significant difficulties regarding the efficient and rapid
coordination between all components involved.

• Standardization and flexibility of critical components has the potential to reduce the
impact of a physical attack by rapidly changing affected components; however, in the
event of a vulnerability, about which an attacker can easily find out details, the attack
efficiency may increase and affect similar components.

• Coordination of assistance programs (e.g., spare parts stocks) limits the consequences
of an attack and shortens the power outages, yet the large power transformers, built
to order according to the customer specifications, has large sizes and is generally
expensive. The power companies cannot afford to order such reserve transformers,
given the financial and logistical burden.

• The implementation of new technologies instead of aging infrastructure can induce
vulnerabilities due to disjunct or antagonist interests.

• Following all the adverse events of recent years, there is a growing trend for regulators
and financial markets to recognize the security value, translated into incentives for
security and resilience improvements.
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Any power system is impossible to protect against all physical threats, given its
size and the remote location of some of its components assessed as potential targets for
cyberattacks, at least at certain times of the year. Thus, the most effective protection method
against cyberattacks is the proactive collection of information by the relevant structures, in
conjunction with law enforcement’s action on preventing, deterrence, and annihilation of
hostile actions on the power system before their occurrence. Such an event already took
place in the United States on April 16, 2013. The attack, generically called the “Metcalf
sniper attack”, did not achieve its purpose, and the subject was not taken seriously by
the media, which was a severe issue. The attackers cut the fiber optic in advance to
make telecommunications impossible between the gas and electricity company Metcalf’s
“Pacific” substation, located in Coyote, California, and the authorities. Subsequently, the
attackers opened fire on the 17 transformers within the station—those transformers became
overheated after losing significant amounts of cooling oil. Nobody was injured or killed
in this sabotage attempt, which was most likely carried out by professionals, because
the authorities found no evidence, and the motivation behind the operation remained
unknown. The attack did not achieve its goal, because the company managed to redirect
electricity through other distribution lines to the region, thus avoiding a power outage
while the station’s repairs lasted a month. Such a precedent indicates the easiness of
potential destabilization of a vital area of modern society: the critical power infrastructure.
The attackers would not have managed such efficiency without inside information, so
the Metcalf sniper attack cannot be considered a simple physical attack, but a combined
one, in which the attackers exploited the vulnerabilities of the power system, with the
help from inside (industrial espionage) or by illegally accessing the cyber system of the
electricity company (cyberattack) [29,39,41]. Monitoring the self-integrity of the network
used by the energy management systems (EMS, EMS/SCADA) for transferring the acquired
data is a plus for both the company’s security and the equipment’s functionality. The
proper selection and setup of SCADA systems ensure in-depth knowledge regarding the
production’s state of flow, service providing at any given time (i.e., including the electricity
in the chain that forms the national power system), as well as the state of the equipment in
terms of integrity and physical functioning but especially in terms of cybersecurity. SCADA
systems are suitable for large environments, dispersed over some geographical regions.
They comprise a command center that monitors and controls an entire technological
process, a distribution system, a plant. For most operations, performed automatically, one
may use Remote Terminal Units or Programmable Logic Controllers. At the same time,
management decisions are taken in the command center based on the monitoring, control,
and data acquisition system’s graphic interface, as shown in Figure 2 [26,42,43].
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There is a clear example of vulnerability caused by the remote operation of assets
through intelligent communication devices: the December 2015 attack on the Ukrainian
power system focused on obtaining access data embedded in SCADA programs, followed
by the remote control of operations. The combined consequences of exercised control,
system disturbance, and malware installation made it challenging to return to normal
operation states [44–46].

The cyber security architecture of monitoring, control, and data acquisition systems
operates with the following terminology [47]:

1. The level/knowledge of the security structure refers to the level of training of the
personnel responsible for cybersecurity, how well they know the system as a whole
and in detail, and how effectively it copes with changes.

2. The level of potential adversaries refers to processes or actions that provide attackers
with the tools and procedures to access the system, bypass the means of authentication
or break them, and to find out further details about them through publicly available
information.

3. Access/authentication refers to errors regarding the design, configuration, and imple-
mentation of the system that allow an attacker to have physical access to a part of the
system or connect remotely to it.

4. Security weakness classifies as follows: defect - if the attacker manages to steal
information, respectively, vulnerability, if a through a defect, the attacker receives
access rights, as well.

5. Destructive potential refers to the level of potential damage caused once the attacker
has access rights (e.g., changing parameters or shutting down equipment).

6. Detection refers to:

• System access log.
• Intrusion prevention.
• Intrusion detection, if the attacked goes beyond the previous step.
• Anti-malware solutions.

7. Recovery refers to the transition of the system back to the operating state, i.e., out-
standing resilience that involves less significant damage.

Although the use of the term cyber resilience is vast, there is no consensus regarding
its definition. From an organizational perspective, cyber resilience means “the ability to
continuously deliver the intended outcome, despite adverse cyber events”. Now, the orga-
nizational perspective refers to the ability level such as: supranational (i.e., a confederation
of nations), national, regional, organizational (i.e., company), functional and technical [48].
The continuous deliverance requirement must reveal the presence of a completely func-
tional “plan B”, with the capability of fulfilling the outcome (i.e., the result of a business
process in conditions of failure of the regular “plan A” following a successful cyberattack.
In light of the cyber resilience definition presented above, adverse cyber events follow
either “acts of God” (i.e., natural calamities) or “acts of man” (e.g., computer hacking,
data deletion intentional or not), not necessarily separable. In the already mentioned
reference [49], Bjorck et al. propose a delimitation between cybersecurity and cyber re-
silience using five aspects: objective (i.e., cybersecurity—to protect IT systems versus cyber
resilience—assure the delivery of business), intention (i.e., cybersecurity—fail-safe versus
cyber resilience—safe to fail), approach (i.e., cybersecurity—apply security from outside
versus cyber resilience—built security from inside), architecture (i.e., cybersecurity—a sin-
gle layer of protection versus cyber resilience—protection in multiple layers), and scope
(i.e., cybersecurity—one organization versus cyber resilience—a cluster of organizations).
In [50], Arghandeh et al. present several definitions of the resilience concept according to
the application domains: infrastructure, economy, social, and/organizational. More pre-
cisely, there is a definition for power system cyber-physical resilience as the power system’s
ability to maintain the continuity in the electricity flow to customers following a priority
sequence, appropriately responding in real-time to avoid interruption critical services.
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The resilience represents the power system’s ability to withstand disturbing events (e.g.,
perturbations, disruptions, disturbances, losses, adversity, anomalies, emergency, shocks,
hazards, threats) and to have the capability of fast recovering and eliminate the effects
caused by disturbances. In [51], the authors attempt to clarify the main differences between
resilience and other concepts such as risk assessment, hazard, vulnerability, and robustness.
In a thorough comparison, one presents the philosophical differences between the resilience
and robustness of electrical power systems, highlighting that. In contrast, the resilience
pleads for flexibility, adaptability, and agility in operation and control, as qualities of the
service, the focus of assuring robustness targets the strength of the equipment coming
from the design phase. Extreme robustness may lead to fragility. The reliability concept,
defined as the power system’s ability to deliver electricity of acceptable quality and for
the contracted amount to the customers, although preceded by the concept of resilience, is
still a significant preoccupation nowadays, being associated with the protection systems
applied to substations [51,52]. In [51], Lei et al. propose a model for reliability assessment
applied to a power substation build in conformity with the standard IEC 61850, assembled
by using physical (i.e., transformers, circuit breakers, and transmission lines) in conjunction
with cyber components (i.e., merging units, intelligent electronic devices, and process
bus). The analysis of cyber-physical reliability appeals to the concept of the cyber-physical
matrix. One can track the influence of the failure modes of individual components on the
overall system. In [10,11], Falahati et al. evaluate the reliability of modern power systems,
including the effect of the cyber system failure on the power system. There is a proposal to
map the cyber system’s failures to those recorded at the power system level. The primary
outcome resulted in two optimization models meant to strengthen the cyber system’s data
connection and minimize the load shedding at the power system level. Reliability affected
by cyber failures recorded at the protection system, treated by Lei et al. in [52], provides
a quantitative dependency between the commutation time and service unavailability in
the system.

Given the fact that an outside attacker must first enter the system and then know how
the system works and what to change to cause damage, danger from the inside (employees
or dissatisfied contractors or infiltrated by hostile states or competing companies) is much
more likely to present itself, because such people know in detail the architecture and
operation of the system components. The IT department of the electric utility company
makes it easier to find such peeople by identifying the inside place of the launched attack,
by implementing a source code control system (SCCS) that keeps track of changes made to
the source code and allows the implementation of a previous variant, functional (without
the lines of code that generated the malfunctions) in the back-up system.

An attacker tries all possible ways to enter the system, looking for devices that have
integrated antennas and wireless network processors (WWAN), seeking to establish the
connection to those devices identified with security breaches and that have not yet installed
necessary updates.

Isolated targets connect to monitoring, control, and data acquisition systems via
the GSM network, with bidirectional communication between the control center and the
target being easy to intercept unless an encrypted communications system or a virtual
private network is chosen, in which case Internet access becomes possible through the
mobile operator.

3. Case of Study—Cyber Attack Simulation against Power Transformers

The present case of study refers to a significant portion of an intended petrochemical
plant, a project that has now been abandoned. The name of the client cannot be disclosed
for certain reasons, whereas the equipment modified data with respect to project docu-
mentation. The initial study started with a load flow, which provided the initial data for
the further short-circuit analysis by using Electrical Power System Analysis Software—
ETAP [53].
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The ETAP Software Package, developed by Operational Technology International
(OTI) has become an internationally standardized tool in Power System Analysis, address-
ing practically every single modeling and simulation problem in AC and DC systems.
Demonstrated over more than two decades to be a very proficient software package, ETAP
shortens the required calculation times, assuring a very high accuracy.

In the simulation procedure, one short circuit analysis was performed, with the
following two purposes:

1. To verify the short circuit interruption capability for each breaker in the worst-case
scenario of faulting each bus, i.e., theoretical, highly unlikely, yet necessary, for design
purposes. The conclusion is that the breakers have the capability to withstand nominal
currents, while safely interrupting the circuits in the case of the most severe faults,
aka three-phase line to line to line.

2. Simultaneously, the optimization of the coordination between two or even three
cascaded (i.e., connected in series, in a single path with the protected equipment)
circuit breakers in such a way that, in the presence of three-phase short-circuits (L-L-
L), the breaker closest to the fault trips first and eliminates the fault. In this way, the
rest of the plant may potentially remain in operation if the process requires it. The
coordination must exist for the short circuit current values obtained from the studies
performed for all cases.

In Figure 3, the single-line schematic diagram of a full plant installation with the
locations of possible security breaches is presented:

- Bus Z1—energizes the equipment used by the propylene installation
- Bus Z2—energizes the equipment used by the ethylene installation
- Bus Y1 and Bus Z3—energizes the equipment used by the methane installation.
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A three-phase fault at Bus Z1 may occur due to real system conditions or due to a
security breach regarding the following equipment components: Transformer T1 and/or
its breaker CBT1_2; Transformer T5 and/or its breaker CT5; Transformer TWGT1 and/or
its breaker CTWGT1_2; Static VAR compensator and/or its breaker C19; Induction Motor
Mtr3 and/or its breaker CMtr3.

A false temperature indication at the level of transformer T1 followed by its discon-
nection may result in the overloading of T5 or, indirectly, of GenZ1 1, and finally to the
disconnection all the consumers connected to bus Z1.

3.1. Case 1—Simulation of a Possible Security Breach—Location 1

A three-phase fault at transformer T1 and its protective equipment (breaker CBT1_2),
in conjunction with a three-phase fault at the transformer T5 and its protective equipment
(breaker CT5), is shown in Figure 4.
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Figure 4. Security breach—Location 1.

The result places the propylene process installation out of operation. Initially, the total
current absorbed by the electrical equipment belongs to the propylene installation, which,
when operating at full capacity, is equal to 4650 A (at 6 kV).

The energy demanded by the propylene installation comes from mains using the
transformer T1. The fully fast back-up required by the safety process imposed by the
generator Gen1 is driven by a gas turbine and connected to the bus Z1 through the
transformer T5. The nominal data for the transformers T1 and T5, and their percent
impedance values, are given above. In Figures 5 and 6, the equipment data and impedance
model, respectively, are presented for the transformer T1.
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In Figures 7 and 8, the equipment data and impedance model, respectively, for the
transformer T5 are presented.
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Interpretation of the Simulated Three-Phase Short-Circuit at Transformer T1

1. A cyberattack inducing a severe three-phase short-circuit at the transformer T1 or
its breaker CTB1_2 results in a three-phase fault at the bus Z1, which can be safely
eliminated by the breaker CTB1_2. Such an attack produces several adverse effects in
the plant’s whole distribution system, following excessive currents and voltage drops,
whose values are presented in Figure 9, respectively, in Figure 10.
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2. Following the transformer T1 disconnection from the bus Z1 and the connection of
the generator G1 through the transformer T5, the propylene installation’s operation
is fully re-established. However, a cyberattack targeting the transformer T5 or its
breaker CT5, even eliminated by CT5, takes the full propylene installation out of
function completely. The short circuit currents recorded for the three-phase fault
recorded at bus Z1 have values very close to those displayed above.
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3.2. Case 2—Simulation of a Possible Security Breach—Location 2

The simulation of a possible security breach at Location 2 appears in Figure 11: three-
phase fault at the transformer T2 and its protective equipment (breaker CB6). Initially, the
total current absorbed by the electrical equipment belonging to the ethylene installation,
whereas operating at full capacity is equal to 1575 A (at 6 kV).
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Figure 11. Security breach—Location 2.

The nominal data for the transformer T2, as well as percent impedance values, are
presented in Figures 12 and 13, respectively.
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The energy demanded by the ethylene installation comes from mains using the trans-
former T2. A reduced (i.e., T6 rated at 10 MVA!) fast backup required by the process
safety imposed the presence of the generator Gen2 (see Figure 11), driven by a gas turbine
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and connected to the bus Y1. The generator Gen2 is the backup for methane installation
connected to the bus Y1 and energized from the mains through the transformer T3.

Interpretation of the Simulation Three-Phase Short-Circuit at Transformer T2

1. A cyberattack inducing a severe three-phase short-circuit at the transformer T2 or its
breaker CB6 results in a three-phase fault at the bus Z2, which can be safely eliminated
by the breaker CB6. Such an attack produces several adverse effects in the plant’s
whole distribution system, following excessive currents and voltage drops, whose
values appear presented in Figures 14 and 15.
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2. With the transformer T2 disconnected from bus Z2, followed by the connection of
the generator Gen2, the operation of the ethylene installation is re-established at
reduced output, given the fact that the methane installation relies on mains through
the transformer T3, eventually with some help from renewable energy sources (wind
generator WTG2 and its transformer TWGT2). Such a scenario is valid, whereas T3,
WTG2, and TWGT2 are fully operational.

3. However, a cyberattack, this time targeting the transformer T3 or its breaker CB7, takes
the primary source for the methane installation (energized through bus Y1) out of
operation, and the plant control room must decide whether to continue with ethylene
production (energized through bus Z1) of methane. If the transversal couple breaker
is not functional (i.e., faulty or under revision), then a cyberattack on transformer T2
or its breaker CB6 results in a complete stop for the ethylene installation.

3.3. Resilience Assessments

When performing resilience assessment, one must define the criteria that determine the
metrics of resilience. In the literature, criteria are functions of time, carrying several names
including performance, quality of service, the figure of matter, and service function [54,55].
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Figure 16 displays a generic shape of a service function, highlighting three stable states
(i.e., stable original state, disrupted state, and stable recovered state) and two transitory
states. The transitions between the original stable state and the disrupted state following
the disrupted event, respectively, between the disrupted state and the stable recovered
state, are not mandatory linear because of the resilience action, as represented in Figure 16.
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By considering the two events presented in Sections 3.1 and 3.2, noted with ej j = 1, 2,
by choosing the service function as the percent input apparent power to the system F(tk),
where tk are the moments at which the system encounters actions or changes, the resilience
can be defined as:

R
(
tk, ej

)
=

F
(
tk, ej

)
− F

(
td, ej

)
F(te)− F

(
td, ej

) (1)

According to Figure 16, t0 is the time origin, te the moment when the disruptive event
begins, td when the complete system’s disruption, ts the moment when the resilience action
is applied, and tf the time of complete or partial restoration of the service function.

For the case detailed in the Section 3.1, described as a fault at the transformer T1
and/or its protective equipment, namely the breaker CBT1_2, the service function is the
percent apparent power demanded by the propylene installation. The scaling of the events
from disruption to full restoration had the time represented in time units, as follows:

• The duration of the transient disruptive process: td − te = 20 units
• The duration of full disruption until the beginning of the resilience process: t1 − td =

60 units
• The duration of the gas turbine startup and reaching the synchronous speed requited

by the generator Gen1: t2 − t1 = 40 units
• The duration of the voltage built-up at the output of the generator Gen1 armature

windings, assisted by the automatic voltage regulator: t3 − t2 = 20 units
• The duration of the process of synchronizing of the generator Gen 1 with the bus Z1,

and paralleling to it: t4 − t3 = 20 units
• The duration of generator Gen1 field current adjustments for restoring the full appar-

ent power demanded by the propylene installation: t f − t4 = 20 units

The full process of disruption–restoration in terms of time units and percent service
function appears in Table 1.
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Table 1. Simulation of a Possible Security Breach—Location 1.

Moment te td t1 t2 t3 t4 tf

(units) 0 20 80 120 140 160 180

Service function F(tk) (%) 100 0 0 30 70 90 100

Resilience 1.0 0.0 0.0 0.3 0.7 0.9 1.0

For the case detailed in the Section 3.2, the resilience action only partial (i.e., up to 40%)
restores the operability of the ethylene installation, because the generator Gen 2 is shut
down for the annual revision at the time of the disruptive event caused by the cyberattack,
whereas the transformer T6 has only 8 MVA available. In this scenario, 4 MVA (i.e., 20%)
come from the mains through the transformer T3, whereas the other 4 MVA (i.e., 20%)
comes from renewable sources, respectively from the wind generator WGT2 through its
transformer TWGT2.

The scaling of the events from disruption to full restoration had the time represented
in time units, as follows:

• The duration of the transient disruptive process: td − te = 20 units
• The duration of full disruption until the beginning of the resilience process: t1 − td =

80 units
• The duration of the power flow relocation through the transformer T3:t2 − t1 =

20 units
• The duration of the voltage built-up at the output of the generator WTG2 armature

windings, assisted by the automatic voltage regulator, considering the wind turbine
already in rotation: t3 − t2 = 20 units

• The duration of the process of synchronizing of the generator WTG2 with the bus Y1,
and paralleling to it through the transformer TWGT2:t4 − t3 = 20 units

• The duration of generator WTG2 field current adjustments for delivering 4 MVA of
apparent power demanded by the propylene installation:t f − t4 = 20 units

The full process of disruption–restoration in terms of time units and percent service
function appears in Table 2.

Table 2. Simulation of a possible security breach—Location 2.

Moment te td t1 t2 t3 t4 tf

(units) 0 20 100 120 140 160 180

Service function F(tk) (%) 100 0 0 20 20 20 40

Resilience 1.0 0.0 0.0 0.2 0.2 0.2 0.4

Analyzing the schematic from Figure 3 in conjunction with the results from Table 2,
one can conclude that the replacement of transformer T6, with higher ratings, for example
25 MVA, can provide the conditions for 100% service restoration in this case.

The graphs representing the time dependencies of the resilience in both cases in this
study appear in Figures 17 and 18.
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4. Conclusions

Nowadays, most national power systems are interconnected, and there is a strong
presence of cyber and IoT components. For these reasons, simulation and analysis of
industrial power plants under cyberattack constitutes a new and very important subject.

The present case study starts from the assumption that short-circuit conditions may
appear following a breach in security in a petrochemical plant. For example, a three-phase
fault at Bus Y1 may occur due to real system conditions or as a result of a security breach
with respect to the following equipment components: Transformer T3 and/or its breaker
CB7, Generator Gen 2 and/or its breaker CB11, Transformer TWGT2 and/or its breaker
CTWGT2_2, Transformer T6 and/or its breaker C17.

An artificial short circuit combined with the poor conditions of coordination due
to cyberattacks on the IPs belonging to the equipment components connected to a bus
may result in the annihilation of all the installation energized from the other buses. The
associated consequences may be severe: the transversal couple breaker may be tripped,
resulting in much more disruption in the plant, through the disconnection of busses.

The study started with a load flow, providing the initial data for further short-circuiting
analysis. The analysis relied on the ETAP Software Package, an internationally standardized
tool in Power System Analysis, practically addressing every single modeling and simulation
problem in AC and DC systems. This software has been demonstrated over more than two
decades to be a very proficient software package, shortening the required calculation times
and assuring a very high accuracy.

The short-circuit analysis had two purposes:

• To verify the short-circuit interruption capability for each breaker in the worst-case
scenario of faulting each bus (i.e., theoretical, highly unlikely, yet necessary for design



Energies 2021, 14, 2568 18 of 20

purpose). The conclusion is that the breakers can withstand the nominal currents,
whereas safely interrupting the circuits in case of the most severe faults. Moreover,
from the obtained results, it the proper operation of every single equipment (e.g.,
generators, transformers, motors, loads, cables) can be observed; otherwise, ETAP
would immediately highlight the place of malfunction by changing the text line(s)
color to red and attaching proper flags.

• Meanwhile, the optimization of the coordination between two or even three cascaded
(i.e., connected in series, in a single path with the protected equipment) circuit breakers,
in such a way that, in the presence of three-phase short-circuits (L-L-L), the breaker
closest to the fault trips first and eliminates the fault. In this way, the rest of the plant
may potentially remain in operation if the process requires it.

In order to perform resilience assessment, the criteria that determine the metrics of
resilience were defined and presented. For the case detailed in the Section 3.1, described as
a fault at the transformer T1 and/or its protective equipment, namely the breaker CBT1_2,
the service function is the percent apparent power demanded by the propylene installation.
The scaling of the events from disruption to full restoration was represented in time using
time units. Analyzing the schematic from Figure 3 in conjunction with the results from
Table 2, it can be concluded that the replacement of the transformer T6 with one of higher
ratings, for example 25MVA, can provide the conditions for 100% service restoration in this
case. In the second case, the resilience action was only partial, at up to 40%, restoring the
operability of the industrial power plant.

As future work, this problem can be solved by applying a procedure for encrypting
and securing data, implemented in a simpler or more expensive platform, depending on
the power system’s desired level of protection.
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