energies

Article

Implementing Radical Innovation in Renewable Energy
Experience Curves

Paul Kerr '*(©, Donald R. Noble (%, Jonathan Hodges >

check for

updates
Citation: Kerr, P,; Noble, D.R.;
Hodges, J.; Jeffrey, H. Implementing
Radical Innovation in Renewable
Energy Experience Curves. Energies
2021, 14, 2364. https://doi.org/
10.3390/en14092364

Academic Editor: Hua Li

Received: 11 March 2021
Accepted: 19 April 2021
Published: 21 April 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Henry Jeffrey !

Institute for Energy Systems, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK;
d.noble@ed.ac.uk (D.R.N.); Henry.Jeffrey@ed.ac.uk (H.J.)

Wave Energy Scotland, An Lochran, 10 Inverness Campus, Inverness IV2 5NA, UK;
jonathan.hodges@waveenergyscotland.co.uk

Correspondence: paul kerr@ed.ac.uk

Abstract: Cost reductions in nascent forms of Renewable Energy Technology (RET) are essential
for them to contribute to the energy mix. Policy intervention can facilitate this cost reduction;
however, this may require a significant investment from the public sector. These cost reductions
fall into two broad categories: (1) incremental cost reductions through continual improvements to
existing technologies, and (2) radical innovation where technologies that significantly differ from
the incumbents are developed. This study presents a modelling methodology to integrate radical
innovation in RET experience curve and learning investment analysis, using wave energy as an
example nascent RET. This aims to quantify the potential effects of radical innovation on the learning
investment, allowing the value of successful innovation to be better analysed. The study highlights
the value offered by radical innovations in long-term deployment scenarios for wave energy. This
suggests that high-risk R&D efforts in nascent RET sectors, even with low success rates, could still
present significant expected value in offsetting future revenue support.

Keywords: innovation; experience curve; learning investment; renewable energy; wave energy; forecasting

1. Introduction

Support policies for Renewable Energy Technologies (RETs) promote both the devel-
opment and deployment of RETs where insufficient incentive exists for the private sector
without intervention. This support is normally intended to be a temporary measure, with
the goal of reducing the cost of these technologies to market parity (or to a break-even level
considering the other benefits they bring to the energy system) [1].

Funding this cost reduction can be very expensive, and in the case of revenue support
can lock a government into financing this over long time periods [2]. In the EU 27, revenue
support for solar PV is expected to peak at around €25bn per year in the mid-2020s [2],
while the UK currently spends around €12bn per year on revenue support for low carbon
electricity generation [3]. Due to the magnitude of this investment, increasing the efficiency
of cost reduction for RETs presents the opportunity for substantial saving to the public
sector. In addition, prominent roadmaps to net-zero rely heavily on technologies that are
currently at demonstration and prototype stages [4,5]. Therefore, it is also important that
development and deployment policy accommodates commercialisation of nascent RETs
over relatively short timescales (<30 years).

It is crucial for policy makers to understand the factors that influence both the in-
vestment and the time required to bring about these cost reductions in order to efficiently
allocate funding towards developing new RETs. This applies to both the selection of
technologies and the policy instruments used to administer this support.

RET cost reductions can be represented as incremental (economies of scale, sector
experience, etc.) and step-change (development of novel technologies). This study presents
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a methodology to estimate time and investment required to bring about cost reductions.
This is achieved through different mixes of these two effects:

1.  Incremental cost reductions are modelled using experience curves. These estimate
reductions in the Levelised Cost of Energy (LCOE) associated with deployment. The
associated investment (learning investment) is the cumulative revenue support, above
Wholesale Market Prices (WMP), needed to facilitate this deployment.

2. The effects of introducing step-change cost reductions at an early stage are then
integrated into the modelling. This considers the investment and time required to
develop novel subsystems through a stage-gate innovation program, and the LCOE
reductions they could bring to the sector.

Wave energy was chosen as an example nascent RET for this study. Wave energy
presents a significant potential resource [6] which has potential synergies with offshore
wind energy [7]. However its potential has remained almost entirely untapped due, in
large part, to a high LCOE compared to established forms of RET. Therefore, assessing the
investment required to reduce the LCOE of wave energy will help policy makers evaluate
the costs associated with utilising this resource.

The importance of a mix of technology push and deployment policy is acknowledged
in economic theory for RET development [8,9]. However, there are mixed views on the
balance of these policies [10]. It is widely asserted that inadequate technology-push
support, both at nascent stages and during technology deployment, leads to higher overall
public investment [2,11,12]. However, there is little consensus on how to determine the

‘optimal’ mix of these policies. The ability to investigate different scenarios in more depth

will provide policy makers with an additional tool to assess the trade-offs of different
policy options.

The basis of this study is the concept of discontinuities or ‘step-changes’ in experience
curves analysis due to radical technology innovations. This has been explored by several
authors [13-18]. However, these are often presented as either single examples or illustra-
tions with limited numerical quantification. Two studies by the Carbon Trust presented
scenarios where step-change innovations were integrated into learning investment analysis
for the wave energy [15,16]. While these highlighted the potential cost savings of innova-
tion in the wave energy, they didn’t consider the sensitivities to different parameters, and
provided relatively brief discussion of the modelling implications. Similarly a study by
Shayegh et al [19] compared the effects of R&D that promoted either increased incremental
innovation or shifts between experience curves (i.e., step-change innovation) on learning
investment. However, this only considered more mature forms of renewable energy, and
did not consider temporal aspects of cost reduction. This work adds to the literature by
presenting cost modelling for the wave energy sector that explicitly explores the impor-
tance of step-change cost reductions through innovation, compared to incremental cost
reductions through volumes. The multiple sensitivities involved in learning investment
analysis for nascent RETs are also addressed in greater detail than previous studies, and
temporal aspects of cost reduction and investment are modelled.

The modelling in this paper presents a range of example scenarios, combining different
mixes of step-change and incremental cost reductions. These follow three different cost
reduction pathways:

1.  Incremental cost reduction driven through commercial deployment only.
2. Incremental cost reduction driven through commercial deployment combined with
step-change cost reduction (through step-change innovation), where either:

a. deployment is delayed until a step-change innovation has been completed, or
b. deployment and step-change innovation happen in parallel.

Given the limited deployment and cost data for the wave energy sector, and inherent
uncertainties in experience curve analysis, this work evaluates plausible scenarios for
the wave energy sector rather than predictive forecasting. However, these scenarios still
demonstrate the potential for reduction in revenue support expenditure during wave
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energy’s deployment phase when greater investment and time is spent on early-stage
step-change cost reduction. Essentially, exploring the value of step-change innovation in
achieving cost reduction in the wave energy sector.

2. Background

While many different models of innovation exist, the Research, Development, Demon-
stration and Deployment (RDD&D) paradigm combining ‘technology-push’ and ‘market-
pull” activities is a common thread in energy innovation literature [20]. This could be
taken to suggest a simple, one-way progression from R&D to commercial deployment.
However the ‘innovation chain’ is a complex process with feedback loops and knowledge
spillovers [1,21]. As a RET develops, different effects drive technology progress. In a
nascent stage, progress is mainly driven through R&D and knowledge transfer. As the
technology develops, feedback effects through deployment also become key drivers of
performance improvement (see Figure 1) [22].

Market Pull Demand
Supply e

Consumers

L R Basic Research : Energy sectors
* Research centres and Demonstration) Deployment Diffusion
« Business Research ploy! « Government
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Technology Push >
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Figure 1. The ‘Innovation chain’ (adapted from IEA [1]).

While cost reductions in RET may come from many sources, they can broadly be
considered in two categories (based on Wilson and Grubler [21]):

1. Radical, or step-change cost reductions where a novel (or radical) innovation is
developed that strongly deviates from prevailing technologies or processes, and;

2. Incremental cost reductions, that are brought about from an aggregation of incremen-
tal technology innovations and other learning effects that improve the performance,
cost, etc. of an existing commercial technology.

The development of other forms of energy supply technology have shown a pattern
of radical/step-change innovation happening at the early stages of development, while
more mature technologies largely derive their cost reductions from incremental learning
effects [23]. This aligns with the notion of path dependence, where innovation in a mature
technology sector is increasingly directed by incumbent organisations’ prior experience [24]
and nacent technologies are increasingly locked out [13,25].

The rest of this section covers step-change and incremental cost reductions in RET in
more detail, as well as how policy influences this cost reduction.

2.1. Cost Reduction in RET

In RET applications, experience curves describe technology performance (usually cost)
as a function of experience (cumulative output in capacity, units, generation, etc.) [12,13].
This relationship between costs (Cost) and output (Q) is shown in Equation (1). Cost, is
an initial cost at cumulative output (Q,). The learning rate (LR) describes the fractional
decrease in cost (Cost;) for every doubling of cumulative output (Q;):

Q)"
Cost; = Costy <Ql> where: b=

q

_log(1—LR)

log2) @
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When used to extrapolate costs, experience curves describe a series of incremental cost
reductions [26]. Experience curves have seen widespread use in analysis of more mature
RET sectors [27], and forecasting of nascent RET sectors including Marine Renewable
Energy (MRE) [15,28,29]. In nascent technologies, however, large uncertainties exist in the
parameters required to define experience curves.

In addition, many different ‘learning effects” contribute to the aggregated learning
rate [30]. This is partly determined by the choice of independent and dependent variables
for the experience curve, as these define the system boundaries of a learning system, and
therefore what sources of cost reduction are included [26,30,31]. If, for example, unit prices
are chosen as the dependent variable the learning rate reflects improvements in the costs of
manufacturing (labour, material usage, etc.). However, for experience curves that consider
energy costs as the dependant variable, the learning rate reflects many other sources of
cost reduction, both embodied in the technology and in its end use (financing, O&M,
lifetime etc). It is, therefore, important to note that all learning rates measure a correlation
between independent (in our case deployed capacity) and dependant (in our case LCOE)
variables [25,30]. The learning rate is simply a proxy for multiple sources of cost reduction
that occur alongside deployment, which may include:

1. Learning by searching—improvements through R&D

2. Learning by doing and learning by using—improvements in product manufacturing
mechanisms, labour efficiency, etc.

3. Learning by interacting—improvements in network interactions between research
institutes, industry, end-users, policy makers, etc. that improve knowledge diffusion

4.  Upsizing/downsizing—changing the scale of the technology may reduce specific costs

5. Economies of scale—product standardisation and upscaling of production facilities

Step-change, or radical innovation, can cause a ‘step-change’ in a RET sector’s per-
formance when a new technology variant or process is developed that outperforms the
incumbent (as described in Figure 2). This can cause a break or shift from the consistent
incremental cost-reduction curve [13,19,26]. The development of successful new technolo-
gies (step-change innovations) are characterised as being higher risk, with payoffs realised
over longer time scales [25,32].

Incumbent Incremental Improved
Technologies Innovaiton Performance
Novel Radical New

Concepts Innovaiton Technologies

Figure 2. Incremental and radical innovation adapted from [33].

Weber [11] recommends a development trajectory for the wave energy sector which
initially focuses on finding optimal technologies (which can represent radical innovations).
As the sector matures, the focus moves to improving commercial readiness, alongside
smaller incremental performance improvements. This approach should avoid lock-in to
sub-optimal technologies which require greater investment to achieve cost competitive-
ness [11]. It follows that a funder should support the development of a range of more
radical technologies in the early stage of a sector’s development (to identify optimal tech-
nologies); followed by demonstration and deployment policy to support commercialisation.
This study will add some quantitative analysis to this notion by considering the effects of
incremental and step-change cost reductions on the investment required for a RET sector
to meet cost parity.
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2.2. Policy to Support Innovation

Support policy has important effects at different stages of the ‘innovation chain’. It
can be categorised on a number of axes, one of the most ubiquitous being push and pull
mechanisms [34]:

¢ Push—allows innovation to be carried out at lower cost/time (increases innova-
tion supply)

e Pull—rewards the outcomes of successful innovation (increases innovation demand)

The OECD/IEA and Wene make a distinction between the effects of public and pri-
vate sector activities [13,35]. They note that RD&D carried out by the public sector, and
public-private partnerships, play particular importance in seeding the learning process
within industry (introducing new technological opportunities). In contrast, both indus-
try RD&D and deployment are more likely to bring about incremental cost reductions
through the experience curve effect. This process is shown in Figure 3. The IEA [22] and
Fleming et al. [36] similarly argue that much of the innovation seen in the private sector is
seeded by publicly funded programmes for higher-risk, earlier-stage research.

R&D
subsidies

+ positive correlation

- negative correlation + (Production

Government + Government
Deployment Demand R&D policies
policies P

! Seeding the )
learning
\ _ process 1 Public R&D

Figure 3. The ‘virtuous cycle’ for Renewable Energy Technology (RET) cost reductions based on
IEA [13], Watanabe et al. [37], Wene [35]. This shows how increased production can lead to cost
reductions from experience in production and industry R&D. Public R&D can either increase ongoing
industry R&D through subsidies, etc., or seed the learning process by introducing new technology
opportunities to the learning system (highlighted in figure). Government deployment policies
(alongside cost reductions) increase RET demand and subsequent production.

The importance of Government R&D support policy can be explained by 3 key market
failures applicable to R&D: (i) Indivisibility, (ii) Inappropriability—generating spillover
benefits, and (iii) Uncertainties—which increase risks [38]. Spillovers between firms, and
the indivisible nature of knowledge, result in individual firms not necessarily realising
the full benefits of their R&D efforts, and therefore underinvesting in R&D [9,13]. The
RET sector is also largely risk-adverse and inclined to make more certain, short-term
incremental improvements to existing portfolios [24,32], as opposed to pursuing R&D in
riskier novel technologies [25,39]. Addressing these market failures is a key justification
for government R&D support. This is particularly important when developing higher risk
novel technologies [4], but also applies to R&D in more mature RET sectors [40]. Nemet [41]
describes how, in the period 19802003, the majority of breakthrough improvements in
solar PV technology efficiency originated in public RD&D institutions. Similarly, the
majority of technology innovations identified by Norberg-Bohm [39] in the US wind energy
sector during the 1980s relied (partly or wholly) on public funding. Governments can
also take a portfolio approach to RD&D that supports a variety of novel concepts in a
nascent RET sector, to avoid potential lock-in further down the line with sub-optimal
technologies [24,25].
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Incremental cost reductions derived through learning, however, can only be realised
through technology deployment [13]. In liberalised energy markets, this is facilitated by
a market support or ‘market pull’ mechanism. This “pull” policy is also vital in market
formation, increasing the incentive to develop successful technologies [42,43], as well as
compensating for negative environmental externalities [44]. Unstable market pull policy
may, however, incentivise firms to ‘cash out’ on existing technologies while tariffs are in
place, rather than to engage in exploration of radical new solutions [34]. Additionally,
price stagnation may occur if revenue support is too generous, weakening the incentive to
reduce costs [30].

In summary, evidence from literature highlights the importance of technology push in
developing new radical technologies during a sector’s nascent stages; and market pull that
realises the technology’s benefits through deployment, while facilitating incremental cost
reductions. This is outlined as a process adapted from Wene [35]:

1.  Government support is often needed for high-risk R&D efforts to find radically
new solutions

a. Demonstration projects or targeted government R&D grants can help knowl-

edge gained in public R&D to be transferred to the industrial learning system

2. After the demonstration, the new technology is often too expensive to compete in the
market, therefore:

a. It will then need government deployment programs to allow it into the market
and to start the ride down the experience curve
b. Subsidisation of private R&D (tax credits, etc.) may complement this process

(due to the private sector’s tendency to underinvest in energy R&D)

Putting greater or lesser emphasis on developing radical new technology variants
before introducing deployment policy will affect the overall investment, cumulative de-
ployment, and time to achieve cost reductions in a developing RET sector. The modelling
presented in this study explores this interaction, which is key to making informed policy
decisions when developing a nascent RET.

3. Materials and Methods

The cost modelling in this study investigates the effects of integrating radical inno-
vation in experience curve analysis. As a single factor learning curve’s cost reduction is
based only on one parameter (e.g., deployment) it can by definition not take into account
future innovations that lead to step changes in technology costs [45]. This is addressed in
this study by building on the concept of step-change innovation enabling shifts between
experience curves [13,17,19] as shown in Figure 4. These experience curves can represent
an incumbent technology (curve A) and a technology variant (curve B) which is enabled
through step-change innovation. This allows us to construct scenarios comparing the
investment required to meet an LCOE target including step-change innovation (line B)
versus a scenario with incremental cost reductions alone (line A).

In our modelling, we are separating the effects of incremental cost reductions and
step-change innovation. The learning rates in this modelling only represent incremental
cost reductions and not the effects of step-change innovation. Historical single factor
learning rates derived over long time periods may aggregate effects of both incremental
cost reduction and step-change innovation [13]. Therefore, as extrapolated experience
curves represent incremental cost reductions, care must be taken using historical learning
rates, as their use may inflate the level of cost reduction attributed to future incremental
cost reductions.

Multifactor experience curves attempt to quantify the contribution of cost reduc-
tion from different independent variables (e.g., R&D expenditure, average device scale,
etc.) [45]. However, they are seen as unreliable in long-term cost extrapolations [27], due
to the amount of required data and the uncertainties associated with the extrapolation
of the required independent variables. In addition, R&D expenditure as an input can be
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associated with accelerating incremental innovation (e.g., R&D tax credits), or promoting
step-change innovation (e.g., blue-skies public R&D) [19,35]. This approach does not allow
for easy differentiation between the effects of incremental cost reductions and step-change
innovation in cost extrapolations, which this study addresses.

500

Technology variant A (incumbent)
450 Technology variant B (new technology)

400

w

(o))

o
T

w
o
o
T
4

N

o

o
T

LCOE (€/MWh)
&
s

150 Transition
period

107

0 Loa ol 1 Lol 1 A | 1 IR | 1 Lol
102 103 10 10° 106
Cumulative Installed Capacity (MW)

Figure 4. Experience curve with transition between technology variants, based on IEA [13]. Solid
line shows sector wide cost curve. The technology variants are assumed to have equal learning rates.
See text for discussion.

The remainder of this section describes the modelling methodology used in this
study. This initially addresses pathway 1, which considers incremental cost reductions
only, covering in Section 4.1 the approach taken, key assumptions and values used, and
the calculation steps. This is followed by the integration of step-change cost reductions
(pathways 2a & 2b), for which the approach, the integration into the modelling, and the
values used as inputs for the scenarios are introduced in Section 4.2.

3.1. Incremental Cost-Reduction Model
3.1.1. Modelling Approach and Key Assumptions

The incremental cost reduction model is based on the experience curve effect. This,
combined with a deployment trajectory, gives a Levelised Cost of Electricity (LCOE)
varying with both deployment and time (shown as the solid purple line in Figure 5).

The incremental innovation modelling uses a single factor experience curve to de-
termine the rate of LCOE reduction (standard practice for cost extrapolations [27]) as
represented in Equations (1) and (2). Other studies in the MRE sector have applied separate
learning rates for CAPEX and OPEX [28], discount rate [15] and different subsystems [28].
Due to the perceived levels of uncertainty in these assumptions for nascent technologies,
these were not considered in our analysis. The learning rates are applied to the LCOE
values directly.
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Figure 5. Relationships between Levelised Cost of Energy (LCOE), cumulative deployed capacity

and time in incremental cost reduction model.

Learning Investment

In the early stages of a RET’s deployment, the LCOE is likely to be significantly above
the WMP. Therefore, (in grid-connected applications) revenue support will be required
to commercially deploy the technology. This subsidy above WMP (shown as the shaded
areas A and B in Figure 6) is referred to as ‘learning investment’ [13]. This can be presented
as a time series or as a total value to reach a target LCOE. This learning investment is
determined by several factors (see Table 1). Figure 6 highlights the three key parameters in
our analysis:

*  Starting point (CDC., LCOE;)—an LCOE (LCOE,) at a given deployed capacity
(CDC,), from which the learning curve is extrapolated
¢ LCOE target (LCOEtarget)—the LCOE that the calculation ends at. This is the same as
the wholesale price in Figure 6
®  Learning rate (LR)—the percentage reduction in LCOE for every doubling in cumula-
tive deployed capacity
The starting point of the experience curve represents a level of deployed capacity at
which reliable LCOE estimates can first be made. For this study, this point corresponds to
early commercial arrays. Before (CDC,) is reached, the LCOE is less certain. Consequently,
either A or A + C (see Figure 6) could be considered as the learning investment required
to reach (CDC,, LCOE,). In a preliminary study, the difference in learning investment
between A and A + C was investigated. This was found to be under 2% of the total learning
investment for all scenarios considered in Results (Section 4.2). Due to the high level of
uncertainty in LCOE estimates, and unreliability of experience curve relationships in early
stages of technology development, the model takes the LCOE before (CDC., LCOE,) to
be LCOE,. Therefore, the learning investment prior to the starting point is assumed to be
defined by A only.
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Figure 6. Key parameters and learning investment in the incremental cost reduction model. Circles
indicate starting points of the three experience curves, and black diamonds indicate the LCOE target
where the calculation ends (equal to the wholesale price in this figure). Shaded areas A and B
represent learning investment (subsidy above wholesale price) for the pink experience curve, the
pink dashed line represents extrapolation of the experience curve backwards before CDC,

Key Assumptions

In this study, LCOE, is based on estimates for first commercial Wave Energy Converter
(WEC) arrays. Several estimates exist for this in the literature, many of which are clus-
tered around €,020400/MWh [29]. The level of associated global cumulative deployment
(CDC,) for sector commercialisation is taken as 100 MW (based on our assumption that
several pre-commercial arrays will be in place after an additional 75 MW of installed wave
energy capacity). The LCOE target reflects long-term European wholesale market prices
(€202050/MWh), therefore the modelling considers the required learning investment to
meet present-day cost competitiveness. The LCOE learning rate (LR) of 15%, applied here,
is within the range of estimates presented in various wave energy sector roadmaps [29].
This is slightly higher than typical CAPEX-based learning rates used for wave energy
sector economic modelling, as more sources of learning are included in an LCOE-based
experience curve [26]. It is reasonable to assume LR values from MRE roadmaps are based
on historical values from other sectors. Therefore, the baseline rate of incremental cost
reduction used in this study can be considered to be optimistic. However, this does not
affect the key trends discussed in the Results section. The rate of cumulative deployed
capacity additions (30% increase/year) is based on solar PV and onshore wind energy
from 2006 to 2018 [46]. An ‘aggressive’ deployment scenario is also considered, with a 60%
increase/year (based on the solar PV capacity additions from 20062013 [46]).

The base values for the other model parameters are shown in Table 1, which are
taken as round numbers for clarity. Sensitivity around these base values is considered in
the modelling.
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Table 1. Parameters used for pathway 1 (subsidised deployment only) cost reduction scenarios

Variable Symbol Base Case Unit Description

Learning Rate LR 15 % LCOE reduction per doubling of capacity [15,29]
Cumulative capacity deployed at t = 0 (this is the

Initial capacity CDGCy 25 MW cumulative global wave energy capacity deployed

from 2004 until the end of 2018 [47,48])
Cumulative deployed capacity at experience curve

Capacity at starting point CDC, 100 MW start point in model corresponding to early
commercial arrays

LCOE at starting point LCOE, 400 €/MWh LCOE at experience curve start point in model [29]

LCOE target LCOEtarget 50 €/MWh LCOE when calculation stops

Support Period Tsp 20 Years Revenue support mechanism duration

Capacity Increase Ry 30 % /year %EEZEZSEQHR%KIH ; iactlgtz ([i:g]l)oyed capacity per year

Capacity factor cf 35 Y% Device average power/rated power

Several assumptions are made in the incremental cost reduction model:

1.  Capacity additions occur in monthly time steps following an exponential growth
in cumulative deployed capacity until the LCOE reaches the target LCOE. Capacity
additions after this point are considered un-subsidised and are excluded from the
learning investment calculation.

a. Deployment in our model is insensitive to the technology’s LCOE.

b. Due to data availability, the deployment trajectory is based on trends seen in the
wind and solar PV sectors after >5GW of deployed capacity [46]. A different
deployment trajectory could be expected during early stages of deployment.

2. Capacity factor variation is not included in the modelling. Although trends from
other sectors have shown this may increase over time, its variation is considered
too uncertain to include for a nascent RET. This may result in an underestimate of
subsidised generation in each timestep.

3. The average WMP remains constant. In reality, this fluctuates both spatially and
temporally due to factors including supply and demand, weather, changes in the
energy mix, economic factors, etc. However, forecasting and generic trends for future
energy prices is outside the scope of this study.

4. The target LCOE is set as the WMP. Specific benefits could apply to individual
technologies that increase their value (in terms of portfolio variety, etc.), and variations
in wholesale capture price may also shift the target LCOE. The target LCOE is,
therefore, RET-specific and could be varied for different technologies. However, this
has been excluded from the analysis.

5. The experience curve is smooth and continuous. Some historical experience curves
have shown s-shapes [49] where slower learning happens at the beginning and end
of a technology’s deployment. However, as there is little consensus on how to deal
with these in long term extrapolations, the s-shaped effect has not been considered.

6. Itis probable that early commercial RET projects (including wave energy) will rely
on a mix of private finance, and government loans, grants, investment subsidies,
etc. alongside revenue support [1,50]. This was not modelled and, in theory, should
not affect the overall learning investment. However, the structure of these financial
instruments would be an important consideration for policymakers.

3.1.2. Calculation

For the modelling in this study, the level of Cumulative Deployed Capacity (CDC)
grows exponentially with respect to time in years, Equation (2). Using the experience curve
relationship, Equation (3), the LCOE is then defined based on the cumulative deployed
capacity (the analysis ends once the LCOE meets the target LCOE).
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CDC = CDCy(1+ R¢yp)' )
LCOEc if CDC < CDC _
LCOE = { coe\ b , " where: b = —1“51(17“{) ®)
LCOEc (WCC) otherwise 0g(2)

The model calculates outputs at discrete time steps. For the modelling presented in
this study, monthly time steps (At = 1/12) were chosen to reflect a reasonable level of granu-
larity considering sector-wide deployment. As the deployments have staggered start times,
and each receive revenue support for a fixed duration (Tsp), a matrix of subsidised genera-
tion hours is created for each individual deployment at each time step. In the generation
matrix (Gen; j), subscript i refers to a specific timestep and j to a specific deployment. The
generation per step is a function of deployed capacity in the step (dep j =CDC;—C DC]«,l),
and time from the last time step (At; = t; — t;_1) multiplied by the capacity factor (cf) and
the average number of hours per year (8766). Conditional clauses 1&2 in Equation (4)
account for the lack of subsidised generation before the time of deployment (i < j) or after
the length of the tariff (Tsypport)-

0 ifi <j (before deployment)
Gen;; =40 if i > j+ (Tsupport / At)  (after subsidy has ended) 4)
dep; x At; X cf x 8766 otherwise (subsidised generation)

The investment for each cell in the generation matrix is then calculated by multiplying
the generation matrix (Gen; ;) by the differential cost (difference between the LCOE and
WMP) for each capacity step. Note that LCOE varies with the cumulative deployed capacity,
and it is assumed that LCOE reductions happen following each deployment.

11’17),',]' = Gen,-,j X (LCOE]' — WMP) (5)

To calculate the cumulative investment at time ¢; (CumInv;) the columns of the invest-
ment matrix are summed. The total investment (CumInuvy,,) is calculated by summing the
entire investment matrix. The present value of these investments can also be calculated.

Cumlnv; = Zlm’i,j (6)
j

CumlInvyy =YY Inv;; )
ij

The main outputs from the model are the total deployment in GW at which the
LCOE target is met, the time this takes in years, timeseries of the investment, and the total
investment required to subsidise this deployment, both discounted and undiscounted.

3.2. Step-Change Cost Reduction
3.2.1. Modelling Approach and Key Assumptions

The approach to step-change cost reductions is based on a competitive stage-gate
innovation programme, similar to the Wave Energy Scotland procurement programme [51].

It is postulated in this work that novel subsystem(s) with lower Capital costs (CAPEX),
Operational costs (OPEX), increased Annual Energy Production (AEP), or some combina-
tion thereof, can be implemented within an existing wave energy converter. This results
in a step-change reduction in LCOE. Implementing these would require development,
integration, and demonstration, which can be split into two overall stages:

1. Novel subsystems are developed in a competitive staged approach, either taking in
concepts at the earliest stage or incorporating technology transfer from other sectors
and applications. Multiple concepts are funded at the early stages, resulting in a
reduced number of successful subsystems at around TRLS.
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2. The successfully developed subsystem is then integrated within an existing device
and demonstrated at (close to) full scale.

Each of these activities has an associated time and cost, which are offset against the
reduction in LCOE. The total investment required includes the cost of developing all
concepts through all stages required (whether successful or not), plus the integration and
demonstration costs. Lessons are learnt from the development of unsuccessful concepts and
these can be used to further develop the sector, although this is not explicitly considered in
the modelling. The time required to carry out a step-change cost reduction is the sum of
the maximum time taken at each stage of the development programme plus the total time
for both integration and demonstration. The approach is summarised in Figure 7.

Development Integration Demonstration
Introduce novel Integrate Full-scale
TRI.‘ . subsystem(s) > subsystem(s) > demonstration VAL OCE T
device ; . X reduced LCOE
[reduces TRL] into device project

t E S S

(1) Novel subsystem development programme
Stage 1 Stage 2 Stage 3 Stage 4
TRL 1-3 TRL 3-5 TRL 56 / TRL 7-8

s

Concepts & Technology transfer

Cumulative
development
time & cost

Figure 7. Overall approach of staged subsystem development, integration and demonstration.
‘Feedstock” of novel concepts is shown in the bottom left of the figure.

It is important to highlight that some aspects of the ‘innovation chain” are not captured
by this approach. Only the costs and time associated with experimental development
through to demonstration of RET subsystems are considered. This assumes sufficient
basic and applied research is being carried out, which supplies early-stage concepts as a
‘feedstock’ for the novel subsystem development programme (see Figure 7). For countries
that invest heavily in earlier stages of wave energy R&D, there are likely to be ample
concepts available for development through an innovation programme. However, this
is an important contextual factor when considering the applicability of a stage-gate style
innovation programme to a specific country.

A range of values have been considered for the total investment, time, and change
in LCOE resulting from step-change cost reductions, summarised in Table 2. These are
constructed using values from the CORDIS database [52], published guidance on develop-
ing ocean energy technologies [16,53-55], and experience from the Wave Energy Scotland
development programmes.

Due to significant variation of resource in different sites, wave energy may not con-
verge on one successful device concept. Developing and implementing a novel subsystem
for a leading device will reduce the LCOE of that device. However, it may not reduce
the LCOE of the whole sector. On the other hand, one technology innovation (such as a
grid connection system) may easily diffuse through the entire sector. It may, therefore, be
necessary to develop several implementations of a novel subsystem to reduce the LCOE of
the entire sector. We can reasonably assume that this happens in parallel, so this does not
affect the timing. However, it directly multiplies the cost of step-change innovation. The
sensitivity analysis in Section 4.2 on the cost of step-change innovation addresses this.
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Key Assumptions

The base case step-change innovation scenario is an investment of €50M in funding
over 10 years, which results in an LCOE reduction of 25% (i.e., a relative LCOE of 75%).
Higher and lower estimates are used to illustrate the impact of these parameters on the
overall time and investment required to reach the target LCOE. Time, expense and LCOE
reduction for the innovation programme are independent in the model. It is likely that
allocating additional time and money to the programme would give a higher probability of
(1) achieving step-change cost reductions and (2) these cost reductions being larger (since
the development of a greater variety of promising novel concepts could be funded).

Table 2. Parameters and values used to illustrate impact of step-change innovation.

Parameter Values Used (Base Case in Bold)

Investment in each step-change innovation programme €25M, €50M, €100M, €200M, €400M or €800M

Time taken to develop step-change innovation 5 years, 10 years, or 15 years (noting 5 years is very ambitious)
LCOE reduction resulting from step-change innovation 50%, 25%, or 10%

(relative LCOE remaining shown in parentheses) (50%, 75%, or 90%)

Deployment occurs in parallel with technology development yes, no

Transition time to adopt innovation across the sector Immediately, 5 years, 10 years, or 15 years

Two other key assumptions are considered for the step-change cost-reduction process:

¢ The process starts with a device concept at a pre-commercial level (around TRL7-8).
The step-change in LCOE is not derived from developing a novel device from an early
TRL concept.

®  The step-reductions in LCOE are the result of using a structured and staged innovation
programme. They are not the result of developers refining /improving designs, which
is included in the incremental innovation model.

While the midline scenario in our modelling (shown in Table 2) considers novel sub-
systems (as there is a level of data availability for this), it is possible that more radical
approaches from entirely novel concepts could reduce the sector’s LCOE by a larger pro-
portion. Sensitivity around our baseline LCOE in the Results section explores this further.

An underpinning assumption in this process is that experience accrued by the incum-
bent technologies can be transferred to the novel technology variant [13]. This means the
switch of technology variants can be modelled at any point in the deployment trajectory as
a transition between similar experience curves with different starting LCOEs (see Figure 4).
An alternative approach would be assuming none of the experience is transferred and the
learning essentially ‘starts from scratch” when the novel technology variant is introduced.
However, this would suggest an unrealistic absence of knowledge transfer between tech-
nology variants; therefore, the former approach was adopted. Although in reality a middle
ground between these assumptions is likely, this was not modelled in this study.

3.2.2. Integration into the Modelling

To assess the impact of step-change cost reductions, they were integrated into the
incremental cost-reduction modelling as follows:

1.  The total investment is increased by the total investment required for the programme(s)
to develop and demonstrate the step-change innovation(s). This includes investment
in unsuccessful subsystem innovations required to obtain those that were successful.

2. No benefit is observed from the step-change cost-reduction until this is complete, i.e.,
demonstrated at (close to) full scale. Two options have been considered for how this
is then implemented across the sector:

a. The whole deployment timeseries is delayed by the total duration of the step-
change development and demonstration activities. In this case, it is assumed
that deployment is not subsidised until an acceptably low starting LCOE has
been achieved.
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b. Deployment continues in parallel with the novel technology development,
with the assumption that one country delaying their subsidy programme
would not stop subsidised deployment in other countries. Once the novel
technology is developed, several timescales have been considered for the
transition period as the technology is adopted throughout the sector.

3. The LCOE is reduced by the factor resulting from the step-change innovation(s). It
is assumed that during the transition period the novel variant can accumulate the
experience gained from deploying the previous variant [13]. This experience may not
be fully transferable in practice; however, it is considered to be so for the purposes of
this study.

4. The reduction in LCOE plus required investment and time for the step-change cost
reduction is accounted for as one block. In reality, this may occur in a series of smaller
steps, but this does not change the overall results.

4. Results

This section presents, first, results for Pathway 1—exclusively deployment-based
incremental cost reductions; followed by Pathways 2a and 2b—integrating the step-change
cost reduction.

4.1. Pathway 1—Deployment-Based Incremental Cost-Reduction

If not stated otherwise, the assumptions shown in Table 1 were used for the analysis
in this section.

Figure 8 shows the relationship between total learning investment and both LCOE,
and LR. Dashed lines show the base case (LCOE,, LR) and corresponding investment.
The present value figures are calculated following the approach taken by the Low Carbon
Innovation Coordination Group [56] using the UK Treasury social discount rate of 3.5% [57].
This reflects the social time preference of public investments and is not representative of
private sector discount rates.

LCOE; and learning rate have a nonlinear relationship with the total learning in-
vestment and are coupled (a change in one variable’s effect on learning investment is
dependent on the value of the other). The total learning investment is highly sensitive to
the learning rate, especially at lower values (increasing the learning rate from 10% to 11%
reduces the learning investment by a factor of >2.5).

The total learning investment from combinations of LCOE. and LR values at a given
(CDC,) is shown in Figure 9. This can be used to understand the requirements to achieve
“attractive scenarios’ for RET development. The base case scenario (LCOE, = €400/MWh,
LR =15%) is highlighted in Figure 9 with the dotted line, and results in a total learning
investment of €674bn (corresponding present value of €175bn shown in Figure 9). Figure 9
illustrates how relatively small changes to LCOE, (shifting downwards) and LR (shifting
to the right) can result in large changes in the total learning investment. It is evident that
there are low levels of compensation between these parameters; there is only a small range
of scenarios in which a very high LCOE, or low LR can result in a feasible level of learning
investment. This shows that achieving moderate to strong performance in each of these
parameters is a necessity for economically viable cost reduction in a RET sector. How these
parameters are influenced by policy is discussed in Section 6.

While not presented here, the support period length and capacity factor have no effect
on the total cumulative deployment capacity at which the LCOE target is met, nor the
time taken to get there. However, both parameters are directly proportional to the level of
subsidised generation, and therefore to the learning investment.

Changing the rate of deployment affects how the learning investment is distributed
over time, but results in the same total subsidised generation (and therefore learning
investment) for each scenario. In Figure 10 LCOE reduction curves are presented for
different values of LCOE,. In some of the higher LCOE, scenarios. (LCOE; > €400/ MWh),
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Figure 8. Sensitivity of total learning investment to the two main inputs, LCOE; and LR. Base case (see Table 1) used for

other parameters. Values shown as undiscounted and present value.
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Figure 9. Contours of total investment shown for ranges of learning rate and LCOE (LCOE,) at 100MW
of cumulative deployed capacity (CDC, = 100 MW). Left panel shows undiscounted value, right panel
shows discounted investment at a 3.5% discount rate and a 30%/y deployment trajectory. Moving
down the plot represents a reduction in LCOE,, for example, from pre-deployment innovation. Moving
right is an increase in learning rate. Both of these changes reduce the learning investment.
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Figure 10. Cumulative installed capacity required to meet cost parity. Resource ranges are between
mean extractable resource (based on arrays of Pelamis devices) and theoretical wave resource
(estimated global incident coastal wave power resource (2.11 £ 0.05 TW (95% CI), estimated global
extractable resource using illustrative arrays of Pelamis WECs: 96.6 1.3 GW (95% CI), data from
Gunn and Stock-Williams [6]).

This analysis suggests that wave energy may run out of learning opportunities at
an LCOE significantly above current wholesale energy prices if its initial commercial
LCOE is €400/ MWh or more. Given our optimistic learning rate (15%), this may call into
question the long-term feasibility of relying on incremental cost reductions to achieve cost
competitiveness for the wave energy sector. This suggests that step-change innovation
may greatly improve the prospects of wave energy meeting cost parity with current
wholesale prices.

Figure 11 shows how the annual investment varies with time for different starting
LCOE values. The faster rate of deployment (shown as the dotted series) results in the same
learning investment for each LCOE, distributed over a shorter period. The investment in
these scenarios is highly back loaded. In the base case scenario (dark blue line in Figure 11),
where LCOE,; = €400/MWh, the peak annual investment of €32bn is met in year 40 of
subsidised deployment.
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Figure 11. Annual investment per year for a range of LCOE, (25 €/MWh increments, selected values
highlighted). Dotted lines show alternative faster deployment trajectory that results in a higher and
earlier peak annual investment, but the same overall total investment. Both sets of lines use the same
LCOE, values.

4.2. Pathway 2—Deployment with Step-Change Cost Reductions

The following results include the impact of running a focused innovation programme
resulting in a sector-wide step-change cost reduction. The pathway 1 scenarios use the
same base assumptions as above (see Table 1). The base case used for the step-change cost
reduction considers an investment of €50M in funding over 10 years, which results in a
step-change LCOE reduction of 25% and a transition period of 5 years for sector diffusion
of the new technology (as shown in Table 2).

Several cost reduction scenarios for pathways 1, 2a and 2b are presented in Figure 12.
These show both the base case (30%/year) and an aggressive (60%/year) increase in
cumulative deployed capacity. In all cases, the experience curve is only extrapolated
after CDC, (100 MW) is met. For comparison, the European Commission’s 2030 SET-plan
target for wave energy is shown in light blue [58]. It can be seen from Figure 12 that
the pathway 2a scenarios take longer to reach cost parity than pathway 1 unless there
is a significant step-change cost reduction in a short timescale. In pathway 2a scenarios,
the required capacity of subsidised deployment reduces with increasing step-change cost
reduction but is independent of deployment rate. Subsidising deployment in parallel with
running the innovation programme (pathway 2b) reduces the overall time taken to reach
cost parity, provided accumulated experience is transferred from the incumbent to the
novel technology. Using our input values, the SET-plan target is only met in the 30%/year
deployment scenario where a 50% step-change cost reduction is achieved in 5 years in
parallel with deployment (pathway 2b). In the 60%/year deployment scenarios, the SET
plan target is met with either a 25% or 50% step-change cost reduction (achieved in 5 years)
in parallel with deployment (pathway 2b).
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Figure 12. Illustrative trajectories of LCOE vs. Time and Cumulative deployed capacity. Dotted lines show the lower
experience curve for different technology variants enabled through innovation programmes before the technology has been
adopted by the sector. The percentage step-change is the LCOE reduction compared to the deployment-only experience
curve once the novel technology has been adopted. Transition period between technology variants is 5 years in all
cases shown.
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The total learning investment in all scenarios is highly sensitive to the level of step-
change cost reduction. Figure 13 shows that even a 10% step-change cost reduction can
reduce the total learning investment required by over a third, and a 50% step-change can
reduce this by ~90%. For scenarios on pathway 2b, higher rates of deployment increase the
learning investment, as more deployed capacity is subsidised before the step-change cost
reduction transition period. Additionally, in scenarios on pathway 2b, the transition period
duration and the time taken for the innovation programme also affect the total investment,
although to a lesser degree. In most scenarios, the relative difference in total learning
investment between pathways 2a and 2b is limited. However, if accumulated learning
is not fully transferable between technology variants (which is probable in reality) the
relative benefits of delaying deployment (pathway 2a) compared to parallel deployment
(pathway 2b) on learning investment would be increased, and the relative penalty on
timescale would be reduced.
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Figure 13. Total learning investment required for differing scenarios of step-change cost reduction
before subsidised deployment.

Figure 14 shows the sensitivity of the overall investment (revenue support plus
innovation programmes) to the other parameters in pathway 2b scenarios. Within our
sensitivity range, the time taken to run the step-change innovation programme (5-15 y) and
transition period (0-15 y) to the new technology have the greatest relative impact on overall
investment, especially in the larger step-change or faster deployment scenarios. Within the
sensitivity range (€25-800M), the amount spent on innovation programme(s) has a limited
impact on the overall investment. Effectively, the cost of successful innovation programmes
(within the sensitivity range) is minimal compared to the offset revenue support.



Energies 2021, 14, 2364

20 of 28

1.06 T T T T T T T T T T T T T T
. ¢, 71210
o, - .
104l 25% Step-change Innovation 045,
¢
-03, ]
1.02 %9 205
7
g o, ¢ e ~
S 1F 9,07 €, .9, 91,770 O ¢ . 5
= <>0 -99 =
= <>0 "988 25 c
£ 098 9877 7 3]
) | | | | | | | | | | | | | 195 E
e 16 T T T T T T T T T T T T T T »
3 . . g
> 50% Step-change Innovation 45, 160 E
© 2 °
-— '3
P12 75 .
*,
* "
1 95,07 ¢ 9 4, 7. Oy Oy 4
09994 0075003, %05 %783 ¢ L) %0
‘QB 0.8896 '996'6’
08[ | | | | | | Q5 | | | |
25 50 100 200 400 800 0 5 10 15 0 5 10 15
Innovation Programme Cost Programme Time Transition Time
(€M) (years) (years)

Figure 14. Sensitivity of the total investment required of the total cost of running the innovation programme(s), the time

taken, and the transition time for adoption. Total investment when delaying deployment is independent of programme

time, equal to 0 years. Sub-plots show differing amounts of step-change innovation (25% & 50%), noting the y-axis scales

are different.

4.3. Discussion of Results

While the outputs of the modelling are dependent on the input parameters for the

specific scenarios chosen, there are generic results that are more widely applicable. Within
the incremental cost reduction results:

Attractive learning investment scenarios can only be achieved with a (relatively) low
starting LCOE and high learning rate. Poor performance in either of these parameters
can result in unfeasibly high learning investment to reach cost parity.

Given the base assumptions, at current commercial LCOE estimates (~€400/ MWh),
wave energy may not be able to achieve current WMP through incremental learning
effects alone. This is due to potential resource constraints (in combination with
unattractively high levels of learning investment).

Assuming a consistent exponential deployment, the learning investment is heavily
back loaded in all the scenarios. In the 30%/y deployment scenarios, peak annual
learning investment occurs several decades after the initial deployments.

Additionally, when step-change cost reduction is integrated:

Even in scenarios with the smallest step-change cost reduction through radical inno-
vation, a significant reduction is made to the learning investment to reach the target
LCOE (€50/MWh). Even within a wide sensitivity range this offsets the estimated
costs associated with running technology innovation programmes.

In most scenarios, delaying deployment until after innovation programmes are com-
plete reduces learning investment by a relatively small amount. However, this is
contingent on perfect knowledge transfer between the incumbent technology and the
novel variant (see Section 3.1.1). Therefore, a larger relative difference in learning
investment between pathway 2a and 2b scenarios would be expected in reality.

In the stated scenarios, the time associated with step-change innovations development,
and transfer period, has far less bearing on the learning investment than the level
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of step-change cost reduction achieved. This, however, is also contingent on the
transferability of accumulated experience. Therefore, a smaller relative difference in
timescale between pathway 2a and 2b scenarios would be expected in reality.

An important message is that the learning investment figures presented in this study
represent values for the entire wave energy sector. While the scenarios present both
‘optimal” and relatively optimistic levels of investment given the baseline model parameters
(Learning rate from incremental cost reduction is 15% and perfect transfer of experience
between technology variants is assumed. Additionally, sector commercialisation at 100 MW
is assumed), in practice this learning investment would be shared around several countries
that introduced deployment policies for wave energy. Currently, eight EU member states
include ocean energy in their National Renewable Energy Action Plans [59]. If we consider
the example of a pathway 2a scenario with a 25% step-change cost reduction, this gives a
total learning investment of ~€200bn, and peak annual investment of <€10bn/y. Shared
around 10 or so countries this could present a far more manageable investment scenario for
individual policy makers. For context, Germany alone spent €82bn subsidising deployment
of 45 GW of solar PV from 2000-2018 [60] which represented under 10% of 2018 global
installed capacity [61]. Additionally, the UK spent €2.8bn on nuclear decommissioning
in 2019 [62]. Therefore, while probably unappealing for an individual funder, a total
learning investment in the low hundreds of €bn could still be within the range of “attractive
investment scenarios’ for the wave energy sector.

5. Discussion and Policy Implications

The model results highlight the importance of achieving a combination of high and
sustained learning rates with step-change cost reductions, to realise attractive investment
scenarios for deployment of RETs. Both incremental and radical innovation are influenced
by government policy. The following section will discuss this, along with other significant
implications of the modelling.

5.1. Radical Innovation

The results presented in this study underline the value of supporting the search for
radical innovations in developing RET. In many of the wave energy scenarios shown, the
inclusion or absence of step-change cost reductions has the potential to make or break
the sector’s ability to meet the target LCOE at an attractive learning investment. Relying
on cost reductions, through incremental learning effects, may not enable wave energy to
meet cost parity. This highlights the dangers of preemptively shifting policy focus from
experimental R&D to demonstration and deployment. This is particularly true of sectors,
such as wave energy, that have yet to achieve a strong level of design convergence [63].
A deployment-centric approach could favour commercialisation of more mature devices,
while neglecting novel, less-developed options that have the potential to offer step-change
cost reductions. Therefore, ensuring that policy supports the development of a variety of
technologies (including less developed high-risk novel technologies) is important to widen
the opportunity for step-change technology innovations to emerge.

While a stage-gate programme was used to develop scenarios for this study, it is just
one of a several options for funding radical innovation, not all limited to pure technology
push. The US Department of Energy’s Wave Energy Prize is an example of radical concept
creation being supported through a mixture of grants (push) and prizes (pull). This
programme was considered a success in fostering innovative prototype designs, resulting in
four teams meeting the pre-defined energy capture and economic performance benchmark
and the winning team surpassing the target by a factor of 5 [64].

A successful innovation framework also requires policy that supports a feedstock of
novel concepts that can be developed into radical innovations. This concept creation may
originate in blue skies R&D in public research institutions and universities, or may be the
effect of technology transfer. The Umbra Group Electromechanical generator is an example
of technology transfer from aerospace to the wave energy sector [65]. This technology
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transfer was enabled through targeted technology push funding through Wave Energy
Scotland’s structured innovation programme and Horizon 2020 grants.

A final point is that radical innovations are riskier to develop than incremental ones. A
large number of novel technology concepts may need to be funded at early stages to identify
the most promising innovations for a RET sector. The impacts of these innovations may
then only be realised over long timescales. As there is inherent uncertainty in the process of
developing radical innovations, there is no guarantee that an innovation programme will
result in a step-change cost reduction for the sector. However, even if individual projects
and programmes have low success rates, the potential future learning investment avoided
by step-change innovation may outweigh these uncertainties. Additionally, if mechanisms
promoting knowledge capture and sharing from unsuccessful projects and programmes
are put in place, these projects and programmes can still present value to a sector. In short,
it is important that RET policy makers do not prioritise avoiding short-term costs at the
expense of long-term benefits.

5.2. Faster Learning

The importance of sustained high LRs is shown by the sensitivity of learning in-
vestment to LR values. As discussed in the Background section, many learning effects
contribute to an aggregated single factor learning rate (SFLR). Other studies [4,41,66] have
attempted to attribute cost reductions in more mature RET sectors to discrete learning
effects. However, given the immaturity of the wave energy sector, the relative importance
of these different sources of incremental cost reduction is unclear. Therefore, these policy
recommendations deal with general policy considerations that have aided incremental cost
reduction in other forms of RET, and that will likely be applicable to the wave energy sector.

Systems level approaches have highlighted important factors that promote learning
for RETs. For instance, Smit et al. [67] found that the factors of knowledge sharing between
developers, knowledge institutes and related industrial sectors, along with setting long-
term objectives, have helped remove barriers to learning in the Danish offshore wind sector.
This highlights the importance of policy that promotes knowledge sharing (e.g., labour
mobility, national and international collaboration programs) to promote higher levels of
sector-wide learning for each additional unit of installed capacity.

Sufficient incentive to reduce costs is also important in achieving sustained high
learning rates. Revenue support that is either unstable [34] or over-generous [30], may have
caused experience curve stagnation in wind energy development. In addition, pressure to
reduce costs can reduce the opportunity for a manufacturer with a high market share to
fix prices [13,30]. Potential policy options to provide this ‘incentive to innovate” include
digressing support tariffs (as demonstrated in German Feed in Tariffs [25] and proposed
by the Marine Energy Council [68]) or introducing competitive tendering between separate
sectors of RET based on their maturity (as demonstrated in CfD round 1 [69]). These
support mechanisms should be stable over long time periods to provide private industry
with the confidence to invest in a sector’s long-term development.

Changes in the cost of capital also affect the rate of progress in LCOE reduction.
This is essentially a risk premium charged by lenders or equity takers that comes from
both technology risks (e.g., technology reliability) and financial risks (e.g., market-level
aspects, including uncertainties in long-term political commitments to RET funding, and
macroeconomic stability) [70].

Policy intervention to reduce technology risks could include certification to ensure lev-
els of performance/reliability, demonstrated successfully in the development of the Danish
wind sector [71,72]. Financial risks can be reduced through policy signals from Government,
including commitment to stable long-term support, targets and sector roadmaps [50].

While this study has focussed on the role of public R&D in radical innovation, other
forms of public R&D are more likely to assist in incremental cost reductions (e.g., subsi-
dising private R&D efforts) [19]. Public funding for R&D, therefore, plays a role in both
radical innovation and ongoing incremental cost reductions, especially as more mature
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RET sectors (such as solar PV and onshore Wind) have been seen to invest low proportions
of revenue in R&D [73,74].

5.3. Other Implications

In the modelling scenarios, the distribution of learning investment is highly back
loaded. This is due to the increasingly high levels of deployment as the LCOE approaches
cost parity. Figure 15 shows that (in pathway 1 base case), even after 20 years of deployment,
under 7% of the learning investment to achieve cost parity has been committed. This could
suggest that, even after several years of deployment and significant sunk costs in learning
investment, abandoning a technology on a poor cost reduction trajectory may be beneficial,
rather than attempting to buy it down the experience curve.
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Figure 15. The level of learning investment committed at different points in time under the base case
incremental (pathway 1) cost reduction scenario.

This creates a compelling argument for governments to support the development of a
large portfolio of RETs, especially at nascent stages when the key components that deter-
mine learning investment have high levels of uncertainty. If technologies are developed
and deployed in parallel, this would more easily facilitate abandonment of technologies
on poor cost reduction trajectories, while keeping options available for low carbon energy
sources to maintain energy supply.

5.4. Limitations of the Study and Further Work

There are several limitations common to experience curve analysis when used to
extrapolate cost reductions (reviewed by Yeh and Rubin [49]). The key source of uncertainty
for this study is the immaturity of the wave energy sector, and the corresponding lack of
deployment and cost data to determine the experience curve parameters. The assumptions
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for costs, deployment, and learning rates used to build the scenarios are based on wave
energy forecasting reports and analogous technologies, all of which contain significant
uncertainty. As demonstrated in the sensitivity analysis even small changes in these
assumptions can have large effects on the learning investment and deployment to reach
competitive costs. Therefore, the assumptions for nascent technologies (such as wave
energy) should be updated as more cost and deployment data become available to re-assess
the learning investment.

Uncertainties also exist in the integration of step-change innovation in the modelling.
It is assumed that learning can be perfectly transferred to the new technology (as discussed
in Section 3.2.1). Additionally, the magnitude of the LCOE reduction through step-change
innovation is based on estimates from wave energy funders and published guidance for
the wave energy sector, however these are yet to be born out with evidence. Innovation
programmes in the wave energy sector may not be as successful as anticipated, resulting in
lower levels of cost reduction. Evaluation of a range of possible success rates and a range
of possible cost reduction outcomes of innovation programmes, which could be included
in this type of modelling, would be a valuable avenue of further work.

6. Conclusions

This work presents a method of performing learning investment analysis for renewable
energy technologies. Two different types of scenario are considered: (i) where cost reduction
is derived from incremental learning effects, and (ii) a hybrid model which includes effects
of step-change cost reductions arising from radical innovation. Learning investment
analysis is inherently uncertain when applied to nascent RETs. It can, however, provide
insights into the conditions required to meet an attractive level of investment for a sector’s
development. In more mature RETs, it can be used to estimate the cost of riding down
the experience curve towards a target LCOE. This can inform policy makers about the
affordability of a technology’s cost reduction pathway:.

While this work considered wave energy due to its significant untapped potential,
the modelling process is applicable to RETs more widely. This study shows that without
step-change innovation the investment and deployment associated with achieving cost
competitive wave energy may be unfeasible. The baseline scenario considered in this study,
which only considers incremental cost reductions, results in a learning investment of over
€650bn to reach cost competitiveness. This is a potentially unappealing prospect for the
wave energy sector. However, even modest step-change innovation, or accelerated learning
rates, provide many scenarios with learning investment values in the low hundreds of
€bn or less. A decision to invest public money in a RET such as wave energy is not
straightforward, and needs to also take account of the considerable non-market benefits
(e.g., low carbon electricity alongside the social, economic, environmental and energy
security effects). These important social benefits are not fully reflected in the market price
of electricity. It is also important to recognise that the learning investment associated
with developing wave energy would be spread across a number of countries. Assuming
around 10 countries support the deployment of wave energy in parallel, the national
levels of learning investment could easily be in tens rather than hundreds of €bn, spread
over multiple decades. This is comparable to the learning investment values observed in
other—now mature—technologies such as solar PV.

The exploration of these scenarios highlights the importance of good policy making in
relation to learning investment. Fundamentally, experience curves are a very abstracted
way of looking at technology progress, and without an understanding of the underlying
causal factors, they provide little in the way of insight for policy makers. There are
understood links between policy and the factors that determine learning investment.
Whilst these links are subject to significant uncertainties, they can give a policy maker
an idea of the levers available to induce step-change reductions in LCOE or enhance
learning effects.
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This study has shown that step-change cost reductions may be required for the
long term success of the wave energy sector. These step-change cost reductions can
be facilitated through policy that supports the development of radical innovations. Stage-
gated innovation programmes were used as an example in this study, however, other
options (such as competitive grants or prizes) are available to policy makers. Supporting
a wide variety of technologies, some of which are deemed too novel or risky for the
private sector, is important in order to avoid technology lock-in to a sub-optimal incumbent
technology. Taking a portfolio approach like this would develop the greatest pool of
novel concepts with the potential to become step-change innovations, especially as the
wave energy sector is still far from design convergence [63], with little evidence of an
optimal design (or designs) having emerged. In addition, the earlier that step-change
innovations can be introduced in a technology’s development, the greater the savings in
subsequent publicly-funded revenue support. Therefore, policies that target and enable
further experimentation that could lead to step-change innovation, rather than large-scale
deployment of current technologies, should be a priority for the sector.

Policies that facilitate ‘fast learning’ are also required for efficient long-term cost
reduction. Supporting ongoing R&D for existing technologies alongside deployment
(learning by doing) has been a key driver of high learning rates in mature RET sectors.
Knowledge sharing through consortia, knowledge networks, etc. will allow faster industry-
wide accumulation of experience. Knowledge sharing between more mature sectors (e.g.,
offshore wind) and nascent sectors (e.g., wave energy) will also accelerate this accumulation
of experience. Alongside this, providing a persistent ‘incentive to innovate’ is key to
sustained cost reductions. This emphasises the importance of long-term sector targets and
revenue-support mechanisms that are stable, but not over-generous.

This work highlights that the success of the wave energy sector will likely rely on
both step-change cost reduction and achieving at least moderate learning rates. This means
policy that addresses both step-change and incremental innovation will be important for
the sector’s long term success, and while step-change innovation may be the initial priority
neither can be neglected.
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Abbreviations

The following abbreviations are used in this manuscript:

CAPEX  Capital Expenditure

CDC Cumulative deployed capacity

cf Capacity factor

dr Private discount rate

drs Social discount rate

LR Learning rate

OPEX Operational Expenditure

Q Production quantity

Rer Percentage increase in cumulative deployed capacity per year
RD&D Research, development, and demonstration

RDD&D  Research, development, demonstration, and deployment
RET Renewable energy technology

SFLR Single Factor Learning Rate

t Time (years)

TRL Technology Readiness Level

Tsp Duration of revenue support

WEC Wave energy converter

WMP Wholesale market price
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