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Abstract: Input uncertainty is one of the major obstacles urban building energy models (UBEM)
must tackle. The aim of this paper was to quantify the effects of two of the main sources of stochastic
uncertainty, namely building occupants and urban microclimate, on electrical and thermal supply
system sizing at the district scale. In order to analyze the effects of the former, three different methods
of occupant modeling were implemented in a UBEM. The effects of the urban heat island on system
sizing were studied through the use of measured temperature data from a weather station in the case
study district compared to measured data from a national weather station. The methods developed
were used to assess the sizing and costs of centralized and decentralized technologies for a case
study in central Zurich, Switzerland. The choice of occupant modeling approach was found to affect
the district’s total annualized costs for space heating and cooling by ±5%, whereas for the costs
of electricity the variation was ±8%. Regarding outdoor temperature, the effects on the heating
demands proved be negligible, however the costs of the cooling alternatives were found to vary by
about 4% at the district scale due to the effect of urban climate, for individual buildings this deviation
was as high as 40%.

Keywords: energy simulation; urban energy system modeling; building occupant modeling;
urban climate

1. Introduction

District energy systems can be one of the least-cost and most-efficient solutions for
reducing primary energy demand and greenhouse gas emissions, with the potential to
contribute up to 58% of the required CO2 emission reductions required in the energy sector
by 2050 [1]. Interconnecting buildings through district-scale energy systems provides
opportunities to exploit synergies between buildings with different uses and demand
profiles, as well as allowing the integration of distributed energy producers. Achieving
these benefits, however, requires a detailed understanding of the types and dynamics of
energy demand in buildings at high spatial and temporal resolution.

Urban building energy modeling (UBEM) can be a powerful tool to assess the current
and projected demands of urban areas in order to support the planning of interventions at
a variety of scales, such as building retrofits, urban form modifications and district energy
system implementation. Building energy modeling is a well-studied field, with a number
of software tools that have become an integral part of the planning process. Due to the
large amounts of data required to create a bottom-up model of a single building, simply
using building-scale tools to create individual building energy models for each building
in an urban area would make data collection impractically onerous [2]. Furthermore,
urban areas cannot be simply analyzed as an aggregation of single buildings as complex
interactions between the components of the urban system arise when scaling from the
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building to the urban scale, such that traditional building energy modeling methods cannot
be implemented [3].

Currently, the two major obstacles UBEM must tackle are input data availability
and input uncertainty [4]. In order to reduce the amount of data required to create a
model, UBEM typically use archetypes to represent a number of buildings with similar
properties [2]. However, such simplifications can increase the uncertainty in the simulated
results as the actual properties of the specific buildings being modeled are not known.

Uncertainty in building energy demand models can be classified as epistemic or
stochastic [5]. The former arises as a result of lack of knowledge about specific input
parameters, such as the thermal properties of the building envelope, lighting and appliance
power densities, or supply system efficiencies. With the increased availability of sensor
data in cities, the contribution of epistemic uncertainty can be better quantified through
measurement campaigns. Optimization-based methods [6], pattern-based methods [7],
and Bayesian calibration methods [8] combined with meta-modeling [9] can then be used
to reduce the error in building energy predictions. Such methods have been implemented
at the urban scale, in particular in the calibration of archetypes through Bayesian calibra-
tion [10] or the use of surrogate modeling to estimate unknown building properties [11].

Stochastic uncertainty, on the other hand, arises as a result of the inherently random
nature of parts of the system under analysis. Due to their aleatory nature, it is impossible
to predict future variations in stochastic sources of uncertainty, and hence it can be better
characterized but not reduced by measurement campaigns [5]. Thus, methods to analyze
and quantify the role of these sources of uncertainty on the planning of energy systems
at the urban scale need to be developed. The primary drivers of stochasticity in building
energy simulation are building occupants and climate [12]. The roles of these sources of
uncertainty are analyzed further in the following sections.

1.1. Occupants

Occupant behavior is one of the key drivers of the so-called performance gap in energy
model predictions compared to measured consumption data. For example, previous re-
search found that occupant behavior could lead to a 100% variation in the energy demands
of identical buildings [13]. Thus, modeling occupants is crucial for predicting the energy
demands in buildings as well as in order to analyze the effects of changes in an area’s
activities on the corresponding energy infrastructure required.

Occupants in building energy modeling have traditionally been represented through
deterministic schedules that indicate typical patterns of occupant presence and appliance
use at each time of the day for different building use types. Such schedules can typically be
obtained from standards (e.g., [14,15]) and provide a simple input for simulations. However,
the use of the same profiles for all spaces of a given function can lead to homogeneous
load profiles that misrepresent the true peak loads in a district. Since energy systems are
typically sized in order to meet buildings’ or districts’ peak demands, such unrealistic
homogeneous loads can lead to sub-optimal system sizing and consequently inefficiencies
in system operation. In order to account for the inherent uncertainty in building users’
actions, a number of stochastic methods for occupant modeling have been proposed.
Agent-based modeling approaches further seek to predict occupants’ behavior, interactions,
and adaptation to their environment. At the district scale, however, the majority of the
works in the literature show a reliance on deterministic schedules of occupant presence
and appliance use. There are only a few stochastic models in the literature, and each of
those approaches covers only one building use type [16].

While increasingly complex methods to model occupant presence and behavior at the
building scale have been developed, Tahmasebi and Mahdavi [17] showed that simulation
results depended primarily on the availability of occupant presence data rather than
whether deterministic or stochastic representations of occupancy patterns were used.
When scaling up to the district scale, however, the number of people to be monitored is
multiplied, exacerbating the difficulty of data collection on individual occupants. The
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widespread availability of data from location-based services might provide a useful source
for the development of data-centric approaches [18], however such approaches remain, as
of yet, restricted to the prediction of occupancy for a limited number of building use types.

New methods are required to model occupants in urban areas for a variety of building
use types. These methods should consider the effects of occupants’ location-based activities
as well as the interactive effects of building energy consumption and mobility [19]. Increas-
ingly, transportation models that predict people’s movements in urban areas based on their
individual characteristics and activities are used in urban planning. Such microsimulations
could serve as a source for occupant and activity modeling in buildings to help improve
energy demand predictions in districts [20].

1.2. Climate

Climate data are a fundamental input into any building energy simulation. In order
to avoid the biases caused by yearly variations in weather data, these inputs usually take
the form of a typical meteorological year (TMY) based on long-term observations of the
local weather station. Such data are usually smoothed and averaged or even entirely based
on statistics, thus ignoring the modifying effect of the surroundings [21]. This allows
equipment sizing to be carried out in order to be able to meet energy demand under
“normal” operating conditions. However, the unpredictability of actual weather adds
uncertainty to the simulation results, potentially leading to systems that cannot cope with
actual demands after construction. TMY data are based on past observations that might no
longer be representative of actual whether conditions throughout the lifespan of systems
planned to last for decades. Increasing concern is being shown that a single data file cannot
contain sufficient information on plausible weather conditions [5].

Furthermore, these processes can lead to increased temperatures in urban areas com-
pared to rural ones, a phenomenon known as the Urban Heat Island (UHI) effect. Com-
pounded by global warming, the UHI can lead to a significant increase in cooling demand
in urban areas [22,23]. These variations in air temperature patterns, wind speed, and solar
radiation in urban areas are generally overlooked in building energy demand models.

Previous studies on the effects of local environmental conditions on energy consump-
tion have however largely focused on the individual building scale [23]. Indeed, most
currently available UBEM do not account for building emissions heating up the local micro-
climate and the latter’s consequent effect on the building energy demand [19]. Meanwhile,
when district-scale energy demand simulations are coupled to urban climate models, they
usually rely on simplified assumptions [24]. These are typically at the mesoscale, which
means they can predict climate phenomena in the 100 km order, i.e., at the city scale [25].
Planning district heating and cooling systems requires a detailed understanding of the
cooling loads in a given district. In order to achieve this, each building and its surrounding
environment need to be simulated at the micro scale. Existing microclimate simulation
tools are, however, extremely computationally expensive, restricting the modeling of urban
microclimate at the district scale to sub-yearly time frames [26].

1.3. Goal and Scope of This Paper

The uncertainty caused by occupants and climate will continue to have a considerable
impact on the results obtained in district-scale energy demand simulation. Previous papers
have explored the effects of occupant modeling approaches on the demands predicted by
the UBEM City Energy Analyst (CEA) [20,27]. In addition, the effects of the urban heat
island on the space cooling demand were analyzed by connecting CEA to microclimate
simulation ENVI-met [28,29]. The computational expense of the microclimate simulations,
however, restricted the analysis to a single day. While this approach provided insight
into the demand dynamics under extreme weather conditions, general conclusions on the
implications for energy systems could not be extracted from the limited scope provided by
a single day’s worth of results.
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The goal of this paper was to quantify the effects these variations in demand patterns
cause in the sizing and costs of different energy supply systems. The analysis of these
stochastic sources of uncertainty on the planning of energy supply systems is carried out
both at the district and building scale in order to assess whether the effects could be large
enough to affect planning decisions in each case.

Photovoltaic (PV) systems, heat pumps, chillers, and thermal networks were selected
as the most promising technologies for the selected case study. The aim is to compare the
effects of the various occupant and climate assumptions on the planning of a theoretical
centralized district energy system compared to decentralized alternatives. In order to ob-
serve the effects of each of these sources of uncertainty on each energy system individually,
system integration was not considered. For example, the effects on the cooling demands
were only considered for the cooling system performance, whereas the consequent effects
on the electricity demand for cooling were not considered. Therefore, while occupancy was
assumed to affect both PV and thermal system performance, urban climate effects were
only considered for thermal systems.

The CEA technology simulation tools used are described in Section 2. These are
subsequently applied to the case study area presented in Section 3. Section 4.1 presents
a summary of the effects of occupants and outdoor temperature on the case study area’s
demands. The effects of occupants on the performance of solar photovoltaic (PV) systems
and electricity costs are subsequently analyzed in Section 4.2. District heating and cooling
networks as well as decentralized system alternatives are analyzed in Section 4.3, account-
ing for deviations caused by occupant modeling and local climate. The results are further
discussed in Section 5 before presenting overarching conclusions in Section 6.

2. Materials and Methods

District energy modeling and supply system simulation were carried out using the
City Energy Analyst (CEA), an open-source software for the analysis and optimization
of urban energy systems [30]. The tool uses a simplified, single thermal zone resistance-
capacitance model for building energy demand forecasting. The software additionally
includes a number of tools to estimate renewable energy resource potentials and system
technology sizing and simulation. This paper focuses on the effects of occupants and the
urban heat island effect on heating, cooling, and electricity demands and on the planning of
their corresponding supply systems. In order to quantify the effects on system performance
and costs, two of the CEA technology models were used, namely the solar potential and
thermal network tools.

2.1. Occupant Modeling Approaches

The effects of occupancy modeling on the planned systems are explored by com-
paring the results for three different modeling approaches: deterministic, stochastic,
and population-based (PopAp). The models and their effects on the energy demands
of the current case study area have been discussed in a previous paper [20], so they are
only briefly introduced here.

The deterministic approach consists of assigning the number of occupants and the
demands for electricity and domestic hot water at each hour of the year according to
fixed schedules taken from standards [31]. This means, however, that each building’s
occupancy depends solely on its function, with no variation between one weekday and
the next. In order to add temporal diversity to the occupancy patterns, we implemented
Page et al.’s occupant presence model [32] in CEA. Occupant presence is modeled as a two-
state Markov process, where each building occupant can either be “absent” or “present”.
The implementation in CEA uses the same standard schedules as an input to calculate
transition probabilities between these two states for each building occupant at each hour of
the year and consequently randomly assign occupant presence at each hour. By creating
individual schedules for each person in the district, this approach accounts for the random
variations in occupancy patterns. However, each building’s unique characteristics are not



Energies 2021, 14, 2295 5 of 30

captured, as buildings with the same use type will still tend to have the same occupancy
patterns on the aggregate.

A third, population-based approach (PopAp) for occupant modeling was defined
in order to overcome these limitations. This method adds diversity between different
buildings of the same occupancy type by using data about the actual occupants in the case
study area. Inspired by agent-based transportation models, a population of occupants is
first created, and each of them is then assigned a daily plan comprising a set of activities
along with their start and end times (tstart and tend), and a location where each activity is
taking place. For the case study under consideration, presented in Section 3, the majority
of building occupants were students and employees. The population of occupants required
for the PopAp method was defined based on employee registers and course enrollment
data. The available activities to be assigned to each of them were limited to “work”,
“study”, or “lunch”.

Table 1 shows a sample employee’s attributes and activities. Each employee was
assigned a workspace, which assumed to be located in buildings that included either
office, lab, or hospital functions. For each employee’s workday, the starting and ending
time were assigned randomly from a normal distribution: tstart ∼ N(9:30, 1.7) and tend ∼
N(17:00, 1.7). For the “study” activity type, both the start and end times as well as the
location were assigned based on the course enrollment data. No weekend occupancy was
assumed for students and employees.

Additionally, vacation weeks were assigned randomly to students and employees
according to the national average yearly vacation time [33]. At the beginning of each week,
whether an occupant started such a period of long absence was defined by comparing
a randomly-drawn number to the monthly probability of occupant presence from the
national standards [15]. The full set of assumptions in each occupancy model can be found
in Appendix A. Out of the three approaches considered, the PopAp case is assumed to
provide a more realistic depiction of occupant presence and activities in the case study area,
as it is the only one that is based on locally-collected data rather than national standards.

Table 1. Sample data for a university employee in the case study area.

Person ID 024540

Attributes
Subpopulation employeeETHUZH

Activities
"home" Facility "Home_8046"

Coordinates x = "2680833.0", y = "1252670.0"
Times start_time = "00:00:00", end_time = "08:17:24"

"work_ Facility "ETH_ETZ"
activity_3" Coordinates x = "2684137.51", y = "1248025.221"

Times start_time = "08:47:24", end_time = "12:06:39"

"lunch" Facility "ETH_ML"
Coordinates x = "2683751.075", y = "1248018.316"
Times start_time = "12:06:39", end_time = "12:40:42"

"work_ Facility "ETH_ETZ"
activity_5" Coordinates x = "2684137.51", y = "1248025.221"

Times start_time = "12:40:42", end_time = "16:57:24"

"home" Facility "Home_8046"
Coordinates x = "2680833.0", y = "1252670.0"
Times start_time = "17:27:24", end_time = "24:00:00"

The number of building occupants in the district along a typical summer and winter
week are shown in Figure 1. Given that the CEA demand model is based on a single
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thermal zone representation of each building, only occupant presence or absence was
considered in all cases. The demands for appliances were associated to occupant presence
by simply assigning an electrical demand to occupants of each type (employees and
students). Occupant presence furthermore affects building system controls such as the
ventilation rate, which depends on the number of occupants in a building, as well as
the room temperature, since the buildings’ systems are set to their set point temperature
whenever at least one occupant is present. Finally, the presence of occupants and their use
of appliances leads to sensible and latent gains, which in turn affect the thermal loads of
each building.
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Figure 1. Number of occupants in a winter (top) and summer week (bottom) for each of the occupant modeling approaches.

2.2. Effects of Urban Climate

In a previous study, the effects of urban microclimate on the space cooling demand
of the area were estimated by connecting CEA to microclimate simulation ENVI-met [28].
However, the high computational expense of the ENVI-met model restricted the analysis
to a single day. In order to assess the effects of the urban heat island on the area’s demands
throughout the year, in this paper we use measured data from an outdoor temperature sen-
sor located in a building in the district, the Maschinenlaboratorium (ML). While the weather
station at the ML building does not measure relative humidity and wind speed, the use
of on-site air temperature measurements provides an estimate of the effects of the urban
heat island on the sensible cooling loads, which were previously found to be the main
contributor to the area’s cooling demands [28]. Furthermore, the microclimate simulations
in the area showed the differences between individual buildings to be insignificant, espe-
cially compared to the large difference between the temperature measured at the off-site
weather station and the simulated temperature in the district. The use of temperature data
measured directly in the district as opposed to the weather station therefore provides a
better estimate of the boundary conditions in the specific district being analyzed.

Figure 2 shows the temperature measured in the ML building compared to the mea-
sured temperature at the closest weather station (SMA) for a winter and a summer week
in 2015 and 2016 along with the TMY data for the same weather station. The patterns
observed on the summer week show hotter air temperatures in the on-site weather station
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in the evenings as heat stored in the thermal mass of the buildings slowly gets released to
the surrounding environment. The temperatures in the winter week show a lower daily
variation than in summer, with the temperatures in the district almost always higher than
in the SMA weather station. The minimum temperature in both years is lower for the SMA
weather station than for the district, and the peak temperature in 2016 occurs on a different
day for each sensor.

)
(

)
(

Figure 2. Measured temperature data from the off-site weather station SMA and from the on-site weather station ML for 2015 and 2016
compared to the typical meteorological year (TMY) data from the SMA weather station for a winter (top) and summer week (bottom).

The district’s energy demand was modeled using data from the SMA weather station
and compared to results obtained when the outdoor temperature measured at the ML
building was assumed as a climatic boundary condition. The energy demand results for
each case were then passed on to the technology sizing and simulation tools in order to
observe the effects on technologies’ costs and economic feasibility.

2.3. Solar Photovoltaic Potential

The CEA solar potential tool can be used to estimate the potential for photovoltaic (PV)
panels, thermal collectors, and hybrid photovoltaic-thermal (PVT) collectors, both on roofs
and walls. In this study, solar resources were only considered for electricity production,
eliminating thermal collectors as an option. Preliminary results showed that the effect of
occupant modeling on the performance of solar systems was similar for both PV and PVT,
and thus only the former system is studied in this paper.

The solar technology potential tool first defines which surfaces receive enough solar
irradiation throughout a year according to a user-defined irradiation threshold. The tool
subsequently calculates the number of panels of a given size that can be placed in those
areas by calculating the optimal tilt angle, row spacing, and surface azimuth of the panels
on each surface. The tilt angle is calculated according to Quinn and Lehman [34]:

tan β = cos γ · tan φ ·
[

1 +
(τα)d · g(kT)− (τα)r · ρg

2 · (1− g(kT))

]−1

(1)
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where γ is the surface azimuth angle, φ is the latitude, (τα)d is the transmittance-absorptance
product of the diffuse radiation (assumed equal to 0.98), (τα)r is the transmittance-
absorptance product of the reflected radiation (assumed equal to 0.97), and ρg is the
ground reflectance. g(kT) is a function of the hourly clearness index kT , defined as follows:

g(kT) =


0.97 for kT ≤ 0.15,
1.237− 1.361 · kT for 0.15 < kT ≤ 0.7,
0.273 for 0.7 < kT .

(2)

while kT is calculated from the mean daily diffuse radiation T̄di f f ,daily obtained from the
weather data:

kT = 1− T̄di f f ,daily (3)

The row spacing of the panel arrays D is calculated in order to avoid panel shading
during the winter solstice:

D =
L · sin β

tan hS
·max[cos (π − γ), cos (γ− π)] (4)

where L is the module length and hS is the solar elevation at the winter solstice.
Given the panel size and row spacing, the maximum number of panels possible is

installed on each surface that exceeds the predefined threshold. Based on the installed
panel area calculated according to this methodology, the electricity produced is calculated
following Osterwald’s method [35]:

Pel = ηNOCT · APV · S ·
[
1− Bre f · (Tcell − NOCT)

]
· lmisc (5)

where Pel is the electrical power output of a PV panel with an area APV and an efficiency
of ηNOCT at the Nominal Operating Cell Temperature (NOCT) and a cell maximum power
temperature coefficient of Bre f as a function of the absorbed radiation S and cell temperature
Tcell given miscellaneous losses of lmisc. As a simplifying assumption, CEA assumes a
linear relationship between the temperature rise of solar panels and the absorbed radiation
based on the operating condition at the NOCT [36].

The panels’ physical properties and nominal operating conditions are taken from
the CEA technology database [30], whereas the absorbed radiation is calculated as a
function of incoming radiation, thickness, refractive index, and extinction coefficient of the
material [37]:

S = (τα)n ·M ·
(

Gb · Rb · Kτα,b + Gd · Kτα,d ·
1 + cos β

2
+ G · ρg · Kτα,g ·

1− cos β

2

)
(6)

where G is the incident solar irradiation, Gb and Gd are the beam and diffuse solar irradi-
ation, (τα)n is the incidence angle modifier for direct (beam) radiation, Rb is the ratio of
beam radiation on a tilted surface to that on a horizontal surface, M is an air mass modifier,
Kτα,b = (τα)b

(τα)n
is the incidence angle modifier at the beam incidence angle, and Kτα,d and

Kτα,g are the incidence angle modifiers at effective incidence angles for isotropic diffuse
and ground-reflected radiation.

As a result, the tool produces the PV area installed in each façade and roof of each
building as well as the hourly electricity production for each surface. In order to analyze
the performance of solar technologies in the area for each occupancy model, the concepts of
self-consumption and self-sufficiency are introduced. Self-consumption refers to the ratio
between the electricity produced from PV that is consumed on site to the total electricity
produced. Self-sufficiency, on the other hand, refers to the share of the electricity required
that is produced on site. A change in the total electricity demand caused by an occupancy
model will thus affect self-sufficiency, as the share of the total electricity demand that can
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be covered by PV will be affected. On the other hand, if changes to occupancy patterns
and occupant activities lead to a shift in energy demands between daytime and nighttime,
the self-consumption will be increase or decrease as more or less electricity is consumed
during daytime hours, when PV production is at its highest.

2.4. Thermal Network Modeling

For the analysis of district heating and cooling networks, CEA includes two different
thermal models: a detailed model for the simulation of existing networks and specific
designs, and a simplified model for the analysis of different network designs and for
system optimization. Due to the long computational times required by the detailed thermal
network model and the relatively small effects observed in an analysis of different scenarios
for the case study district [38], for the present comparison the simplified thermal network
model was used. In this model, the supply temperature is fixed at the highest or lowest
temperature required from the network, depending on whether district heating or cooling
is being modeled.

The hydraulic model is based on the Python package Water Network Tool for Re-
silience (WNTR) [39]. The calculation procedure is similar to that of the detailed CEA
thermal network model [38], save for the fact that the Hazen–Williams equation is used
to calculate the pressure drop in each pipe instead of the Darcy–Weisbach equation. This
is an appropriate assumption for water flowing in pipes, as is the case in the thermal
networks considered here. The head loss in a pipe hL (in meters) in WNTR is calculated as
follows [40]:

hL = Hnj − Hni = 10.667 · C−1.852 · d−4.871 · L · sign(q) · |q|1.852 (7)

where C is the Hazen–Williams roughness coefficient (unitless), d is the pipe diameter (m),
L is the pipe length (m), q is the flow rate of water in the pipe (m3/s), and Hnj and Hni are
the heads at the starting node and at the ending node (m).

In CEA, the tool is first run in order to size the pipes in the network according to the
mass flow rates required by each building’s substation. The pipe diameters obtained are
then used as inputs to another run of the same simulation in order to calculate the pressure
at each node and mass flow along each edge. Finally, the tool is run a third time in order to
obtain the head losses at the plant node.

The thermal part of the detailed district network model in CEA involves iteratively
calculating the network temperatures at each time step in order to ensure every con-
sumer node is supplied the temperature required for its building systems. This iterative
calculation leads to long computational times, which makes the tool impractical when
comparing different network alternatives for a district. In the simplified tool, thermal
losses are estimated by assuming the temperature of the network to be equal to the lowest
temperature required by all buildings in the area for the given time step. Thus, for each
pipe the inlet temperature is assumed to be equal to the required supply temperature and
the outlet temperature of each pipe. Heat losses are then calculated using a resistance
equivalency model:

Q̇ =
∆T

Rpipe + Rinsulation
(8)

where Q̇ represents the thermal losses through the pipe, ∆T is the temperature difference
between the fluid in the pipe and the ground, and Ri are the thermal resistances of the pipe
and insulation material, calculated according to Wang et al. [41]. The thermal resistances of
the ground and due to convection are neglected.

The thermal resistance of the pipe material Rpipe and of the insulation Rinsulation are
calculated as a function of the interior and exterior diameter of the pipe or insulation layer
(Dint and Dext) and the thermal conductivity of the material (λ):

Ri =
1

2π · λi
· ln
(

Dext,i

Dint,i

)
, i ∈ I = {pipe, insulation} (9)
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Given the very simplified nature of the thermal calculation, the simplified model is
not suitable for the detailed simulation of specific network designs, but is useful as a tool
for network sizing and quick scenario comparison. For each case, a viable network layout
was created by connecting all buildings in the case study through the minimum Steiner
tree assuming pipes to be laid only in trenches in the existing street network. The thermal
network is supplied by a centralized heating or cooling plant located at the building
with the highest demand in the area. The performance of the resulting thermal network
infrastructure is compared to a decentralized alternative, namely individual heat pumps
and chillers installed in each building for heating and cooling, respectively.

3. Case Study

The effects of occupancy modeling and the urban heat island were tested on a case
study in Zurich, Switzerland. The area hosts two universities (ETH Zurich and the Univer-
sity of Zurich) and a hospital (the University Hospital of Zurich), as well as some minor
secondary uses. Figure 3 shows each building’s main use type as well as the share of each
building use type in the district’s total floor area.

Figure 3. Case study area showing the main function of each building (left) and the overall functional mix in the area (right), adapted
from [26]. The location of the temperature sensor used for the analysis of urban climate is shown by a black cross on the ML building.
Office spaces include both university and doctors’ offices and are separated by their end users: ETH Zurich (ETH), University of
Zurich (UZH), University Hospital Zurich (USZ), and others.

In order to construct the physical model of each building, building footprints were
obtained from OpenStreetMap [42] and building heights were assigned based on the
3D model of the City of Zurich [43]. Basic information on each building, such as the
main function, construction year, and heating systems, were obtained from the Swiss
Federal Register of Buildings and Dwellings [44]. Wherever possible, these data were
complemented with information obtained from the building owners to obtain detailed
functional distributions and building systems. Window-to-wall ratios were estimated for
each building, whereas building materials were taken from the CEA archetype database.
The complete set of inputs to the CEA demand model as well as the most important
properties of each building in the case study area are shown in Appendix A.

The aim of this paper was to compare the effects of occupancy and climate assumptions
on the planning of centralized and decentralized district energy systems in an urban area.
Thus, the precise modeling of the case study area’s existing district heating infrastructure or
the proposed free cooling network [45] are beyond the scope of this analysis. In assessing
the area’s PV potential, all available suitable roof and façade surfaces that exceeded the
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minimum irradiation threshold of 800 kWh/m2/yr were assumed to be used for PV.
Monocrystalline PV panels with an efficiency of 18% were selected from the CEA technology
database [30].

4. Results
4.1. District Energy Demand

A full analysis of the effects of occupants and microclimate on the area’s demands is
out of the scope of this paper and can be found in previous publications [20,28]. In this
section, these effects are briefly summarized in order to help interpret the results obtained
in the supply system sizing and simulation sections. Figure 4 shows the variation in the
demands for heating, cooling, and electricity for lighting and appliances due to the different
occupancy models and climate assumptions. The variation due to stochastic and PopAp
occupancy modeling was calculated with respect to the standard deterministic schedules
and TMY weather data. The deviation due to local climate is calculated by using local
weather data from the ML building compared to the SMA weather station for the years
2015 and 2016.

− −

)
(

)
(

− − −

− − − −

−−

Figure 4. Variation in the yearly and peak demands for heating, cooling, and electricity for lighting and appliances due to occupancy
modeling and local climate. The horizontal lines in the box plots show the medians of the distributions, whereas the mean µ of each is
stated in the label for each case.

The PopAp results consistently showed a lower overall occupancy than the two
standard-based approaches, as seen in Figure 1. Since the electricity demand for appliances
was correlated to the number of occupants in each building, the PopAp case also has the
lowest demand for electricity. The lower number of occupants and decreased electricity
demand also lead to a lower cooling and a higher heating demand compared to the
deterministic baseline. The stochastic method, on the other hand, led to higher electricity
demands and hence had an inverse effect on the heating and cooling demands. Due to the
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higher variability in occupancy from one building to another, the PopAp case also leads to
a larger spread in the distribution of the results, especially for electricity. Since the peak
number of occupants in the stochastic case tends to approach that of the deterministic
schedules, the deviation in the peak results is smaller than the yearly demands. For the
PopAp case, on the other hand, the base number of occupants is very close to the other two
approaches, but the peak is considerably lower. Thus, the effects on the peak demands for
cooling and electricity are even greater.

The difference in the measured temperatures at the SMA weather station and at the ML
building observed in Figure 2 also correspondingly leads to a change in the district’s energy
demands. The yearly heating demand is barely affected by the difference in temperature
between the district and the SMA weather station, whereas the peak heating demand
variation is lower than 5% for all buildings. Due to the slightly higher outdoor temperature
in the district, the heating demands are marginally lower for all buildings in the case
study. For the cooling case, on the other hand, the difference is much more pronounced,
with a variation in yearly demand of ±6% for the year 2015 and −6 to +22% for 2016.
This difference is even more evident for the peak cooling power, which shows an average
increase of 5–6% for each year with differences of more than 30% for individual buildings
in both years. The electricity demand for lighting and appliances was naturally unchanged
by the change in outdoor temperature.

Overall, both occupancy and outdoor temperature appear to have a more significant
effect on the peak cooling than peak heating demand. Since the peak demand for heating
is driven by the difference between outdoor and indoor temperature, the effects of the
number of occupants or a small change in outdoor temperature have a much smaller effect.
For cooling, on the other hand, a change in outdoor temperature of 1 °C and changes
in internal gains due to occupant presence contribute much more to the temperature
difference that needs to be compensated by cooling systems, and hence the peaks are more
strongly affected than the base loads.

4.2. PV Potential and Electricity Costs

Given that CEA neglects roof shapes, most roof surfaces were found to be suitable
for PV installation, and hence 97% of all roof areas were selected, as seen in Figure 5.
Since panels are assumed to be placed at their optimal tilt angle and spaced accordingly,
the area of PV installed per square meter of roof is much lower, with 49% coverage of
all roof surfaces. This approach was found to give comparable results to a more detailed
calculation accounting for roof tilt angles with a 100% roof coverage [46].

The performance of solar technologies in the area was assessed by looking at the
self-consumption and self-sufficiency for each building. Figure 6 shows the distribution
of these metrics for each occupancy model analyzed for all buildings in the area. The self-
consumption for all occupancy models is relatively high, with an average rate of 74 to
77%. This is due on one hand to the high overall electricity demand in the area, which is
much larger than the electricity obtained from PV both in summer and winter, as shown
in Figure 7. On the other hand, the buildings in the area, which are largely dominated
by educational, research, and office functions, have a predominantly daytime occupancy,
with only hospital rooms having nighttime occupancy. Therefore, most of the electricity
demand occurs during times when PV production is at its peak.

The distribution is rather similar for all models, with self-consumptions ranging from
20 to 100%. This is due to the electricity demands for the individual buildings in the area
being strongly dominated by process base loads and lighting, which were assumed to
be independent of occupancy. The distribution for the stochastic case is shifted up due
to the higher electricity demands for lighting and appliances predicted by this model.
The opposite trend can be observed regarding the self-sufficiency, which is inversely
proportional to the demand. The PopAp case, having the lowest electricity demand, also
leads to the highest self-sufficiency.
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Figure 5. Roof surfaces selected for PV placement based on a minimum threshold of 800 kWh/m2/yr (left) and area of PV
installed per unit area of roof surface for each building based on a minimum threshold of 800 kWh/m2/yr (right).

Figure 6. Distribution of the self-consumption and self-sufficiency of the installed PV for all buildings in the case study
(top) and for education and office buildings (bottom) for each occupancy model.
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Figure 7. Electricity demand for each scenario and photovoltaic (PV) production potential by season.

Education and office buildings were selected for further analysis as they provide
a more generalizable case for the analysis of occupant modeling compared to the very
specific needs of hospital functions. Indeed, in the absence of the very large base loads in
the hospital buildings, the self-consumption decreases and the self-sufficiency increases on
average. The general trends observed in the distributions and relative values for different
occupant models, however, remain the same, with the stochastic case having the highest
self-consumption and the PopAp case the highest self-sufficiency.

At the individual building scale (Figure 8), an average variation in the self-sufficiencies
due to the occupancy model of ±2% can be observed. A maximum deviation of −10–18%
is observed for one outlier, corresponding to a very small building. Similar variations can
be observed in the self-consumption (±2%) with a maximum deviation of −10–5% for the
same small building.
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Figure 8. Range of self-consumption (top) and self-sufficiency (bottom) for each building for different building use types.
The range of variation caused by the different occupancy models is shown as the black error bars for individual buildings.



Energies 2021, 14, 2295 15 of 30

The effects of the occupancy models on the electricity costs in the area are analyzed for
the case with photovoltaic panels as well as for the case where electricity is taken directly
from the grid. The peak and off-peak costs of electricity for large-scale, medium-voltage
consumers and feed-in tariffs from the local utility were assumed. The cost of photovoltaic
systems was obtained by fitting an exponential curve to a dataset of sample costs for
the Swiss context [47], as shown in Table 2. The investment costs for the PV systems are
compared by their total annualized costs (TAC), comprising the operational expenditures
(OPEX) and annualized capital expenditures (CAPEXa):

TAC = OPEX + CAPEXa = OPEXa + Cinv ·
r · (1 + r)τ

(1 + r)τ − 1
(10)

where Cinv are the investment costs, r is the interest rate of the technology, and τ is the
lifespan of the technology.

Table 2. Installation and operation costs assumed for the grid electricity and photovoltaic panels. P0

is the peak power of the PV system, in kW.

Technology Parameter Ref.

PV System costs 5873 · P0.673
0 CHF [47]

Lifetime 30 years [30]
Interest rate 5 % [30]
Feed-in tariff Peak 0.0850 CHF/kWh [48]

Off-peak 0.0445 CHF/kWh [48]

Grid Electricity Costs Peak 0.1777 CHF/kWh [49]
Off-peak 0.1187 CHF/kWh [49]

For all scenarios, the implementation of PV in the area at the scale considered leads
to a 10% decrease in the total annualized costs of electricity. Due to the different yearly
demands produced by each model (Figure 7), there is a change in the electricity costs of
±7.5% for the stochastic and PopAp models with respect to the deterministic baseline,
whereas for the case of PV the difference is ±8%.

Since the costs of electricity change between peak and off-peak times, the costs per
unit of electricity consumed by each building in the area (Figure 9) give insight into the
effect of occupancy on the dynamics of electricity consumption. The costs for the case
where no PV was installed proved to be nearly the same for all buildings due to the
predominantly daytime occupancy of all buildings in the area. Since most electricity
consumption for all occupancy models occurs during peak times (6:00 to 22:00 Monday
through Saturday), there is no significant load shift towards off-peak hours, and hence the
costs are relatively constant.

The difference in costs is somewhat more pronounced for the case with PV, where
the PopAp case has the lowest electricity costs on average. This is due to the fact that
this model predicted the lowest electricity demand, and hence less electricity needs to
be purchased from the electricity grid. A number of outliers in the plot correspond to
buildings with oversized roof installations and relatively low electricity demands. These
buildings would be good candidates to connect with surrounding buildings with large
demands in order to further increase the self-consumption of photovoltaic systems in the
area, and thus reduce the operational costs.
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Figure 9. Distribution of the costs per kWh of electricity consumed by the buildings in the district for each of the occupancy
models assuming PV is installed compared to when all electricity comes from the grid.

4.3. Heating and Cooling System Sizing and Costs

The district heating and cooling networks obtained by connecting all buildings in
the case study through the minimum Steiner tree through the existing street network are
shown in Figure 10. The area has a large base load in a building that houses a large server
room, where the cooling plant is also assumed to be located. In the heating case, the plant
is located in a hospital building with a high process heating base load.

The thermal networks are assessed by comparison to a decentralized option. For the
decentralized cooling case, individual chillers installed in every building with a cooling
demand were considered. For the heating case, heat pumps were assumed to be used for
both the centralized and decentralized cases, based on the expectation that supply systems
will be increasingly electrified in the future. For simplicity, air-source heat pumps were
assumed for both cases since access to geothermal in the area is limited, and the COP for
these systems was calculated based on the required supply temperature and outdoor air
temperature for all cases. While the temperature levels required by the building stock in
the area are relatively high (assumed at around 70 °C), a large number of buildings in the
area was indeed served by a district heating network fed by a water-source heat pump
until 2017. Thus, while the system used for this comparison has a low COP, and indeed
is in the process of being replaced by a higher efficiency energy concept [50], it has been
demonstrated to be technically feasible. While thermal networks were modeled in detail,
chillers and heat pumps were not explicitly modeled. Instead, only their demand for
electricity was considered by calculating a dynamic COP for each system.



Energies 2021, 14, 2295 17 of 30

(        )

(          )

(        ) (          )

Figure 10. District heating (top) and cooling (bottom) network layouts produced for the deterministic
occupancy model along with the cooling loads for each building in the area. The location of the
cooling plant is indicated by a blue and a red dot, respectively. The same layout was used for the two
other occupancy models and weather cases, although some of the pipe sizes were different.

The costs of each heating and cooling system alternative were calculated according
to the CEA database, as summarized in Table 3. For the decentralized case, only heat
pump and chiller costs were considered. The centralized option comprises centralized heat
pumps or chillers, a thermal network, and a heat exchanger at each substation. Pump costs
were negligible and were thus not considered. The piping costs of the thermal network
depend on the nominal diameter of each pipe, which for the thermal networks in this case
study ranged between DN20 and DN600.
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Table 3. Investment costs, lifetime, and interest rates assumed for thermal networks and heating and
cooling systems [30]. P0 is the design capacity of the system, equal to the peak power required in kW.

Technology Parameter

Chillers Costs 361 · P0 CHF
Lifetime 25 years
Interest rate 5 %

Heat pumps Costs 197.2 · P0.49
0 CHF

Lifetime 25 years
Interest rate 5 %

Thermal network Costs by size DN20–DN600 492–5562 CHF/m
Lifetime 50 years
Interest rate 5 %

Heat exchangers Costs by size 50–80 kW 69.65 · P0 − 346.2 CHF
80–100 kW 5198 CHF
>100 kW 83.16 · P0 − 3118.5 CHF

Lifetime 20 years
Interest rate 5 %

4.3.1. Effects of Occupancy

Given the lower electricity demands observed for the PopAp case (Figure 7), the inter-
nal gains in this scenario are also lower, and hence the overall cooling demand is also the
lowest for this case. As a result, this method has an overall smaller pipe size distribution
than the other two methods (Figure 11). The backbone of the network is also noticeably
smaller for this occupancy model than for the others, with fewer pipes of diameter 450 mm
for the PopAp case compared to the other two models. Contrary to the results for space
cooling, the stochastic model leads to the lowest predicted heating demand. Correspond-
ingly, the pipe size distribution shows the stochastic model also required smaller pipe sizes.
However, given that the relative change in yearly demand between models is not as large
as for the cooling case (71–76 GWh/yr, as seen in Figure 12), the larger pipes that serve as
the backbone to the district heating network have the same size for all occupancy models.

Figure 11. Number of pipes of each nominal diameter for the district heating (left) and cooling (right) networks produced
for each occupancy model.

The energy demand required to operate the district heating network is also very
similar for all cases, though it is 1–2% smaller for the PopAp case than the others. For both
the heating and cooling cases (seen in Figures 12 and 13), the yearly pumping electricity and
thermal losses are marginal compared to the heating and cooling demands in the buildings
for all cases. The district cooling network operation energy roughly follows the cooling
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demand, being highest for the stochastic occupancy model, which has a demand 3.5 to 7.5%
higher than the other two models. The same pattern can be observed regarding the peak
cooling and network operation demands, although in this case the peak pumping energy
demand is higher than the peak thermal losses. The same general trends can be observed
for the peak heating demand and peak thermal losses in the district heating network.
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Figure 12. Yearly (left) and peak (right) heating demand, and pumping electricity and thermal losses in the district heating
network for each occupancy model.

By connecting the buildings to a thermal network, the peak demand of the entire
district is lower than the decentralized case. However, compared to the findings from a
previous analysis of a lake water district cooling network in the area [38], the electricity
demand for operating the pumps in the network is particularly low. This is due in part to
the fact that in this case the network is assumed to be supplied by local chillers, and hence
there is no need to transport large volumes of water from the lake in order to provide free
cooling. Furthermore, given that only research and hospital buildings are considered in
this paper, there are much fewer buildings with low demands, which were found to lead to
considerable pressure losses. Finally, the server room in the area had not been considered in
the previous study, and hence the base load of the district cooling system was much lower.
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Figure 13. Yearly (left) and peak (right) cooling demand, and pumping electricity and thermal losses in the district cooling
network for each occupancy model.

The resulting TAC for each heating alternative, shown in Figure 14, show that the
choice of occupant model can have a noticeable impact on the systems selected in each
case. The centralized solution was found to be preferable when the deterministic and
stochastic occupancy models were used, whereas the decentralized alternative was more
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cost-effective for the PopAp case. Overall, the choice of occupant model was found to
cause the total annualized costs of the centralized system to vary by ±5% as opposed to
±3% for the decentralized case.

Regarding the cooling system alternatives, the PopAp case leads to 4% lower invest-
ment costs for the thermal network than for the other two models due to its comparatively
smaller pipe sizes. The lower peak cooling power also leads to 10–13% lower chiller costs
for this case, both for the centralized and decentralized alternatives. The stochastic model,
on the other hand, leads to the biggest investment costs for both alternatives, but only
about 1% higher than the deterministic model. Regardless of system alternative, the PopAp
case leads to the lowest operational costs and the stochastic model the highest, with an
overall range of −6–4% of the costs according to the deterministic method. Overall, the de-
centralized systems always had lower annualized costs (1.89 million CHF/year on average)
compared to the district cooling network (2.16 million CHF/year). For both systems,
the choice of occupancy model was found to lead to a ±5% variation in TAC.
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Figure 14. Total annualized costs for the centralized (C) and decentralized (D) heating (top) and
cooling (bottom) alternatives for each occupancy model.

4.3.2. Effects of Outdoor Temperature

The effects of the use of local weather data on supply system sizing was again tested
by comparing centralized and decentralized heating and cooling systems for each of the
weather scenarios observed. There is a noticeably smaller backbone in the district cooling
network for the cases using 2016 weather data due to the overall lower cooling demands
in that year. This can be seen in the pipe size distribution (Figure 15), which shows that
for the district cooling network sized according to 2016 weather data the maximum pipe
size is DN400 as opposed to DN450 for all other cases. The difference in sizing due to
different outdoor temperature assumptions is rather minimal by comparison, however,
with minimal differences in pipe sizes for the SMA and ML cases for each year. In the
heating case, where the differences in yearly and peak demands were found to be smaller,
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there is a much smaller variation in pipe sizes, especially for the backbone of each thermal
network. For smaller pipe diameters, which are sized to supply end consumers, there is
somewhat more of a difference, with the network sized according to 2016 weather data
again having a larger number of smaller pipes compared to all other cases.

Figure 15. Pipe diameter distribution for the district heating (left) and district cooling network (right) for each weather scenario.

Due to the differences in demand created by the weather data for the years 2015 and
2016, the total annualized costs of the cooling system alternatives vary widely when sizing
according to different weather cases (Figure 16). For both cooling systems, the costs are
highest when using 2015 weather data due to a heat wave that took place that summer,
whereas the lowest costs are obtained when using 2016 weather data. This point illustrates
why systems are typically sized using TMY weather data rather than individual years’
measurements. In this case, however, the comparison of sizing results for individual years
provides an estimate for the uncertainty introduced by the use of weather station data on
system sizing.

Since a linear relationship between chiller costs and design capacity was assumed (as
shown in Table 3), the deviation in the peak cooling power by year observed in Figure 4
correspondingly leads to a deviation in chiller costs for individual buildings between −7.5
and 43.5%. This points to a considerable uncertainty in system sizing due to the effects of
local climate. The capital expenditures for the entire district increase by between 5 and 7%
for the decentralized alternative when sizing according to the local measurements from the
ML building, whereas this increase is somewhat smaller for the centralized system (3–4%
higher costs). The operating expenses, on the other hand, vary by −0.6–2.1% due to the
use of local temperature data.

The TAC for both heating alternatives for each weather scenario are shown in Figure 16.
The variation in costs for the different weather cases is relatively minor compared to the
cooling case. The system costs when sizing according to TMY data are again presented
for reference, as these are sized to meet the demands of a “typical” year. Regarding the
deviation in costs caused by the local climate, the use of temperature data from the ML
building leads to a 3–4% increase in the investment costs and an increase in the operation
costs of less than 1% for the centralized case. For the decentralized alternative, a similar
trend can be observed in the operation costs, but the investment costs are about 1% lower.
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Figure 16. Total annualized costs for the centralized (C) and decentralized (D) heating (top) and
cooling (bottom) alternatives for each weather scenario.

5. Discussion
5.1. Occupant Effects on PV Performance and Electricity Costs

As observed in the previous sections, the choice of occupant model appears to have a
considerable impact on the yearly electricity demand of the area. The demand for electricity
is higher for the deterministic and stochastic methods than the PopAp case. The reason
for this is that the latter approaches show a higher number of occupants in the district,
and consequently the electricity demand for appliances is also higher. This is consistent
with previous studies [51–53] that found that building standards tend to overpredict the
number of building occupants at a given time.

Given the particular characteristics of this area, however, the electricity demands
are largely driven by lighting and processes, which were assumed to be independent
of occupant presence. Hence, the self-consumption of the PV installation analyzed was
found to be high for all cases. In spite of the low electricity prices available to large-scale
consumers such as the three institutions that occupy this area, the self consumption was
found to be high enough to make PV economically viable for all occupant models.

It could therefore be tempting to conclude that simplified occupant modeling ap-
proaches are sufficient for the planning of photovoltaic systems. However, this might not
be the case in areas with a lower share of process energy demand and where occupants’
actions have a more direct impact on the total electricity demand. Likewise, in this specific
case study the lighting demand was not affected by occupants, but in other cases occupants’
activities and their associated electricity demands might have a larger impact on electricity
demand and PV performance.

As mentioned in the introduction, the ability to accurately estimate occupant presence
patterns appears to be the main driver for reliable estimations of annual heating, cooling,
and lighting demand in buildings [17]. Assuming that the PopAp case, being the only
data-driven approach under consideration, represents reality more closely, the other two
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models would appear to overestimate the electricity demands of the area. When planning
photovoltaic systems, the use of the stochastic model would thus lead to an overly opti-
mistic estimate of the self-consumption in the area. However, due to the higher amount of
electricity that needs to be purchased from the grid, the average electricity costs for this
scenario would also be overpredicted.

5.2. Effects of Occupant Presence and Outdoor Temperature on Thermal System Sizing and Costs

The choice of occupancy model and climatic boundary conditions were found to have
a direct impact on the heating and cooling demands of the district and thus affect the sizing
of both the centralized and decentralized alternatives considered.

As observed in the previous sections, most noticeably for the population-based ap-
proach in the cooling case, the choice of occupancy model can have an impact on the thermal
network sizing and hence on the cost of the centralized system alternative. The choice of
occupancy model was thus found to affect the costs of implementing thermal networks
in the area by a margin of ±5%. The use of local temperature data, on the other hand, led
to an increase in the TAC for both the district heating (3–4%) and cooling infrastructure
(4–9%). Comparing centralized and decentralized alternatives, the variation in annualized
cooling costs was not significant enough to make a difference in the choice of systems at
the district scale, since the decentralized alternative was found to be more cost-effective
for all cases. In the heating case, on the other hand, the variation in the costs of the supply
system alternatives was smaller, and thus the choice of occupant modeling approach was
significant enough to affect the feasibility of the district heating infrastructure.

Regarding the effect of occupant modeling on the decentralized system alternatives,
while the difference in total annualized costs for the entire district was ±5% for the cooling
case and ±3% for the heating case, the variation for individual buildings is much larger,
as seen in Figure 17. For the heating case, only two buildings showed changes in total
annualized costs greater than ±10%, and these buildings had relatively small demands.
For the cooling case, the small variation observed on the district scale might be strongly
influenced by the small relative variation of the three outlier buildings in the area (which
correspond to a building complex that houses a server room and thus has much higher
demands than any other building in the area). However, 30 buildings of all demand ranges
out of the 104 buildings in the area were found to have variations in the TAC of at least
±10%, meaning that the choice of occupancy model can have a considerable impact on
the choice of cooling systems for individual buildings. The effect of local climate on the
sizing of cooling systems was even more pronounced, with a variation of more than 20%
for a number of buildings. This stresses the effect of the urban heat island on the cooling
demands of urban areas, and thus the cooling costs.

Given the preceding observations, it appears that both the choice of occupancy model
and climatic boundary conditions used can have a considerable impact on the cost of system
alternatives. In particular, these modeling choices have a much more significant effect on the
planning of cooling systems. This effect is most clearly observed in the single building scale,
which might explain why there has been a number of increasingly detailed approaches for
occupancy and microclimate modeling at this scale compared to the relatively simplified
methods used at the urban scale, as discussed in the introduction and observed in the
literature [16,54]. However, since occupancy was found to be significant enough to affect
the sizing and cost performance of thermal networks, work should continue to be carried
out on the development of district-scale occupancy models that are generalizable enough
to be applied in the planning of district-scale energy systems in other contexts.

An important limitation in the present analysis is that each of these energy systems
was considered separately rather than as an overall integrated system. The PopAp case,
for example, was found to have the lowest electricity demand, which led to the highest
self-consumption of locally-produced electricity and thus the lowest electricity costs. This
decrease in electricity demand however also led to lower cooling demands and higher
heating demands, meaning that for electrified thermal supply systems such as the ones
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analyzed here there would be a higher demand in the cold season, when photovoltaic
production is lowest. Thus, if the electricity demands arising from heating and cooling
supply were to be considered along with the solar systems, the occupancy models might
affect the economic viability of PV in a different way.
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Figure 17. Average total annualized costs per square meter for the decentralized heating (top) and cooling (bottom) systems
for each building in the area along with the minimum and maximum costs caused by the choice of occupancy model.
Buildings with a variation greater than ±10% are marked in dark red (heating) and dark blue (cooling).

6. Conclusions

Comparing the sizing and costs of energy supply systems under different occupancy
models and climatic boundary conditions allowed us to observe the effects these stochastic
sources of uncertainty have on the performance and costs of energy systems at both the
district and building scales. For the case study in question, the effects of building occupants
on the costs of electricity, heating, and cooling for the selected reference district-scale
systems were quantified at ±8%, ±5% and ±5%, respectively. Likewise, the change in
temperature due to the urban heat island led to an increase in the total annualized costs
of up to 4%. As expected, however, these effects were much more sizable for individual
buildings, for which the cooling demand varied by as much as 22% due to this increase
in temperature.

The detailed assessment of building occupants and the local microclimate therefore
appears a necessary step at the building scale, given that their effects can lead to significant
sizing errors. When scaling up to the district scale, on the other hand, individual peaks
are aggregated, leading to a much smoother load curve and hence less variation due to
these stochastic sources of uncertainty. It could therefore be tempting to conclude that one
can simply apply simpler, tried, and tested methods and assume any localized variations
will be averaged out on the aggregate. However, the variation caused by these sources
of uncertainty was found to be significant enough to affect the decision on the more cost-
effective heating alternative for both occupancy and outdoor temperature. Thus, errors at
this scale could lock an entire district into sub-optimal supply systems.
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Appendix A. Data Sources and Model Inputs

In building the CEA energy demand and system technology models, input data from
a variety of sources needed to be compiled. These are summarized in Table A1, while
the assumptions in the occupancy models for students and employees are summarized
in Tables A2 and A3, respectively. The resulting input parameters for the energy demand
models are summarized in Table A4, which shows the main properties of each build-
ing including functional mixes, thermal properties of the building envelope, and energy
system setpoints.

Table A1. Data sources used in building the CEA demand model and supply system models.

Input Type Input Source Ref.

Building geometry Footprint OpenStreetMap [42]
Heights 3D Model of Zurich [43]

Building properties Thermal properties CEA database [30]
Window-to-wall ratios Visual estimation [–]
Functional mix Facility management [–]
Building systems CEA database [30]
System set points CEA database [30]

Building occupants Occupant densities See Table A2 [–]
Schedules See Table A2 [–]
Sensible and latent heat gains National standards [15]

Electrical loads Demands See Table A2 [–]
Schedules See Table A2 [–]

Weather data TMY data Meteonorm [55]
Weather station data Meteonorm [55]
Local temperature data On-site sensor [–]

PV panels Nominal efficiency (18%) CEA databases [30]
NOCT (43.5 °C) CEA databases [30]
Costs See Table 2 [–]

Thermal networks Pipe sizes and insulation CEA databases [30]
Street network for layout OpenStreetMap [42]
Costs See Table 3 [–]

Table A2. List of assumptions for students for each of the occupant models presented. Adapted from [20].

Assumption Deterministic Stochastic PopAp

Occupant density 10 m2/p [31] 10 m2/p [31] Course enrollment

Weekday schedules Standard schedule [15] Standard schedule [15] Course enrollment
Weekend schedules No occupancy [15] No occupancy [15] No occupancy [15]

Long absences Monthly multiplier [15] Monthly multiplier [15] Assigned randomly

Classroom appliances 4 W/m2 [31] 36 W/p 36 W/p
Appliance schedule Standard schedule [15] Occupant schedule Occupant schedule
Lighting schedule Standard schedule [15] Standard schedule [15] Standard schedule [15]
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Table A3. List of assumptions for employees for each of the occupant models presented. Adapted from [20].

Assumption Deterministic Stochastic PopAp

Occupant density Office: 14 m2/p [31] Office: 14 m2/p [31] Employee register
Lab: 20 m2/p [31] Lab: 20 m2/p [31] scaled by share
Hospital: 8 m2/p [31] Hospital: 8 m2/p [31] of each function

Weekday schedules Standard schedules [15] Standard schedules [15] tstart ∼ N(9:30, 1.7)
tend ∼ N(17:00, 1.7)

Weekend schedules No occupancy [15] No occupancy [15] No occupancy [15]

Long absences Monthly multiplier [15] Monthly multiplier [15] Assigned randomly

Office appliances 7 W/m2 [31] 88.2 W/p 88.2 W/p
Lab appliances 20 W/m2 [31] 160 W/p 160 W/p
Hospital appliances 8 W/m2 [31] 51.2 W/p 51.2 W/p
Appliance schedules Standard schedules [15] Occupant schedule Occupant schedule
Lighting schedules Standard schedules [15] Standard schedules [15] Standard schedules [15]

Table A4. Selected building properties for each building in the model: conditioned floor area (CFA), main building
functions, average envelope U-value (Uavg), window-to-wall ratios, heating and cooling set point and setback temperatures,
air exchange rate at 50 Pa (n50), and power density for lighting and appliances (eal). Adapted from [20].

Bdg. CFA Main Functions Uavg WWR Ths,set/ Ths,setb Tcs,set/ Tcs,setb n50 eal
(m2) (%) (W/m2·K) (-) (°C) (°C) (h−1) (W/m2)

Bdg. 1 87,790 Office (67%) Class (21%) 0.77 0.27 22/12 26/28 2 21.5
Bdg. 2 51,998 Office (70%) Lab (17%) 0.76 0.38 22/12 26/28 2 24.5
Bdg. 3 34,687 Hospital (47%) Office (18%) 1.13 0.25 22/21 26/28 6 18.6
Bdg. 4 24,109 Office (52%) Lab (36%) 0.93 0.4 22/12 26/28 6 29.1
Bdg. 5 21,821 Office (59%) Class (21%) 1.23 0.4 22/12 20/28 6 24.6
Bdg. 6 21,095 Hospital (32%) Office (16%) 0.49 0.21 22/21 26/28 4 12.3
Bdg. 7 19,190 Class (47%) Office (19%) 0.9 0.31 21/12 26/28 2 18.4
Bdg. 8 17,881 Hospital (52%) Office (42%) 1.07 0.31 22/21 26/28 6 20.2
Bdg. 9 17,213 Office (74%) Class (15%) 0.66 0.27 22/12 26/28 2 22.5

Bdg. 10 16,889 Office (60%) Lab (18%) 0.35 0.27 22/12 26/28 2 23.8
Bdg. 11 16,788 Office (72%) Class (16%) 1.24 0.27 22/12 24/28 2 21.5
Bdg. 12 16,478 Hospital (56%) Office (27%) 1.41 0.21 22/21 26/28 2 18.2
Bdg. 13 16,422 Office (53%) Lab (31%) 1.02 0.45 22/12 26/28 2 27.2
Bdg. 14 16,340 Hospital (64%) Office (24%) 1.17 0.3 22/21 26/28 2 18.9
Bdg. 15 15,945 Office (25%) Exhibition (21%) 0.84 0.31 21/12 26/28 2 15.7
Bdg. 16 15,757 Office (58%) Lab (24%) 0.43 0.4 22/12 26/28 3 24.9
Bdg. 17 14,697 Gym (16%) Restaurant (14%) 1.68 0.32 18/12 26/28 4 11.4
Bdg. 18 13,187 Hospital (24%) Office (16%) 1.22 0.3 22/21 26/28 2 13.5
Bdg. 19 12,116 Hospital (53%) Office (28%) 1.35 0.21 22/21 26/28 2 18.4
Bdg. 20 11,981 Office (46%) Lab (36%) 1.27 0.27 22/12 24/28 3 26.8
Bdg. 21 10,524 Hospital (48%) Office (36%) 1.46 0.26 22/21 26/28 2 19.1
Bdg. 22 10,383 Lab (30%) Hospital (24%) 1.54 0.31 21/12 26/28 2 22.7
Bdg. 23 9786 Lab (29%) Hospital (24%) 0.5 0.4 21/12 26/28 2 22.7
Bdg. 24 9609 Lab (29%) Hospital (24%) 1.55 0.31 21/12 26/28 2 22.7
Bdg. 25 9230 Restaurant (28%) Lab (26%) 1.46 0.25 21/12 27/28 6 25.4
Bdg. 26 8832 Office (60%) Class (21%) 1.36 0.4 22/12 26/28 3 24.4
Bdg. 27 8277 Office (51%) Class (28%) 1.26 0.27 22/12 24/28 2 19.2
Bdg. 28 8080 Hospital (43%) Office (20%) 0.33 0.21 22/21 26/28 2 16.9
Bdg. 29 7283 Hospital (44%) Office (26%) 1.41 0.21 22/21 26/28 2 20.9
Bdg. 30 7183 Office (68%) Server room (8%) 0.62 0.5 22/12 22/28 2 18.1
Bdg. 31 6846 Hospital (43%) Office (25%) 1.16 0.16 22/21 26/28 2 18.8
Bdg. 32 6684 Hospital (45%) Office (33%) 1.21 0.26 22/21 26/28 3 20.8
Bdg. 33 6098 Office (58%) Lab (24%) 0.64 0.5 22/12 26/28 3 24.9
Bdg. 34 5920 Hospital (64%) Office (24%) 1.21 0.3 22/21 26/28 2 18.9
Bdg. 35 5920 Office (55%) Class (34%) 1.22 0.31 22/12 26/28 2 22.7
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Table A4. Cont.

Bdg. CFA Main Functions Uavg WWR Ths,set/ Ths,setb Tcs,set/ Tcs,setb n50 eal
(m2) (%) (W/m2·K) (-) (°C) (°C) (h−1) (W/m2)

Bdg. 36 5504 Office (52%) Lab (36%) 1.26 0.35 22/12 24/28 2 27.1
Bdg. 37 5253 Class (47%) Office (19%) 1.35 0.31 21/12 26/28 2 18.4
Bdg. 38 5066 Class (70%) Office (22%) 1.75 0.42 21/12 26/28 6 18.2
Bdg. 39 4871 Class (47%) Office (20%) 1.56 0.31 21/12 26/28 6 16.9
Bdg. 40 4746 Office (44%) Class (42%) 1.42 0.42 22/12 24/28 4 19.4
Bdg. 41 4592 Library (34%) Office (23%) 0.57 0.53 21/12 26/28 4 17.0
Bdg. 42 4571 Office (100%) 0.5 0.4 22/12 24/28 2 22.9
Bdg. 43 4554 Office (68%) Restaurant (8%) 0.51 0.4 22/12 24/28 6 20.3
Bdg. 44 4500 Office (54%) Class (11%) 1.18 0.27 22/12 24/28 2 15.9
Bdg. 45 4486 Office (44%) Lab (43%) 1.42 0.55 22/12 24/28 3 28.0
Bdg. 46 4366 Exhibition (32%) Office (20%) 1.1 0.2 21/12 26/28 2 15.6
Bdg. 47 4212 Office (61%) Library (6%) 1.22 0.31 22/12 24/28 2 16.5
Bdg. 48 4108 Office (55%) Lab (42%) 1.58 0.31 22/12 24/28 6 28.3
Bdg. 49 3879 Office (46%) Class (24%) 0.47 0.5 22/12 22/28 2 16.0
Bdg. 50 3780 Office (98%) Restaurant (0%) 0.49 0.4 22/12 24/28 2 22.6
Bdg. 51 3539 Office (74%) Class (15%) 0.52 0.5 22/12 24/28 2 22.5
Bdg. 52 3512 Office (31%) Restaurant (23%) 1.55 0.31 22/12 24/28 6 22.0
Bdg. 53 3440 Office (78%) Lab (14%) 1.24 0.27 22/12 26/28 4 23.7
Bdg. 54 3380 Office (81%) Class (12%) 1.19 0.27 22/12 24/28 2 20.8
Bdg. 55 3336 Hospital (44%) Office (26%) 1.13 0.21 22/21 26/28 2 20.9
Bdg. 56 3214 Office (50%) Class (30%) 1.75 0.27 22/12 24/28 2 17.4
Bdg. 57 3140 Office (58%) Lab (24%) 0.48 0.4 22/12 26/28 3 24.9
Bdg. 58 2824 Hospital (14%) Lab (8%) 0.29 0.21 22/21 26/28 4 9.4
Bdg. 59 2769 Office (89%) Lab (11%) 1.23 0.27 22/12 24/28 2 24.3
Bdg. 60 2708 Office (45%) Class (10%) 0.57 0.5 22/12 22/28 2 14.4
Bdg. 61 2681 Office (31%) Class (21%) 0.79 0.95 22/12 24/28 6 18.0
Bdg. 62 2536 Office (55%) Class (34%) 0.72 0.31 22/12 24/28 2 22.7
Bdg. 63 2504 Hospital (74%) Office (18%) 0.32 0.21 22/21 26/28 2 19.5
Bdg. 64 2475 Office (31%) Class (21%) 1.5 0.27 22/12 24/28 6 18.0
Bdg. 65 2463 Office (40%) Exhibition (20%) 1.17 0.27 22/12 24/28 2 19.8
Bdg. 66 2284 Class (90%) Office (2%) 1.77 0.31 21/12 26/28 5 17.1
Bdg. 67 2099 Office (60%) Class (32%) 1.19 0.27 22/12 24/28 2 21.2
Bdg. 68 2048 Office (78%) Lab (14%) 1.48 0.27 22/12 24/28 2 23.7
Bdg. 69 1945 Class (86%) Office (13%) 0.45 0.31 21/12 26/28 2 18.5
Bdg. 70 1944 Class (86%) Office (13%) 0.45 0.31 21/12 26/28 2 18.5
Bdg. 71 1373 Office (59%) Class (21%) 1.11 0.4 22/12 20/28 6 24.6
Bdg. 72 1359 Office (100%) 1.12 0.27 22/12 26/28 2 18.4
Bdg. 73 1312 Office (72%) Library (10%) 1.51 0.27 22/12 24/28 2 18.0
Bdg. 74 1131 Office (42%) Lab (32%) 1.34 0.31 22/12 24/28 6 21.8
Bdg. 75 1104 Class (71%) Office (29%) 1.1 0.31 21/12 26/28 2 19.4
Bdg. 76 1033 Office (80%) Class (17%) 1.48 0.27 22/12 24/28 6 22.4
Bdg. 77 977 Office (76%) Library (4%) 1.32 0.16 22/12 24/28 3 18.4
Bdg. 78 971 Hospital (76%) Office (9%) 1.15 0.16 22/21 26/28 2 19.5
Bdg. 79 914 Lab (58%) Office (14%) 1.51 0.4 21/12 26/28 2 25.1
Bdg. 80 912 Office (62%) Lab (17%) 1.15 0.27 22/12 24/28 2 21.9
Bdg. 81 875 Hospital (38%) Office (37%) 1.14 0.21 22/21 26/28 2 18.0
Bdg. 82 847 Class (61%) Office (39%) 1.08 0.31 21/12 26/28 2 19.9
Bdg. 83 835 Office (75%) Hospital (25%) 1.54 0.26 22/12 24/28 4 21.9
Bdg. 84 827 Office (100%) 1.49 0.27 22/12 24/28 2 22.9
Bdg. 85 809 Office (100%) 0.48 0.4 22/12 24/28 6 22.9
Bdg. 86 798 Office (75%) Library (2%) 1.47 0.27 22/12 24/28 6 18.0
Bdg. 87 771 Office (100%) 1.11 0.27 22/12 26/28 6 20.3
Bdg. 88 764 Hospital (21%) Office (12%) 0.39 0.27 22/21 26/28 4 9.5
Bdg. 89 744 Office (51%) Hospital (9%) 1.16 0.27 22/12 24/28 2 15.2
Bdg. 90 684 Office (83%) Lab (3%) 1.46 0.27 22/12 24/28 2 20.4
Bdg. 91 653 Office (100%) 1.2 0.27 22/12 24/28 2 17.0
Bdg. 92 579 Office (100%) 1.63 0.31 22/12 24/28 6 22.9
Bdg. 93 552 Hospital (41%) Office (8%) 1.38 0.26 22/21 26/28 2 11.2
Bdg. 94 522 Office (100%) 1.48 0.27 22/12 24/28 2 17.1
Bdg. 95 515 Office (64%) Library (6%) 1.59 0.4 22/12 24/28 6 16.0
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Table A4. Cont.

Bdg. CFA Main Functions Uavg WWR Ths,set/ Ths,setb Tcs,set/ Tcs,setb n50 eal
(m2) (%) (W/m2·K) (-) (°C) (°C) (h−1) (W/m2)

Bdg. 96 493 Lab (70%) Office (21%) 1.42 0.4 21/12 26/28 5 30.2
Bdg. 97 483 Office (99%) Hospital (1%) 0.31 0.31 22/12 24/28 2 22.9
Bdg. 98 336 Office (100%) 0.48 0.4 22/12 24/28 6 22.9
Bdg. 99 329 Lab (30%) Hospital (24%) 1.64 0.4 21/12 26/28 6 22.7

Bdg. 100 328 Class (47%) Office (20%) 1.55 0.31 21/12 26/28 6 16.9
Bdg. 101 322 Lab (67%) Office (3%) 1.25 0.27 22/12 26/28 4 25.9
Bdg. 102 290 Office (100%) 1.54 0.31 22/12 26/28 6 20.8
Bdg. 103 256 Class (100%) 0.36 0.31 21/12 26/28 2 18.0
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