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Abstract: Despite coal being one of the major contributors of CO2, it remains a cheap and stable
source of electricity. However, several countries have turned to solar energy in their goal to “green”
their energy generation. Solar energy has the potential to displace coal with support from natural gas.
In this study, an hourly power flow analysis was conducted to understand the potential, limitations,
and implications of using solar energy as a driver for decommissioning coal power plants. To
ensure the results’ robustness, the study presents a straightforward weather-driven scenario analysis
that utilizes historical weather and electricity demand to generate representative scenarios. This
approach was tested in Japan’s southernmost region, since it represents a regional grid with high PV
penetration and a fleet of coal plants older than 40 years. The results revealed that solar power could
decommission 3.5 GW of the 7 GW coal capacity in Kyushu. It was discovered that beyond 12 GW,
solar power could not reduce the minimum coal capacity, but it could still reduce coal generation.
By increasing the solar capacity from 10 GW to 20 GW and the LNG quota from 10 TWh to 28 TWh,
solar and LNG electricty generation could reduce the emissions by 37%, but the cost will increase by
5.6%. Results also show various ways to reduce emissions, making the balance between cost and CO2

a policy decision. The results emphasized that investing in solar power alone will not be enough,
and another source of energy is necessary, especially for summer and winter. The weather-driven
approach highlighted the importance of weather in the analysis, as it affected the results to varying
degrees. The approach, with minor changes, could easily be replicated in other nations or regions
provided that historical hourly temperature, irradiance, and demand data are available.

Keywords: scenario analysis; scenario generation; weather influence; coal decommissioning; high
PV penetration; energy balance; CO2 reduction

1. Introduction

In 2013, signatories to the Paris Agreement committed to submit a national climate
plan to mitigate climate change by reducing greenhouse gas emissions. Subsequently, one
of the United Nations’ Sustainable Development Goals, established in 2015, is focused on
affordable and clean energy. These two global initiatives have motivated several nations to
promote renewable energy sources such as wind, solar, and biomass into their energy mix.
As a result, several “green energy transition” initiatives are ongoing in countries such as
Germany and Denmark, and subnational jurisdictions such as California, Scotland, and
South Australia [1]. Besides these major players, more than 150 countries have national
targets for renewable energy in the power sector [2].

The Japanese government recently reiterated its commitment to the projected energy
mix for 2030, where fossil fuel-based generation will be reduced to 46%, and renewable
energy will comprise 22–24%, of which solar energy will have a 7% contribution [3]. There
was a recent influx of solar PV installation mainly driven by the FIT program. The Kyushu
region, located on Japan’s western tip, is one of the country’s leading regions in solar PV
generation. Relative to the rest of the country, the region has higher solar power potential
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and cheaper land, which has driven solar power investments. As of early 2021, the region
has a total installed capacity of 10 GW, and additional plants, which will increase this
capacity further to roughly 16 GW [4] by around 2027, are already approved. The share
of solar PV generation has been steadily increasing in the region. In 2017, 2018, and 2019,
solar PV generation accounted for 8.5%, 9.2%, and 10.1% of the total yearly generation,
respectively. The International Energy Agency (IEA) classifies the impact of variable
renewable energy (VRE) on the energy system’s operation into four phases. Japan, as a
country, is already in phase 2 where there is a minor to moderate impact on the system
operation, whereas Kyushu, as a region, was categorized as phase 3, where VRE determines
the operation pattern of the system [5]. This further shows that Kyushu is leading the
country in terms of solar PV penetration and is already facing issues ahead of the rest of
the country. Kyushu’s situation lends itself as a viable case study in exploring the potential
impact of solar energy in reducing CO2 emissions by replacing traditional energy sources
with solar energy.

Coal remains to be the cheapest and most economically stable source of electricity for
many countries. However, it is also one of the major contributors of CO2, which leads to
global warming. Among the G7 countries, Germany (by 2038 [6]), France (by 2023 [7]), the
United Kingdom (by 2024 [7]), Italy (by 2025 [7]), and Canada (by 2030 [8]) have presented
their coal phase-out plans. Other European Union member countries have also developed
their phase-out plans within the next two decades, and Austria and Belgium have already
phased-out their coal plants [7]. Nonetheless, removing coal is a significant roadblock to
the green energy transition in many countries, and as countries install increasing amounts
of renewable energy, it might be time to consider reducing coal in the energy mix. Solar
photovoltaics (PV) can be a green alternative to coal. However, the generation profile
of solar energy is different from that of coal, which complicates the process of replacing
coal with solar energy. Simultaneously, the variability of solar power requires another
flexible source. Liquefied petroleum gas (LNG), given its flexibility, is often used to balance
the VRE. Given these intertwined variables, it is necessary to understand the potential,
limitations, and implications of using solar energy to replace coal, which are currently
unclear.

Many countries see LNG as a bridge to a clean energy future that will pave the way
for less coal in the energy mix [9]. It is still a fossil fuel, but it produces less CO2, which
is acceptable for now until a superior technology is available. Due to many countries’
tendency to rely on LNG to reduce their CO2 emissions, the demand for LNG has steadily
been increasing, which threatens its supply and price. Shell reported in their LNG Outlook
2020 that global demand for LNG increased by 12.5% to 359 million tons in 2019, which
they attributed mainly to the role of LNG in the low-carbon energy transition [10]. It has
been reported that the price of LNG increased in October 2020 in anticipation of a colder
winter in East Asia [11]. This shows the volatility of LNG’s supply and price on the global
market, which presents another factor for consideration in the analysis, since solar energy
production needs LNG to a certain extent.

Aside from the potential CO2 reduction benefits, reducing coal capacity could also
reduce solar curtailment experienced by grids with high PV penetration. Kyushu started
to suffer from curtailment in October 2018, which was explored in a previous study [12].
Several studies have also explored this recent issue in Kyushu. Bunodiere and Lee [13]
explored several scenarios to mitigate solar curtailment in Kyushu using a logic-based
forecasting method and concluded that reducing the region’s nuclear capacity will reduce
curtailment. However, in their approach, they considered coal and LNG as thermal
generators as a whole due to data limitations. A coal station behaves like a nuclear plant,
since these two technologies are considered baseload generators. By treating coal as
separate from LNG and as a baseload generator, it could also be said that coal could reduce
curtailment. Although Japan initially used their pump hydro energy storage (PHES) to
improve the flexibility of nuclear power plants [14], it is now used to store excess solar
electricity generation. Li et al. [15] conducted a techno-economic assessment of large-scale
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PV integration with PHES and concluded that the PHES could effectively absorb some of
the surplus PV production and could maintain low generation cost by using the surplus
production. Since the available data regarding power generation in the region aggregate
coal and LNG together, the understanding of coal generation in the energy balance is
limited.

In order to fully understand the optimal conditions for coal, solar, and LNG produc-
tion, it is necessary to conduct a power flow analysis to evaluate the impact of investing
in more solar PV for driving coal decommissioning. This analysis will provide additional
information about the energy balance, including information about solar power generation
and curtailment, which are difficult to estimate. By gathering the generators’ capacity and
generation profiles and the demand profiles, the optimization can calculate the hourly
energy balance and minimize the necessary coal capacity and generation. This insight
provides the necessary understanding of the potential and limitations of solar energy in
regard to replacing coal. However, to ensure the robustness of the analysis and the recom-
mendation, the demand and solar power generation’s stochasticity must be considered.
It will be challenging to recommission a decommissioned plant due to an unforeseen
circumstance; thus, careful analysis is necessary to account for potential variations.

Replacing part of coal’s electricity production with solar electricity production, cou-
pled with LNG electricity production, is a subset of the generation expansion planning
(GEP) problem. Koltsaklis and Dagoumas [16] wrote a review article exploring the state-
of-the-art generation expansion planning where they listed seven challenges to the GEP
problem. One of the mentioned challenges is rooted in the risks involved in GEP. They
enumerated several potential sources of risks and categorized them according to eco-
nomic, political, regulatory, environmental, technical, social, and climate categories. Ioan-
nou et al. [17] reviewed the risk-based methods for sustainable energy system planning
and categorized the risks in the same manner. They identified seven risk-based methods:
mean-variance portfolio theory, real option analysis, Monte Carlo simulation, stochastic
optimization technique, multi-criteria decision analysis, and scenario analysis.

Santos et al. [18] conducted a study to identify uncertainties in the electricity system
and demonstrated the corresponding impacts on the energy mix through scenario analysis.
Their results highlighted that climate uncertainty represents primary risk sources for VRE,
since it dictates the system’s power generation. A review on the energy sector vulnerability
to climate change [19] summarizes the authors’ contributions on climate and energy, and
they noted that climate change could affect variables that influence electricity generation
from photovoltaics and concentrated solar power. The review highlighted that global solar
radiation has increased in southeastern Europe [20] and decreased in Canada [21]. They
also highlighted that power output calculations should account for air temperature, since
it impacts the solar cell’s efficiency [19].

Ioannou et al. [17] noted that energy planning has extensively used stochastic opti-
mization techniques, and the stakeholder’s motivation mainly drives the constraints. They
also mentioned that the Monte Carlo simulation has many advantages, but it requires
considerable data inputs to create probability density functions. Alternatively, scenario
analysis evaluates the risks by creating potential future developments that range from the
worst-case to the best-case scenario, which could then cover all the possible risks in the
analysis. As highlighted by several authors [18–21], climate, and by extension weather,
must be considered in modeling solar energy generation. Factors such as the changing solar
irradiance and ambient temperature could influence solar panels’ variability and efficiency.

By carefully identifying the test cases, scenario analysis is sufficient for ensuring the
robustness of the analysis. The initial problem is then rooted in creating the scenarios
representing the worst case, the best case, and the cases in between. The weather data
analysis can provide the representative years that fit the scenario targets, such as warm
summers, colder winters, extreme summers, and extreme winters. Although such data
are limited, datasets could be synthesized based on the historical relationship between
temperature and demand. Solar generation could be calculated from the irradiance and
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ambient temperature data. The robustness of the analysis and recommendation can be
addressed by combining scenario analysis and past weather data.

Therefore, in this study, an hourly power flow analysis was conducted to understand
the potential, limitations, and implications of using solar energy as a driver for decom-
missioning coal power plants. Understanding these factors can provide the necessary
recommendations and precautions for energy planners. Since LNG scarcity is anticipated,
LNG quota is one of the primary constraints. In order to ensure the robustness of the
results, this study presents a straightforward weather-driven scenario generation that
utilizes historical weather and electricity demand data processed through machine learn-
ing algorithms to generate scenarios that account for weather variations. Through the
weather-driven approach, the study aims to reveal the impact of yearly variations in the
factors that must be considered for long-term planning that reduce CO2 emissions while
ensuring grid reliability. The Kyushu region in Japan was used as a case study since (a) it is
continuously increasing its solar capacity, (b) it has a fleet of coal power plants older than
40 years old ready for decommissioning, and (c) it has enough LNG power plant capacity
to support the initial transition.

The code for the weather-driven approach used in this study is available through a
public GitHub repository [22], where most of the code and diagrams used in this paper
are documented in jupyter notebooks. The approach, with minor changes, could easily
be replicated in other nations or regions provided that historical hourly temperature,
irradiance, and demand data are available.

Section 2 discusses the methodology for the weather-driven approach, including data
and data processing, weather-based data generation, and hourly simulation. The results
are then presented in Section 3, and the implications are discussed in Section 4. Finally, the
conclusions are drawn in Section 5.

2. Methodology

The overview of the proposed weather-driven approach can be seen in Figure 1,
where it is divided into four stages. First, data were collected from Kyushu Electric
Power Company (KyEPCO) [4] and Japan Meteorological Agency (JMA) [23] and were
pre-processed to fit the intended applications. The weather-based data generation has three
components. A weather selection metric was designed based on comfort-levels to identify
the years that could represent the scenarios in the region. The pvlib Python library [24] was
used to calculate the photovoltaic systems’ generation under various weather conditions.
A demand fingerprint was developed to generate synthetic demand for the selected years.
These synthetic data were then used as input to the hourly power flow optimization
done in Python for Power System Analysis (PyPSA) [25]. Finally, the simulation results
were analyzed.

Figure 1. The proposed weather-driven scenario-based analysis approach capable of handling weather-related variations in
electricity demand and solar energy production.
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2.1. Data and Data Pre-Processing
2.1.1. Energy Demand

The energy data were collected from Kyushu Electric Company [4], where the hourly
information about generation, transmission, and demand is published since April 2016.
The data also include curtailment information for both solar and wind power. Transmission
and pump hydro energy storage (PHES) could be positive or negative. For transmission,
negative values represent energy export while positive values indicate electricity import.
For PHES, negative and positive values represent the charging and generation phases,
respectively. Although the data until December 2020 are already published, only data until
March 2019 were used in the study since this represents four full fiscal years.

As seen in Figure 1, the energy data are used in both the demand fingerprint and
simulation phase. Only the demand data were necessary for the demand fingerprint, while
the other hourly data were used as parameters for the other generations and PHES.

2.1.2. Temperature and Irradiance

The temperature and irradiance data were collected from the Japan Meteorological
Agency (JMA) [23], where the hourly weather data are published since 1946. For this study,
30 years of data were collected from 1990 to 2019 to serve as reference weather scenarios. A
representative temperature was collected from each of the major cities’ weather stations, as
shown in Table 1.

Table 1. Weather stations in Kyushu.

Prefecture Prefecture No. Precinct Code Block Code

Fukuoka 40 82 47,807
Saga 41 85 47,813
Nagasaki 42 84 47,817
Kumamoto 43 86 47,819
Oita 44 83 47,815
Miyazaki 45 87 47,830
Kagoshima 46 88 47,827

In order to represent the mean temperature and mean irradiance in the region, solar-
capacity-weighted mean and monthly-demand-weighted mean were used for the solar
generation calculation and demand generation, respectively. Using the consolidated data
from [26], Table 2 shows the shares of the solar PV installation in Kyushu since 2012 and the
shares in 2019 were used as the reference for the solar-capacity-weighted mean temperature
and irradiance. The Ministry of Economy, Trade, and Industry (METI) publishes each
prefecture’s monthly energy demand since April 2016 [27]. Table 3 shows the mean of
each prefecture’s shares from 2016 until 2019. These values were used to calculate the
monthly-demand-weighted temperature mean used in the demand fingerprint.

The solar capacity ratio was used for the solar power generation calculation because
the power generation’s distribution is influenced by the distribution of the capacity. It is
necessary to use this weighted mean because the temperature where more solar panels are
installed should have a more significant representation in the temperature used in the solar
generation calculation. However, the temperature where there is greater demand should
have more influence on the temperature used for demand calculations.
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Table 2. Share of solar power installations (%) in the prefectures.

Prefecture 2012 2013 2014 2015 2016 2017 2018 2019

Fukuoka 34.83 24.98 25.16 25.14 24.62 23.86 23.06 22.26
Saga 8.48 8.04 7.22 6.96 6.98 6.78 6.85 6.50
Nagasaki 8.98 9.67 9.11 9.82 10.02 9.66 9.46 9.48
Kumamoto 15.87 13.31 14.52 14.26 14.50 14.46 14.75 14.63
Oita 11.40 15.07 13.26 13.08 12.54 12.00 12.51 12.34
Miyazaki 8.66 11.59 11.94 11.78 11.66 12.53 12.82 13.03
Kagoshima 11.77 17.34 18.79 18.96 19.68 20.72 20.55 21.76

Table 3. Average monthly demand share (%) in Kyushu from 2016 to 2019.

Prefecture JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Fukuoka 38.25 38.28 38.13 37.66 37.32 37.26 37.47 37.60 37.21 36.85 37.20 37.79
Saga 7.83 7.99 8.10 8.02 8.02 8.20 8.12 7.79 7.86 7.90 8.04 7.94
Nagasaki 9.55 9.51 9.35 9.42 9.40 9.25 9.28 9.60 9.48 9.23 9.22 9.39
Kumamoto 13.76 13.82 13.73 13.42 13.37 13.64 13.78 13.83 13.91 13.81 13.72 13.76
Oita 10.61 10.64 10.72 10.97 11.18 10.92 10.58 10.27 10.38 10.81 10.93 10.94
Miyazaki 8.49 8.27 8.45 8.75 8.77 8.72 8.63 8.54 8.54 8.81 8.73 8.55
Kagoshima 11.50 11.49 11.52 11.77 11.94 12.00 12.13 12.37 12.62 12.60 12.16 11.63

2.2. Weather-Based Data Generation
2.2.1. Representative Weather Selection

Since the scenarios are weather-driven, it is necessary to identify the years representing
the various scenarios in the region. With this in mind, a metric system was created based on
the notion that comfortable temperature levels are between 18 and 22 °C. Under 18 °C, people
will start using their heaters, and above 22 °C, they will start using their air-conditioners.

Therefore, the metric system considers the mean and peak deviations per month from
these values. Since the focus is to cover extreme cases, the years were ranked based on the
summer-warmness and winter-coldness. Based on the rankings, six years were selected,
as seen in Table 4. The frequency of occurrence was calculated based on the highest R2

compared to the representative year from 1990 to 2019. The legends are used mainly in the
figures in the results section.

Table 4. Representative years of different weather scenarios in Kyushu.

Summer Winter Representative Legend Frequency * Comment

Mild Mild 2014 14MM 2 Low variability
Mild Severe 1991 91MS 6 Colder year

Severe Mild 2016 16SM 8 Warmer year
Severe Severe 2018 18SS 5 High variability

Extreme - 2013 13E- 5 Extreme Summer
- Extreme 2012 12-E 4 Extreme Winter

* Occurrence in the past 30 years from 1990 to 2019.

It can be seen in Figure 2 that around August, 2013 has the highest peak and mean
positive temperature deviation, while around February, 2012 has the highest peak and mean
negative temperature deviation as intended by the sampling. 2014 has the lowest deviation
overall since it is the lowest in summer and in the winter. The other representative years
fall between these extreme cases.



Energies 2021, 14, 2389 7 of 23

Figure 2. Temperature deviation of the representative year from the comfortable temperature of 18 °C to 22 °C.

2.2.2. Weather-Based Solar Generation

The weather-based solar power generation calculation was mainly based on the TMY
to power tutorial written by the developers of pvlib [28]. Since the approach requires both
the direct-normal irradiance (DNI) and diffuse horizontal irradiance (DHI), and JMA only
provides the global horizontal irradiance (GHI), the built-in function pvlib.irradiance.erbs
was used to estimate the DNI and DHI. The Erbs model [29] estimates the diffused fraction
of GHI to calculate DHI and uses the solar zenith to calculate DNI. By providing the
timezone, longitude, latitude, and altitude data along with the hourly GHI data from JMA,
the DNI and DHI were calculated using pvlib’s built-in functions. Besides the irradiance
data, the power generation calculation also requires temperature data to account for the
impact of temperature on solar cells’ efficiency. The solar-capacity-weighted mean was
used for both the GHI and temperature since the solar power generation distribution
is proportional to the generation capacity of each prefecture. Subsequently, the power
generation values of a 208 W Kyocera Solar Panel and an ABB Micro 250 W micro-inverter
were calculated using pvlib.pvsystem.sapm and pvlib.inverter.sandia. The resulting hourly
annual generation was scaled by 208 W to represent the maximum power output for
PyPSA.

2.2.3. Demand Fingerprint and Synthetic Demand Generation

Figure 3 shows the creation of the four parameters necessary to generate energy
demand. The first two swim lanes in the flowchart show the identification of the cluster.
Initially, the goal was to extract a demand shape or fingerprint from the data. Since human
behavior through weekly routines greatly influences the demand, the energy demand
data were split into weekly samples. The peaks and troughs of the demand patterns
were identified to emphasize the demand’s fingerprint. This process entailed moving the
peaks and troughs to the following hourly locations: 0, 3, 6, 15, 18, 21, and 24, since it
was discovered that the peaks and troughs occur at these times depending on the season.
Actual values were selected for 9, 11, 12, and 13, since these values represent the midday
demand dip that occurs due to the Japanese lunch hour, which is noticeable yearlong. After
the alignment, since the goal was to extract the fingerprint, the demand’s magnitude was
scaled using z-transform. The resulting scaled value was then used as input to an FFT
transform to extract the frequency components that comprise the fingerprint. Only the
daily variations (multiples of 7 Hz) were selected as features for the clustering algorithm
to reduce the noise. These feature values were scaled using z-transform to reduce the
magnitude in the distance calculation.

These features were then clustered using the Kmeans algorithm through the sklearn.cluster.
Kmeans method of the sklearn Python library. Several values of K were explored, and through
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experimentation K = 5 was identified as the number of clusters that could explain the data. The
clusters’ fingerprints are shown in the inset of Figure 4. Once these clusters were identified,
the weekday datasets were combined for each cluster, and another FFT transform was done to
extract the Fourier parameters necessary to represent the waveform. Combining the datasets,
after clustering, emphasized the pattern for each cluster and removed the noise. As with the
pre-clustering data, only the daily variations (different frequencies depending on the sample
sizes) were selected.

A classifier must be developed to identify the appropriate fingerprint for each week
during the energy demand generation. Through data exploration, the maximum weekly
temperature, minimum weekly temperature, and the month of the week were identified as the
features that could be used to classify each week. The sklearn.neighbors.KneighborsClassi f ier
method of sklearn Python library was used with k = 5 to classify the weekly data. By running
80–20 training-test split 1000 times, the classification got an average accuracy score of 83%,
with 66% and 95% as the minimum and maximum scores, respectively. This average accuracy
score was deemed acceptable and this was used as the fingerprint classifier.

Figure 3. Generating the demand fingerprint based on the demand and temperature data.

Figure 4. The weekly demand clusters of Kyushu from FY2016–2019.

While the first two swim lanes in Figure 3 provided the demand’s fingerprint, the last
two provide the minimum and maximum values that stretch or compress the fingerprint.
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Through data exploration, it was observed that non-holiday weekday temperature and
demand have a strong correlation; thus, it was extracted and fitted into known functions.
Using scipy.optimize.curve_ f it method of the scipy Python library, as seen in Figure 5, the
minimum temperature and minimum demand were fitted to a quadratic curve with an R2

of 0.80. The curve fitting for the maximum temperature and maximum demand required a
piece-wise linear equation and was similarly fitted with an R2 of 0.88. The weekend and
holiday fitting were explored, but no meaningful functions were derived; thus, a simple
weekday-to-weekend ratio was extracted by averaging all the known values. Seasonal
variations in the ratio were initially explored, but no meaningful trend was seen; thus, the
concept was dropped.

Figure 5. Correlation of Temperature and Demand in Kyushu.

Generating yearly demand based on temperature is shown in Figure 6 where the
green input blocks represent the models, values, and functions generated from Figure 3,
and the red input block represents the weekly temperature statistics from the selected year.
Using these inputs, a fingerprint assignment and the minimum and maximum demand
per day were identified. The fingerprint is then fitted to the daily min-max demand using
scipy.optimize.curve_ f it method and provides the A0 and B0 coefficient for the Fourier
representation. This is done for all weeks of the year to generate the entire year. Testing this
approach with the known values for 2017, 2018, and 2019, the synthetic demand approach
could get R2 of 0.8675, 0.8714, and 0.8177, respectively. A sample of the demand curve
can be seen in Figure 7, where the demand were closely synthesized. The problem with
holidays (e.g., new year) is noticeable and some weekends are not reproduced accurately.
However, the general shape or f ingerprint of the demand fits well with the actual values.

Figure 6. Temperature-dependent demand generation.
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Figure 7. Sample demand synthesis for 2018.

2.3. Hourly Simulation and Scenario Analysis

The hourly simulation used Python for the Power System Analysis (PyPSA) Modeling
Framework [25]. The PyPSA environment provides a framework for the buses, lines,
loads, generators, and storage, units among many other parameters. In this simulation,
since Kyushu was modeled as a single point, only one bus was used, and all the loads,
generators, and storage units were connected directly to this bus. The single-bus network
was constructed based on Figure 8, where the coal generator, the Kyushu demand, and the
transmission demand were directly connected to a single bus. The rest of the generators
was then connected to a sub-bus, which was then connected to the main bus. Creating the
sub-bus ensured that the PHES could not charge from the coal generator, which prevented
the optimizer from generating and storing more power from coal for later use. For this
study, the synthetic load and solar power generation profile for the representative years
(Table 4) were used iteratively during the optimization.

Figure 8. Configuration of the single-bus network used in the optimization.

The installed solar capacity was increased by 1 GW increments from 0 GW until
20 GW. The latest known capacities for the other generators as of FY2019 are shown
in Table 5, which was consolidated based on various sources [27,30,31]. Although the
nuclear, geothermal, and biomass could change within the year, as a baseload, they were
fixed to their respective maximum capacities to provide consistency throughout the years
under simulation. Hydropower generation was based on the daily dispatch capacity
calculated using the total daily dispatch in the 2019 data. The simulator allocated the
hourly dispatch based on the optimization. However, minimum and maximum dispatch
were still considered based on the actual data. The PHES was treated as both a generator
and a load with a maximum transfer capacity of 2.3 GW, a total capacity of 13.8 GWh, and
round trip efficiency of 0.70% (0.84% one way).
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Table 5. Generators in Kyushu as of FY2019.

Generator Power (MW) Carrier Outputmin (%) Ramp Limit (%)

Coal 7037 Coal 30 1
LNG 5250 Gas 15 40
Geothermal 160 Renewable 100 0
Biomass 450 Renewable 100 0
Solar 9000 Renewable 0 100
Nuclear 4140 Non-GHG 100 0
Wind 355 Renewable 15 40
Hydro 4000 Renewable 15 40

The optimization aims to minimize the coal capacity while ensuring energy balance.
The hourly resolution was used due to the limitation of the available data. Solar energy is
preferred as long as the minimum operating output or ramp limit seen in Table 5 for coal
and LNG are satisfied. Since LNG might become a future bottleneck, LNG quota (in TWh)
is used as a constraint in the simulation. LNG quota (LNGTWh

quota) is defined as the maximum
total annual electricity generation used in the optimization with the maximum generation
capacity of 5.25 GW.

Using the recently published resource utilization data from KyEPCO [32], it was
determined that the company generated 8 TWh from LNG in 2019 through their 4.625 GW
LNG plants. This generation represents 20% LF for the company. An independent power
producer owns the other 0.625 GW LNG power plants in the region, which are composed of
mixed gas power generators. Assuming these IPP plants are running at a higher LF of 40%,
it was determined that the LNG plants generated around 10 TWh in 2019. Using 10 TWh
as the base case, the simulation gradually incremented the LNG quota by 20%, 60%, and
100%, yielding 12, 16, 20 TWh LNG quota. A report from Japan’s Ministry of Economy,
Trade, and Industry (METI) [33] showed that LNG is more economical than coal at LF <
60%; thus, the scenario analysis also explored 28 TWh (60% LF). Preliminary exploration
also showed that increasing the quota further has a minor impact on the emission and cost
unless more LNG capacity is installed; thus, this was not explored any further. Additional
LNG quota could also increase energy security risk given the LNG market situation.

A summary of the LNG quota scenarios is shown in Table 6. The scenarios (LNGTWh
quota2–

LNGTWh
quota4) reflects one way to reach each of the identified quota from the base case

(LNGTWh
quota1). For the 12, 16, and 20 TWh scenarios, KyEPCO could increase their effi-

cient power plants’ LF. Increasing it further would require KyEPCO to increase their steam
LNG plants’ LF plants and coordinate with the IPP to increase their production.

Table 6. LNG quota scenarios.

LNG Power Plant LNGTWh
quota1 LNGTWh

quota2 LNGTWh
quota3 LNGTWh

quota4 LNGTWh
quota5

Category Cap LF Gen LF Gen LF Gen LF Gen LF Gen

KyEPCO Steam 1800 20 3.15 20 3.15 20 3.15 20 3.15 60 9.46
KyEPCO CC 2825 20 4.95 27 6.68 44 10.89 60 14.85 62 15.34
IPP 625 40 2.19 40 2.19 40 2.19 40 2.19 60 3.29

Total 5250 10.29 12.03 16.23 20.19 28.09

Capacity (Cap) in MW; load factor (LF) in %; generation (Gen) in TWh.

2.4. Annual Generation Cost and CO2 Emission Analysis

In 2015, Japan’s Ministry of Economy, Trade, and Industry (METI) [34] reported and
modeled the cost of electricity generation for 2014 and 2030. An Advisory Panel to the
Foreign Minister on Climate Change (MOFA) [35] citing BloombergNEF presented their
estimates on the cost of generation in 2018. Table 7 consolidates these reports along with
the values used for the annual cost calculations. Generally, the cost in 2014 was used in
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the calculations except for wind and solar power, where it was averaged between the 2014
report and the 2030 model. Except for coal, the values are near the estimated values of
BloombergNEF.

Table 7. Cost of electricity generation (JPY/kWh).

Technology METI 2014 METI 2030 MOFA 2018 * Applied **

Nuclear 10.1 10.1 - 10.1
Coal 12.3 12.9 6 12.3
LNG 13.7 13.4 10 13.7
Wind 21.9 13.9 10–22 (15) 17.9

Geothermal 19.2 19.2 - 19.2
Hydro 11.0 11.0 - 11.0

Biomass 12.6 13.3 - 12.6
Solar (Comm) 24.3 12.7 8–36 (17) 18.5
Solar (Home) 29.4 12.5 - -

* Values in parentheses are the average values; ** used in the calculation; as of April 2021: 100 JPY = 0.92 USD =
0.77 EUR.

For the CO2 emission analysis, the study mainly focuses on the CO2 emission from fuel
consumption, which does not cover the CO2 emission during construction, maintenance,
and disposal of the system. Therefore, the calculation assumes that, during generation,
nuclear, geothermal, hydro, solar, and wind power do not generate CO2 and biomass has
net-zero CO2 emissions. According to Japan’s Ministry of Environment [36], depending on
the technology, coal and LNG has a CO2 emission of 0.95 kgCO2/kWh to 0.83 kgCO2/kWh
and 0.51 kgCO2/kWh to 0.36 kgCO2/kWh, respectively. The average emission for coal
(0.89 kgCO2/kWh) and LNG (0.44 kgCO2/kWh) were used in the analysis.

Since temperature leads to higher or lower demands, by calculating the levelized
cost of generation and levelized CO2 emissions, the relationship between cost and CO2
becomes clearer. Although weather variations still have an impact, this impact is less when
seen from a levelized perspective. The annual levelized cost of generation was calculated
using Equation (1). The hourly simulation provides the annual generation per technology
(GenerationkWh

tech ). By multiplying the generation per technology to the corresponding cost
of electricity generation (CostJPY/kWh

tech ), the total cost per year could be calculated. The
levelized cost of generation on that particular year can then be calculated by dividing the
total annual cost by the total annual generation. Similarly, the levelized CO2 emission was
calculated Equation using (2) and the CO2 emission per technology (EmissionkG−CO22/kWh

tech ).

levelized cost o f generation =
∑ (GenerationkWh

tech )(CostJPY/kWh
tech )

∑ GenerationkWh
tech

(1)

levelized CO2 emissions =
∑ (GenerationkWh

tech )(EmissionkG−CO22/kWh
tech )

∑ GenerationkWh
tech

(2)

3. Results
3.1. Demand and Solar Generation Profiles
3.1.1. Demand Duration Curve

The synthetic demands’ duration curve can be seen in Figure 9, where the demands
from 2013 and 2018 are noticeably higher than the rest of the representative years. It can
also be seen that 2014 had a lower peak demand, as was intended by the selection of
the representative years. Figure 10 focuses on the winter and summer months, and it is
noticeable that winter still has a relatively lower demand compared to the peak summer
demand in August. From this figure, it can be seen that the peak winter demand was
represented well by 2012 in February. At the same time, 2013 represented the extreme case
of summer demand in August. The demand barely reached 14 GW at peak for the other
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months, and most values were under 12 GW. This information is crucial in understanding
the limitation of reducing the coal capacity since the generation capacity must be able to
handle peak demands. For instance, although winter leads to higher demand, its impact
is not as high as that of summer. Nonetheless, this does not translate to higher coal
capacity since the generation profile of the other energy sources, in particular solar, also
has seasonal variations.

Figure 9. Duration curve of the synthetic demand.

Figure 10. Monthly duration curve of the synthetic demand.

3.1.2. Solar Load Factor

The solar load factor for each month can be seen in Table 8. Since 2016 and 2018 have
higher summer demand, August’s higher load factor will be helpful, but the relatively
lower load factor for 2013 will be an issue since this year has higher demand. The lower
load factor in December could be a potential issue, but since the load factor increases by
February, this could accommodate the increase in demand during this peak winter period.

Table 8. Monthly solar power generation load factor (%) using the irradiance of the representative years.

Year JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

2014 13.28 11.47 14.89 14.59 17.03 9.94 11.45 9.05 11.38 13.80 11.61 10.15
1991 12.09 12.44 11.89 12.49 11.14 8.73 11.18 13.33 12.40 12.28 14.62 10.41
2016 7.94 12.40 15.34 11.84 13.59 10.67 13.75 15.90 10.52 9.18 12.64 11.93
2018 11.55 13.95 15.69 16.99 13.45 12.26 14.00 15.33 10.07 14.19 14.60 9.19
2013 11.03 13.77 14.84 16.34 16.09 9.53 14.70 14.70 14.73 13.29 12.01 10.67
2012 11.02 9.56 13.31 17.01 14.53 8.84 10.30 12.15 12.10 15.20 11.11 7.20

Mean 11.15 12.27 14.33 14.88 14.31 9.99 12.56 13.41 11.87 12.99 12.77 9.93



Energies 2021, 14, 2389 14 of 23

3.2. Coal Decommissioning Potential

Figure 11 shows the minimum coal capacity that could satisfy the demand for each
of the 30 scenarios. The impact of yearly variations can be observed through the range of
minimum coal capacity for each LNG quota scenario. As the LNG quota increases, the coal
capacity could gradually be decommissioned without adding additional LNG capacity.

About 3.5 GW of the 7 GW coal capacity is older than 40 years old and should be
decommissioned in the near future. However, based on the simulation results, this will be
challenging if the LNG quota is not met. In the near term, where 10 GW of solar energy is
already installed, the LNG quota must be at least 16 TWh. In the long term, where 16 GW
of solar energy is already installed, the LNG quota must be at least 12 TWh. In both cases,
as highlighted in Figure 12, around 400 to 600 MW of standby coal capacity is necessary to
account for the yearly variations. As noted in the analysis of the demand duration curve,
this standby capacity will be needed during the winter and summer periods, particularly
in January, February, August, and September (Figure 10). Nonetheless, Figure 12 clearly
shows the limitation for solar power in regard to decommissioning coal power plants
beyond 12 GW installed capacity, since the minimum coal capacity no longer decreases
despite additional solar generation.

Figure 11. Minimum required coal capacity as installed solar capacity increases, and various LNG quotas.

Figure 12. Standby coal capacity needed to ensure that the electricity grid can still handle weather-driven demand variations.
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3.3. Coal Generation and Load Factor

Despite the floored impact of solar power on coal decommissioning, it can still reduce
the coal generation and load factor. As seen in Figure 13, even beyond 12 GW, the coal
generation is constantly decreasing in all LNG quota scenarios. Figure 14 further reveals
that the load factor decreases as more solar capacity is installed into the grid. It should be
noted that the load factors were computed using the minimum coal capacity as presented
in Figure 11, which results in both a decrease in capacity and utilization rate.

Figure 13. The coal generation in different LNG quota scenarios.

Figure 14. The coal load factor in different LNG quota scenarios.

3.4. Impact on Solar Curtailment Rate

As a consequence of the optimization that reduced the coal capacity and complement-
ing solar power with a more flexible generator in the form of LNG, the curtailment was
reduced to varying degrees. Figure 15 shows the range of curtailment rates based on the
yearly variations and annual LNG quotas. Increasing the LNG quota from 12 TWh to
24 TWh, which in turn decreases the coal capacity, could reduce curtailment from 14%
down to 3% in the worst-case scenario for the 10 GW installed solar capacity. Beyond the
28 TWh LNG quota, there are minor changes in the curtailment reduction. However, it
could also be noted that the 20 TWh LNG quota can reduce the curtailment from 14% down
to 3%. The curtailment reduction becomes more evident as the solar capacity increases.
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However, beyond 16 GW installed capacity, even with sufficient complementary LNG,
solar curtailment will always be greater than 10% at best and 30% at worst.

Figure 15. Projected curtailment rates assuming the optimal coal capacity was followed, with the corresponding annual
LNG quotas.

3.5. Impact on Annual Cost and CO2 Generation

Figure 16 shows the CO2 emissions generated due to the fuel consumed by coal and
LNG generators.The combination of solar and LNG electricity generation could cut the
CO2 emissions by half when comparing the “No solar + 10 TWh LNG” and “20 GW Solar +
28 TWh LNG” scenarios. The impact of solar power is also readily seen by comparing the
values in each LNG quota scenario, which should be attributed to its capability to reduce
coal generation even beyond 12 GW.

Figure 16. Range of CO2 emissions for various scenarios in Kyushu.

As seen in Figure 17, since solar power has a higher generation cost than using LNG,
its impact on the annual generation cost is more significant. The weather conditions greatly
influence the annual generation cost: 2014 and 2013 represented the lowest and highest
costs, respectively. The variations in the cost attributed to the LNG scenarios were more
evident in 2013 followed by 2018 and 2016 caused by higher coal production during the
extreme and severe summers. In the least costly year, the cost ranged from 1.22 to 1.36
trillion JPY (11.48% increase), and in the most costly year, the cost ranged from 1.26 to 1.41
(12% increase) trillion JPY (April 2021: 100 JPY = 0.92 USD = 0.77 EUR).



Energies 2021, 14, 2389 17 of 23

Figure 17. Annual generation costs for various scenarios in Kyushu.

Using 2016 as the representative, Figure 18 shows the impact of the installed solar
capacity and the LNG quota on the levelized cost of generation and levelized CO2 emissions.
Currently, the Kyushu region already has 10 GW of installed solar capacity and generates
around 10 TWh from LNG. This reference scenario is annotated as scenario 0 (S0) in
Figure 18 and values for the levelized cost and CO2 emissions for the various weather
conditions are shown in Table 9.

From this reference scenario, the company could further decrease their CO2 emissions
by having more LNG generation, adding more solar capacity, or both, but at the expense
of increasing their generation cost. Five potential scenarios are annotated as S1 to S5 in
Figure 18 and the impacts are tabulated in Tables 10 and 11. Initially, the LNG generation
could be ramped up to 20 TWh to complement the solar capacity increase, as seen in S1.
This increased the generation cost by an average of 0.63% and decreased the CO2 emissions
by an average of 12.80% to 0.3226 kgCO2/kWh. From S1, solar capacity could continuously
increase, as seen in S2 and S3, or LNG could increase further as seen in S3. The impact of
S2 and S4 in reducing CO2 emissions was the same, but the increase in cost was lower for
S4. S5 represents the greenest yet feasible scenario that reduces the CO2 emissions by an
average of 37.31% but increases the cost by 5.60%.

Table 9. Cost and CO2 emissions of the reference scenario.

14MM 91MS 16SM 18SS 13E- 12-E Mean

Levelized Cost (JPY/kWh) 12.5464 12.5266 12.5331 12.5819 12.5820 12.5160 12.5477
Levelized CO2 (kgCO2/kWh) 0.3640 0.3683 0.3714 0.3679 0.3723 0.3764 0.3700

As of April 2021: 100 JPY = 0.92 USD = 0.77 EUR.
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Figure 18. Levelized generation cost and CO2 emissions for the warmer year (16SM) scenario. The CO2 emissions (abscissa)
are formatted in decreasing order to emphasize the trend. S0 reflects the current situation, and S1–S5 are the potential
future scenarios.

Table 10. Cost increase from the reference scenario.

Scenarios Increase in Cost per kWh (%)

No Name SolarGW
cap LNGTWh

quota 14MM 91MS 16SM 18SS 13E- 12-E Mean

S1 Increase LNGTWh
quota 1 10 20 0.56 0.53 0.60 0.74 0.75 0.59 0.63

S2 Increase SolarGW
cap 1 16 20 3.34 3.38 3.35 3.46 3.61 3.17 3.39

S3 Increase SolarGW
cap 2 20 20 4.61 4.75 4.71 4.75 4.93 4.40 4.69

S4 Increase LNGTWh
quota 2 10 28 1.20 1.07 1.13 1.34 1.28 1.14 1.19

S5 Increase both 20 28 5.51 5.52 5.49 5.86 6.00 5.22 5.60

Table 11. CO2 emission decrease from the reference scenario.

Scenarios Decrease in CO2 Emission per kWh (%)

No Name SolarGW
cap LNGTWh

quota 14MM 91MS 16SM 18SS 13E- 12-E Mean

S1 Increase LNGTWh
quota 1 10 20 −13.50 −12.74 −12.55 −12.91 −12.94 −12.18 −12.80

S2 Increase SolarGW
cap 1 16 20 −22.78 −22.53 −22.10 −22.66 −22.78 −21.02 −22.31

S3 Increase SolarGW
cap 2 20 20 −27.05 −27.18 −26.62 −27.24 −27.29 −25.15 −26.75

S4 Increase LNGTWh
quota 2 10 28 −23.77 −23.24 −22.93 −23.37 −23.09 −22.27 −23.11

S5 Increase both 20 28 −36.45 −38.32 −37.84 −37.97 −37.58 −35.70 −37.31

4. Discussion
4.1. Potential and Limitations of Solar PV in Coal Decommissioning

Although it cannot phase-out coal, the results show that solar energy has enough
potential to be the driver for coal decommissioning with LNG’s help. It has also been
shown that the decommissioning potential is robust against yearly weather-driven demand,
and standby-plants could be used for the colder and warmer periods of the year. Although
solar power has limitations in reducing coal capacity, it continually decreases the necessary
coal generation, thereby reducing the load factor of coal plants and the corresponding
CO2 emissions.

In Kyushu’s case, given the 10 GW solar capacity along with a 16 TWh complementary
LNG quota, 3.5 GW of the 7 GW coal power plants could be decommissioned. This
configuration is already achievable by increasing the LF of the combined-cycle plants of
KyEPCO from 20% to 44%. Beyond 12 GW installed solar capacity, solar power alone has no
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impact on reducing the coal capacity, but it could still reduce coal generation. Compared to
the reference scenario, it was shown that CO2 emissions could be reduced by 27% through
20 GW of solar power and a 20 TWh annual LNG quota. The reduction could reach 37% if
all the LNG plants in the region are utilized at 60% LF. As a related consequence, reducing
coal and introducing more LNG reduced solar curtailment. This potential and limitations
show that energy planners should take the necessary precautions in adding solar energy
to the grid since there is an appropriate balance. Solar can reduce coal capacity, but it
alone cannot phase-out coal. As was shown in Kyushu’s case, a thorough analysis of the
situation that includes complementary energy sources should be considered in evaluating
the potential of solar power in coal decommissioning.

4.2. Implications of Solar PV in Coal Decommissioning

Solar has its drawbacks in the form of cost and dependence on complementary flexible
generators. The results show that in countries like Japan, where solar power remains to be
more expensive than conventional generators—solar power presents an additional cost. Its
dependence on flexible generators, which LNG currently fills, poses a threat to its ability to
stand-alone. As the demand for LNG steadily increases, this will threaten its supply and
price. The cost of LNG could exacerbate the cost problems of solar.

In Kyushu’s case, increasing the solar capacity from 10 GW to 16 GW and 20 GW
increases the levelized cost of generation by 3.39% and 4.69%, respectively. Increasing the
LNG quota has a minor impact at the moment since the current LNG price is only about
12% higher than coal. In contrast, solar is still almost twice as expensive as coal. Solar
prices around the world have been decreasing, and it might decrease in Japan in the future.
The impact on CO2 and cost now becomes a policy decision, and the ratio between these
two factors presents several potential combinations between LNG quota and installed solar
capacity that could yield identical cost or the same CO2 targets as seen in S2 and S4. More
LNG is necessary when cost is prioritized, but it will lead to more dependence on LNG.
Alternatively, by investing more in solar capacity, it could lead the CO2 reduction efforts
and local power generation. This scenario entails lower dependence on both coal and
LNG, which are both imported fuels. As with the previous results, the impact of weather
on these values is evident, as seen in the variations in the levelized cost and levelized
CO2 emissions.

4.3. Potential Solutions beyond Solar PV

The supply and demand mismatch in winter and summer is one of the major road-
blocks in the total phase-out of coal power plants through solar energy. Diurnal storage
will be enough to solve the mismatch during summer, but seasonal storage or seasonal
generation will be necessary for winter. Since there is still enough excess energy during
peak solar production in summer, storage is the straightforward solution once these options
become economically feasible. However, since there is less solar energy in winter, there is
not enough excess solar energy for diurnal storage to work, which opens an opportunity
for seasonal technology. Seasonal storage in the form of power-to-gas (P2G) could store
the excess solar in autumn for winter. Combined heat and power (CHP) plants could be
operated at a higher capacity in winter if local water heating is established.

4.4. Impact of Weather on Energy Transition Plans

The stochastic nature of demand and renewable energy sources was the primary
motivation for developing the weather-driven approach since energy transition recommen-
dations should consider scenarios that will test the limits of the planned energy mix. The
variations are significant at 400 MW to 600 MW coal capacity, as seen from the results. In
Japan’s case, this translates to 1–3 coal power plants, but for smaller nations with smaller
plants, this could be composed of more than five plants that should be on standby in the
event of an extreme weather condition. Coordinating smaller plants will require more
dialogue and agreements between the government and plant operators. Consequently, the
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government could also run standby plants to ensure the reliability of the system. It has
also been shown that weather influences the potential for CO2 reduction and the system’s
overall annual generation cost. Beyond coal decommissioning, weather will remain a
necessary variable in energy planning since it influences the demand, which is the primary
source of stochasticity in the analysis. As more VREs are added to the green energy tran-
sition, weather becomes a crucial variable for both wind and solar. Rainfall data could
also influence hydropower generation, which was not explored in this study. It could also
influence the viability of PHES since this requires sufficient water reservoirs affected by
rain and water evaporation. Little is known about wave energy’s potential, but the weather
will also influence it since it depends on nature.

4.5. Importance and Limitation of the Proposed Approach

The proposed weather-driven scenario-based analysis revealed the importance of the
LNG quota, demand variations, and solar generation through the annual hourly simulation.
System reliability could be analyzed using the duration curve, but this does not show the
hourly balance, which is greatly influenced by demand and solar generation’s stochasticity.
Through careful selection of representative years, the range of potential scenarios was
identified and analyzed to ensure robust results. However, the approach is dependent
on the yearly assignment and is limited by the probabilistic matching of weekends and
holidays to high irradiance days. The former is influenced by human behavior, while the
latter is non-deterministic. Thus, although the simulation considered the yearly variations,
the probability of a low irradiance day being matched to a high-demand weekday was
not covered by the approach. Nonetheless, the approach can be used to provide robust
recommendations for green energy transition since it covers the stochastic nature of demand
and variable renewable energy. In this study, the approach was used to determine the
minimum coal capacity that can ensure the system’s reliability, but it could also be used
for energy storage assessments and capacity planning. This study only used a single-bus
network, but it could be expanded to a national grid level by representing each region as a
bus. The approach can then be used for grid expansion planning.

5. Conclusions

Driven by the idea of transitioning to a green electricity grid, an hourly power flow
analysis was conducted to understand the potential, limitations, and implications of using
solar energy as a driver for decommissioning coal power plants. The weather-driven
scenario analysis ensured the robustness of the results and recommendations. The analysis
revealed that solar power could reduce about half of Kyushu’s coal capacity with the aid of
LNG. Beyond 12 GW, solar power could not reduce the minimum coal capacity necessary
to ensure the system’s reliability, but it could still reduce the coal generation and the overall
CO2 emissions. The reduction in coal capacity comes at a cost, since solar power is still
relatively more expensive in Japan. By installing 20 GW of solar PV systems and having
28 TWh of available LNG, the levelized CO2 emissions could be reduced by 37%, but this
would increase the levelized cost of generation by 5.6%. Most of the price increase is owed
to the price of solar electricity generation, which remains high in Japan. In Kyushu’s case,
this change could be achieved without constructing additional power plants, since the LNG
plants are operated at a low LF. However, additional planning is necessary to acquire more
LNG. Countries that use LNG plants as peak-load generators share the same potential,
and the results show that a minor change in the system could have a significant impact on
emission goals.

The results emphasized that solar power with the aid of LNG could partially replace
coal capacity, but it alone could not phase-out coal. For energy planners who are only
starting to increase their solar capacity, insights from this work could help with under-
standing the interactions between coal, solar, and LNG electricity generation. For planners
in countries with a considerable amount of solar power (>8%), the results from this study
could serve as a precaution by highlighting the risks of further increasing the solar power



Energies 2021, 14, 2389 21 of 23

penetration. Although solar power helped solve midday peak power, the problem remains
because it simply shifted to periods where there is no solar energy. Summer and winter are
challenging periods due to the increase in peak demand. Although it is counterintuitive,
solar energy is not enough during summer, or, to be more precise, misaligned since the
problem occurs in the late afternoon. Diurnal storage can address the misalignment in
summer, but winter presents a more intricate problem, since the solar energy is insufficient.
Thus, exploring other technologies that could further complement solar energy is necessary.

The weather-driven approach revealed the importance of weather in the analysis, as it
affected the results to varying degrees. In addition, 400–600 MW of standby coal capacity
is necessary due to the yearly fluctuations. Coal generation, coal load factor, curtailment
rate, and CO2 emissions vary by 7–18%, 8–27%, 0–5%, and 6–8%, respectively. Identifying
the representative year is crucial since it should cover the worst case, best case, and the
cases in between. Energy planners and policymakers should consider the weather when
analyzing energy plans, as it could provide a range of values that can guide them in making
the correct decisions. Since the approach can generate scenarios based on weather data,
it could also be used for storage assessment and capacity planning. The approach could
also be used for grid expansion planning by increasing the number of buses and modeling
multiple demands. These energy planning topics could also benefit from the range of
insights generated through the weather-driven approach.
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The following abbreviations are used in this manuscript:

CC Combined Cycle
CHP Combined Heat and Power
DHI Diffuse Horizontal Irradiance
DNI Direct-Normal Irradiance
GEP Generation Expansion Planning
GHI Global Horizontal Irradiance
IEA International Energy Agency
IPP Independent Power Producer
JMA Japan Meteorological Agency
KyEPCO Kyushu Electric Power Company
LNG Liquefied Petroleum Gas
METI Ministry of Economy, Trade, and Industry
MOFA Ministry of Foreign Affairs
P2G Power-to-Gas
PHES Pump Hydro Energy Storage
PV Solar Photovoltaics
pvlib pvlib Python Library
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PyPSA Python for Power System Analysis
VRE Variable Renewable Energy
14MM 2014 Mild Summer Mild Winter (Weather Scenario)
91MS 1991 Mild Summer Severe Winter (Weather Scenario)
16SM 2016 Severe Summer Mild Winter (Weather Scenario)
18SS 2018 Severe Summer Severe Winter (Weather Scenario)
13E- 2013 Extreme Summer (Weather Scenario)
12-E 2012 Extreme Winter (Weather Scenario)
LNGTWh

quota LNG Availability (TWh)
SolarGW

cap Solar Capacity (GW)
GenerationkWh

tech Annual Generation (kWh)
CostJPY/kWh

tech Cost of Electricity Generation (JPY/kWh)
EmissionkG−CO22/kWh

tech CO2 Emission (kgCO2/kWh)
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