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Abstract: Ancillary services rely on operating reserves to support an uninterrupted electricity
supply that meets demand. One of the hidden reserves of the grid is in thermostatically controlled
loads. To efficiently exploit these reserves, a new realization of control of voltage in the allowable
range to follow the set power reference is proposed. The proposed approach is based on the deep
reinforcement learning (RL) algorithm. Double DQN is utilized because of the proven state-of-
the-art level of performance in complex control tasks, native handling of continuous environment
state variables, and model-free application of the trained DDQN to the real grid. To evaluate the
deep RL control performance, the proposed method was compared with a classic proportional
control of the voltage change according to the power reference setup. The solution was validated
in setups with a different number of thermostatically controlled loads (TCLs) in a feeder to show
its generalization capabilities. In this article, the particularities of deep reinforcement learning
application in the power system domain are discussed along with the results achieved by such an
RL-powered demand response solution. The tuning of hyperparameters for the RL algorithm was
performed to achieve the best performance of the double deep Q-network (DDQN) algorithm. In
particular, the influence of a learning rate, a target network update step, network hidden layer size,
batch size, and replay buffer size were assessed. The achieved performance is roughly two times
better than the competing approach of optimal control selection within the considered time interval of
the simulation. The decrease in deviation of the actual power consumption from the reference power
profile is demonstrated. The benefit in costs is estimated for the presented voltage control-based
ancillary service to show the potential impact.

Keywords: power system; deep reinforcement learning; demand response; python; Modelica; open
AI gym; thermostatically controlled loads

1. Introduction

In the power system analysis and the power grid development, the applications of
classic analytical approaches were successful in numerous control solutions. However,
new advanced control solutions in power systems are required to cope with an uncertainty
that is contributed by loads and renewable energy sources to the modern power grid [1].
In particular, moving towards sustainable and carbon-free energy production, renewable
energy sources increase their presence in the power grid. The scholastic and low inertia
behavior of the renewable energy sources, especially wind power plants, leads to a decrease
of stability margins and, consequently, requires advanced control to be introduced into the
power grid [2–4]. Together with the contribution of the renewable energy sources to the
smart grid transformation, a distributed smart grid is changed by the wide adoption of
technologies related to the IoT paradigm [5,6]. Therefore, new solutions are necessary to
solve the highlighted challenges [7–9]. To tackle the needs of grid improvement, one of the
proposed advances in this paper is an approach to utilize a deep reinforcement method
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for the design of a controller considering the stochastic behavior of the thermostatically
controlled loads and comfort of consumers without load disconnection.

Reinforcement learning (RL) studies learn from an agent’s interaction with an envi-
ronment, meaning that the RL algorithm allows learning from the controller’s interactions
with a system. The environment can be of a high level of complexity with a large number
of possible states and actions that are performed by the agent. However, utilizing a proper
amount of computational power, the complex applications of reinforcement learning in
various domains were successful, e.g., winning complex games [10,11] and pretraining
robots for performing different tasks [12]. The success of reinforcement learning allowed
for the developments in power system solutions too, e.g., operation strategies for energy
storage systems [13]. The damping of the electrical power oscillations task is solved in [14]
using RL. The received results show that RL is competitive with classic methods, even if
the latter is supported by precise analytical models. In addition, the algorithm for demand
response management based on deep RL methods was applied for an interruptible load
use case and showed its cost effectiveness in [8]. Thus, these facts lay a firm foundation
for a strong motivation to apply the deep RL for providing ancillary services using a
voltage signal at a bus of common coupling of the thermostatically controlled loads within
a stochastically changing environment.

Seminal works that address the ways of providing ancillary services involving small
energy amounts have been published in recent years [15–20]. These services introduced
small changes in power consumption using the capacity of thermal energy buffers, includ-
ing thermostatically controlled loads. In [21], a performance within 65% of the theoretical
lower bound on the cost was achieved in 60 days by utilizing the fitted Q-iteration RL
algorithm to learn control over 100 TCLs that are connected into a radial feeder. In [22],
the analytical approach to the temperature cycle-based controller development is success-
fully applied for the demand response using the ensemble of thermostatic loads. It was
shown that power consumption modulation according to a reference power profile can
be achieved when control over a heterogeneous set of TCLs is considered. These results
allow for the continuation of research towards the application of RL to optimize the control
of TCLs using other considerations of the stochastic behavior of the loads, and means of
control, such as voltage signal change in the allowable range. Thus, the proposed approach
allows avoiding the disconnection of TCLs so that the comfort of power consumers can
be preserved.

For reinforcement learning to successfully learn the optimal control policy, an in-
teraction of the RL’s agent with a controlled system is required. However, training the
agent using a real power grid is a challenging and expensive task for an early stage of
the solution development. Therefore, a simulation of a real power system behavior was
utilized in this research. A feeder of a number of TCLs was chosen as a power system
model. This model accounts for real power grid properties and reproduces corresponding
system behavior that is of interest to the research. In [23], the authors presented an ancillary
service based on the regulation of power consumption with a voltage signal change. It
was shown that the thermal mass provided by TCLs enable providing an ancillary service.
However, as a proof of concept, the paper presented a straightforward constant control
strategy that might be inefficient in some ca. Thus, this research was extended in [24] with
an application of a sophisticated control strategy learned using a classic RL algorithm. The
previously mentioned paper focused on the application of a classic reinforcement learning
algorithm—Q-learning—to find an optimal control for voltage change-based ancillary
service; however, even though the Q-learning method showed good performance, in this
paper, the authors expand their research towards the application of deep RL learning that
was proven to be superior to other control approaches in seminal applications, including
demand response. For instance, in [25], the deep RL algorithm applied to optimize cooling
energy of data centers allowed achieving an energy consumption decrease of 22% when
compared to the model-based optimization approach. The learning of an optimal energy
control with deep RL was also presented in [26], where the author considered a smart
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building upgraded with solar panels and batteries. Both aforementioned contributions
utilized Modelica to prepare a model that simulates a power system to perform the training
of an RL agent. In [27], the authors presented a pipeline connecting reinforcement learning
algorithm implemented in Python with environments that utilize Modelica models for
simulation. Contributing to the engineering society, the authors validated the possibility of
utilizing SOTA RL algorithms for Modelica models compiled into FMU binaries [28]. The
tool has been released as an open-source software.

In the survey of RL approaches and applications for demand response that is presented
in [29], the authors reviewed over one-hundred works. Although the control of TCLs was
considered in most of them, the common approach in the literature aimed to decrease
energy costs using temperature cycle control or access to the states of TCLs. For instance,
a decrease of energy costs by 15% was achieved for an electric water heater in [30]. The
authors used the autoencoder neural network to reduce the dimensionality of a state
space, emphasizing the influence of the environment state space discretization approach.
In [29], it was detected that state space discretization strategy may strongly impact the
performance of a solution, because the reviewed classic RL algorithms can not efficiently
handle continuous state variables. On the contrary, deep learning RL algorithms can handle
continuous state variables and high-dimensional environment state spaces. Thus, the deep
learning RL algorithm is utilized in the presented research.

1.1. Contribution

In this paper, the authors consider the comfort of the consumers together with energy
balance and cost optimization. This paper describes an application of the double deep
Q-network algorithm to the development of a voltage controller introducing an ancillary
service. Such a controller enables power consumption management for a set of TCLs with-
out loads disconnections. This way, it aims for customer comfort. The considered power
system model is explained from the point-of-view of its stochastic properties that have an
influence on the power consumption pattern in time. The TCLs are initialized stochastically
for each training to consider real world heterogeneity of TCL characteristics, in this way, to
train a robust controller in the conditions of a slightly changing training environment. The
model is compiled with Modelica and integrated with the Python environment to make
use of the best practices and the latest advances in RL algorithms development available
through the OpenAI Gym [31] interfaces. The ModelicaGym toolbox [27] was used to allow
this integration.

Thus, the article presents the following achievements:

• An optimal voltage control using the DDQN algorithm was developed and applied
for the heterogeneous model of 20 TCLs and validated the generalization property of
40 TCLs.

• The hyperparameters tuning was performed for a DDQN algorithm to improve the
performance of the proposed solution.

• The DDQN algorithm was trained on a changing environment that is represented by
the stochastic initialization of the loads at each state of the training.

• The presented solution with the DDQN algorithm achieves significantly better per-
formance compared to the competing approach. The competing approach is the
proportional control that was tuned by simulating system behavior for the range of
the considered values of a control parameter.

• The cost–benefit ratio was evaluated for the proposed method.

1.2. Problem Formulation

The task is to introduce an ancillary service by applying optimal control to the voltage
to change the power consumption of TCLs. A voltage controller is placed in a point of
TCLs common coupling (see Figure 1). A signal from the higher level of a power system—
reference (desired) power level—is available. Actual power consumption can be measured
at the controller placement point. Thus, the control goal is to reduce the difference between
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desired power profile and actual power consumption. This difference is measured with
mean squared error (MSE) and thus, in an ideal case, is equal to 0.

Figure 1. High-level overview of a problem formulation.

Such a problem formulation aims for customer comfort, as the controller relies on
customer agnostic information only and does not require any consumer-side information
or interventions. This also allows us to avoid the over-complication of the solution, as
there is no need to explicitly account for a variable number of separate consumers and
additional actions that can be executed on a consumer side. Another possible issue with
consumer-side dependencies is that a significant part of the TCLs is still not equipped
with smart home or-IoT related technologies. That is, relying on some consumer-side
dependency (possible action execution or just information) controller would introduce
equal opportunity to every customer to participate in the service. For instance, if it was
possible to negotiate temperature boundaries with some of the TCLs, such action would
be applied only to the controllable TCLs changing customer experience and service they
receive, while other consumers would be receiving exactly the service they expected.

Therefore, relying on consumer-agnostic information is a justified choice that pri-
oritizes consumers comfort. In addition, usage of aggregated signals, such as actual
power consumption, allows us to avoid the over-complication and speeding up of the
solution development.

1.3. Paper Organization

The remainder of this paper is structured as follows: Section 2 presents all assets
utilized in the research. Section 2.1 presents the proposed ancillary service. Section 2.2
presents and analyses the power system model with its properties, with the experiment
pipeline description in Section 2.3. Section 3 describes the results of the experiments along
with a discussion of the results and our interpretation. The paper is finished with Section 4
containing conclusions and future work discussion.

2. Materials and Methods

The presented research project relies on the following assets:

• Reinforcement learning algorithms utilized to learn the optimal control strategy. These
algorithms are implemented in Python [32].

• Modelica model [33] simulating the consumption of TCLs and overall system behavior
with an application of a proposed voltage controller (detailed description is given
in Section 2.2).

• Experiment pipeline that was used to conduct experiments via simulation with
FMU [28] and RL algorithms implemented with Python [34,35].

2.1. The Proposed Voltage Control-Based Service Using Deep Reinforcement Learning

The developed approach for providing an ancillary service consists of two main parts
(Figure 2): a hardware voltage controller (see Figure 4 in [23]) that includes a proportional
coefficient k between power change and voltage change in the system and a software RL
controller. The hardware voltage controller is responsible for making a voltage regulation



Energies 2021, 14, 2274 5 of 22

at a bus of common coupling of the TCLs according to the commanded reference power
from an operator. The software RL controller is responsible for changing the value of
the control parameter k of the hardware voltage controller. An RL controller allows the
learning of an optimal control policy from the interaction with the considered environment,
in this case, a power system model with TCLs. The optimal control policy is defined as
a mapping between a perceived state to actions that serve to define how to act when in
those states.

Figure 2. The approach of the proposed voltage control-based ancillary service and its interaction flows in the power system.

Figure 2 shows the schematic placement of a controller in a power system. Thus, the
proposed voltage control-based ancillary service at each discrete timestep can be split into
the following steps:

1. Actual power level (APL) is measured in the point of the common coupling of the
TCLs and reference power level (RPL) value is collected from the operator’s side.

2. (if in training mode) The RL controller processes information received from the
environment and learns how good an action that the controller had chosen at the
previous timestep was.

3. The RL controller uses an optimal control policy learned so far to choose an optimal
action for the next timestep.

4. The chosen action by the RL controller is applied, which is the value of a control
parameter k of the voltage controller, and is then changed to the optimal one.

To train the RL controller, it has to be placed in an environment where, by trial-
and-error interaction, accumulating the learning experience from iteration to iteration,
and receiving a particular response of the environment to each controller’s action, the
RL controller learns the optimal control policy. Afterwards, the learned policy is not
updated but only utilized. A crucial part of this process is the feedback received from the
environment as a response to the execution of chosen actions. This response is called a
reward and is usually calculated with a reward function defined to represent the desired
controller behavior and sometimes even domain knowledge about the environment. The
reward’s value can be tuned to achieve better results in a particular task.

In the presented solution, the input parameters of the proposed RL algorithm are two
values: actual power level and change of actual power level from the previous step. The
output of the RL controller is a value of the control parameter k that should be used in the
next timestep. In this experiment, to speed up the training process, only a discrete set of
values was allowed for k: k ∈ {1, 2, 3, 4, 5, 6, 7}.

The popular classic reinforcement learning algorithm—Q-learning—has a tendency
to overestimate action values; therefore, the combination of Q-learning with a neural
network was proposed and has achieved human-level performance in complex decision
making tasks, such as in computer games [36]. Even though the significant improvement
in learning due to the ability of the deep neural network to provide an approximation
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of complex nonlinear functions, the DQN algorithm sometimes overestimates the values
of actions. Therefore, the double deep Q-network has been developed to overcome the
overestimation issue [37]. Thus, in this paper, the state-of-the-art algorithm—the RL-double
deep Q-network (DDQN)—was chosen to ensure efficient optimally controlled learning.
It includes extensions of a vanilla DQN algorithm that are considered best practice in RL:
memory replay buffer and target network update [38].

2.1.1. Bellman Equations for Q-Learning Algorithm

The learning of an optimal control policy in many reinforcement learning algorithms,
including the DDQN algorithm, in particular, is based on a Bellman equation. Equation (1)
is the Bellman equation for a value function [39]. The value function of a state V(s) defines
which accumulated reward the agent can obtain when starting from the particular state.
In the equation, Vπ(s) defines the value function of a state for a particular policy π.
Since Vπ(s) represents the accumulated reward, the policy is chosen when evaluating the
corresponding value function. The policy with the larger value function is chosen over the
policy with the smaller one.

Vπ(s) = R(s) + γ ∑
s′∈S

p(s′|s, a = π(s))Vπ(s′) (1)

where V is a value function for a control policy π, R is a reward function, p(s′|s, a) is a
probability to end up in state s′ after performing action a in state s, when action a is chosen
according to a policy π. Thus, the value function is a mapping from possible environment
states to the real numbers that represent what benefit (reward) can be achieved from the
given state when a specific control policy π is applied.

The reward function, in this case, is defined as a function of two arguments—actual
and reference power levels. It was constructed to satisfy the general logic of any reward
function, i.e., it should identify how good or bad the current state of the environment is,
which is the result of the previously chosen action. Thus, the reward function for this
use case is inversely proportional to the difference between APL and RPL at the current
timestep. Tuning of the reward function for such application was performed in [24]. The
exact formula is given in Equation (2):

R(s) = R(APL; RPL) =

{
−1000, if episode ended
−1000(APL− RPL)2, otherwise

(2)

The notation of the value function that is defined for a state can be extended by
introducing a Q-value function that relates the accumulated reward with a state–action
pair. The Q-value function represents a mapping from a space of state–action pairs (s, a) to
the real numbers (R) that represent how good is a particular action in a particular state.
Usefulness here is defined as a benefit (reward) that can be achieved from this state. So, if
one can estimate Q-values for any choices of the state–action pair, an optimal policy can
be achieved. In this case, an optimal action in any state can be chosen as the action that
maximizes Q-values for this state. Equation (3) ([39]) is a Bellman equation utilized for the
Q-value function evaluation:

Qπ(s, a) = R(s, a) + γ ∑
s′∈S

p(s′|s, a)Qπ(s′; a′ = π(s′)) (3)

where Q is a Q-value function for a control policy π, R(s, a) is a reward function for a state
s when performing an action a, and p(s′|s, a) is the probability to end up in state s′ after
performing action a in a state s, when an action a is chosen according to a policy π.



Energies 2021, 14, 2274 7 of 22

Thus, the Bellman equation of optimality for the Q-value function is given
(Equation (4) [39]):

Q∗(s, a) = R(s, a) + γ ∑
s′∈S

p(s′|s, a)maxa′Q
∗(s′; a′) (4)

This equation is widely used to estimate Q-values that represent an action-value
function, e.g., with dynamic programming in a Q-value algorithm. A DQN algorithm
is built on the idea of estimating Q-values with an artificial neural network. A further
detailed explanation of a DDQN algorithm is given in Section 2.

2.1.2. Double Deep Q-Network

A vanilla DQN aims to approximate the real optimal Q-value function with an
artificial neural network. The network’s weights are initialized randomly or use other
initialization strategies from deep learning. After each step in the environment, a loss
function (see Equation (5) [38]) is evaluated, and the model’s weights are updated us-
ing backpropagation.

Q(s, a) = R(s, a) + γmaxa′Q(s′; a′) −→ loss = (R(s, a) + γmaxa′Q(s′; a′)−Q(s, a))2, (5)

where R(s, a) + γmaxa′Q(s′; a′) is the target value, and Q(s, a) is the estimated one. As
both target and the estimated values are calculated using a trained network, the algorithm’s
convergence becomes slower or sometimes impossible.

To handle this issue, the first extension of a vanilla DQN introduces a target network—
the second network of a similar architecture that is used to calculate the target. Both
networks share the same weights at the beginning of a training process, but the training
process with backpropagation is not applied to the target network, i.e., it is not trained. The
target network’s weights are updated by copying the weights of the trained network every
n steps. Thus, n is sometimes called a target network update interval, and therefore, it can
be tuned by being a hyperparameter of a model. The loss function of a DDQN is given in
Equation (6) [37].

loss = (R(s, a) + γmaxa′Qtarget(s′; a′)−Qpredicted(s, a))2, (6)

The second extension of the DQN algorithm—the memory replay buffer—introduces
a buffer that stores up to a certain number of observed examples. Then, at each training
step, a batch of training examples is sampled from the buffer and used for the weights’
update. This allows the algorithm to avoid forgetting training examples observed by a
model a long time ago and also speeds up convergence.

The double deep Q-network was chosen as a state-of-the-art method in RL that is
efficient in solving different control problems. The parameters that define an architecture of
an underlying neural network can be considered as a set of hyperparameters as well. The
architecture depends on the application. For example, computer vision tasks usually require
an application of convolutional neural networks, whereas natural language processing
tasks require recurrent structures. For this control task, 2-layers of 128 perceptrons in each
layer was chosen as a backbone for a DDQN algorithm because of the low-dimensional
structure of the environment state and action spaces. In this way, the neural network’s
architecture has enough capacity to solve the control problem, but the number of the
weights in the neural network that have to be updated iteratively is not too large to slow
down the learning process.

Thus, the utilized multilayer perceptron has the following layer structure:

• input layer of size 2,
• dense layer of size 128 with batch normalization,
• dense layer of size 128 with batch normalization,
• output layer of size 7.
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The input layer size corresponds to the number of the environment state variables
measured at each time step: actual power level and the change of actual power level from
the previous step. The sizes of the dense layers were tuned as hyperparameters so that
the both layers are of the same size. Each dense layer includes the batch normalization
that improves convergence as a deep learning best practice [40]. The size of the output
layer corresponds to the number of available actions. In the considered case studies,
the available actions are the possible values of a parameter k of a voltage controller—
k ∈ {1, 2, 3, 4, 5, 6, 7}.

The detailed algorithm of training and application of the learned control using DDQN
is presented in Algorithm 1. The steps of the algorithm for controller training and applica-
tion modes have several differences that are outlined in the algorithm with the conditioning
statement (see ‘if in the training mode‘ conditions). First, when a trained controller is in
application mode, the trained network weights are loaded, whereas to start the training
mode, they are initialized randomly. Second, the algorithm does several additional steps to
update the trained network weights during the training: saving the most recent observation
to the memory replay buffer, sampling a batch of observations for training, calculating loss
based on these samples, and performing backpropagation using the calculated loss. These
steps are not performed during the controller application mode, because it is not expected
to update the learned control policy during the application.

Algorithm 1: The proposed voltage and RL controllers training and applica-
tion workflow

Result: Optimal control policy learned and utilized
if in the training mode then

Initialize the trained and target network weights in the DDQN;
else

Load the trained network weights, i.e., learned control policy;
end
Initialize t← 0;
while true do

Measure APL and PRL at the current time step;
if in training mode then

Add observation to the replay buffer (RB);
Sample the batch of observations from RB;
Calculate loss in DDQN (Equation (6));
Update the trained network weights based on loss;
if t mod target update steps == 0 then

t = 0;
target network weights← trained network weights;

end
end
Predict Q-value for each possible action using trained network forward pass;
Choose an optimal action that corresponds to the action with the max. Q-value;
Set value of k into the hardware voltage controller (Figure 2);
t = t + 1 wait till the next time step—conduct a simulation of [t; t + 1]time
interval;

end

2.2. Power System Model

The power system considered in the research is schematically presented in Figure 3.
It contains a tap changer and a proportional controller with the input of power reference
level and adjustable coefficient that has to be optimized during the deep RL algorithm
training. Depending on the setup, a controlled feeder of TCLs is either 20 or 40 TCLs.
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The default value for the controller’s parameter is k = 1. In the competing approach,
the value for the competing approach parameter is a constant that is chosen from the
same set available to the RL-controller k ∈ [1; 2; 3; 4; 5; 6; 7]. The optimal value is chosen
by simulating the whole considered time interval with k that is equal to each of the
possible values.

Figure 3. Diagram of a simulated power system (20 TCLs).

The set of parameters that are the same for each TCL are thermal resistance
R = 200 ◦C/kW, power consumption P = 0.14 p.u. (see Table A1 in Appendix A),
ambient temperature θa = 32 ◦C, and allowed temperature range for each TCL—[19.75–
20.25] ◦C. Each TCL has two variables: its temperature and binary on–off indicator—θ
and switch, respectively. The thermostats were modeled such that both deterministic
(Equation (7)) and stochastic (Equation (8)) initialization are allowed. This way, the model
account for thermostats heterogeneity in terms of operation start time and thermal capaci-
tance. The stochasticity in the thermal capacitance in a particular range is presented later
in this section.

In case of deterministic initialization, an individual TCL is presented by the following
differential equation:

dθ

dt
=
−θa + θ + R · P

R · C , (7)

To represent the heterogeneous behavior of the set of TCLs that are connected to one
bus but have different intrinsic characteristics that depend on the producer and purpose of
such load, the stochastic case study was developed. In case of stochastic initialization, the
differential equation for an individual TCL contains additional term-stochastic input u:

dθ

dt
=

−θa + θ + R · P
R · C + R · u · range

, (8)

where u is a stochastic term-value drawn randomly and uniformly from [0; 1]; range = 4.5-
variable that determines a range of possible TCL thermal capacitance with [C; C + range].

Half of the TCLs are switched on at the beginning of a simulation, while the other half
is off. This corresponds to values of switch = 1 for TCLs 1–10 and switch = 0 for TCLs
11–20 in the 20 TCL setup, where the switch value changes according to Equation (9). If
the temperature crosses upper threshold θmax, the TCL changes the state to switched off,
whereas if the temperature crosses the lower threshold θmin, the TCL state is changed to
switched on.

switch =

{
1, θ < θmin,
0, θ > θmax

(9)
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Power consumption by each TCL:

P = switch · g0 · v2 (10)

where v—voltage and g0—conductance.
In Figure 4 the cooling period corresponds to zero power consumption by the TCL,

and initiated when θ(0) = θmax. The solution of Equation (8) for this case:

θ(t) = θa + et/(R·(C+range·u)) · (θmax − θa) (11)

Figure 4. TCL temperature dynamics and power consumption cycle.

To find the time interval for cooling in the TCL cycle (Figure 3), Tc has to be substituted
for t, and the Equation (11) has to be equal to θmin.

Tc = R · (C + range · u) ln
( θmin − θa

θmax − θa

)
(12)

For the heating time interval, the initial condition is θ(0) = θmin, therefore, the solution
of Equation (8) is:

θ(t) = θa − P · R + et/(R·(C+range·u)) · (θmin − θa + P · R) (13)

To find the time interval for heating in the TCL cycle (Figure 3), Th has to be substituted
for t, and the Equation (11) has to be equal to θmax.

Th = R · (C + range · u) ln
( θmax − θa + P · R

θmin − θa + P · R

)
(14)

Thus, the dependency of Th on (C + range · u) is proportional, whereas Th on voltage
signal V is the natural logarithm of the ratio of parabolic functions. For simplicity, it is
assumed that u = 0, but C itself is varying in the range of 4.3 to 4.45 (Figure 5). Thus,
changing the voltage at the bus of a feeder of several TCLs allows changing the heating
and cooling time intervals in the TCL cycle.
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Figure 5. TCL heating cycle dependency on thermal capacitance and voltage.

Let us review the characteristics of the modeled feeder behavior. For the chosen
parameters of TCLs with heterogeneity in thermal capacitance value C, and the initial
condition where 20 TCLs are switched on and 20 TCLs are switched off at the initial
simulation point of time, voltage is 1 p.u., no control is involved, the distribution of the
proportion of TCLs being on in every moment of time in the simulation interval of t = 200 s
with a step size of 1 s, please see Figure 5. The distribution (Figure 6) is of a skewed shape
with an elongation of the left tail.

Figure 6. Histogram of TCLs’ (n = 40) proportion that remain ON in a simulated time interval of
200 s.

Apparently, the proportion of the TCLs that is in the ON state is less then 0.5 in an
uncontrolled mode and characterized by the intrinsic properties of the TCLs’ feeder. This
property is illustrated in Figure 7 on a time scale.
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Figure 7. TCLs’ proportion that remain ON in a simulated time interval of 200 s.

The dependency of the power consumption of a group of TCLs with a certain range of
stochastically generated thermal capacitance values from a uniform distribution is shown
in Figure 8.

Figure 8. Power consumption range in a time interval of 200 s with a dependency on the thermal
capacitance of 40 TCLs.

The box plot presents the distributions of power consumption values P in the sim-
ulated time interval for each range of thermal capacitance C + u ∗ range values. In this
experiment, the initial state of 50% of the TCLs was ON (i.e., switch = 1). In Figure 8, the
resulting simulation shows that the thermal capacitance has a significant influence on the
power consumption variation around the mean value (red lines). The whiskers (black lines)
represent maximum and minimum variation of the distribution, unless there are outliers
(red crosses) that correspond to the real limits of the power consumption variation in the
particular simulation. The large variation of the power consumption represents the possible
challenge or limitation for the control strategy for such a group of TCLs. This is due to
the synchronizing behavior of the TCLs in time, meaning that if a group of the TCLs is
controlled by the same voltage signal, the group of TCLs will not be able to maintain the
change of the power consumption level for a long period of time. Such a group of TCLs
(see the capacitance in [2.6–6.9]) will swing back to the opposite direction following the
thermal cycle. Thus, the proportional control is deficient in such cases. Therefore, the more
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advanced control that would allow for changing the TCLs thermal cycle in an optimal
manner for the necessary period of time was developed.

2.3. Experiment Pipeline

To connect RL algorithms implemented in Python with Modelica models, the re-
quired experiment pipeline was developed. It incorporates state-of-the-art tools: PyFMI
library [41] for utilization of Modelica models compiled into binaries in the FMU for-
mat, OpenAI Gym framework [31] for RL experiments, and ModelicaGym toolbox [34],
which was developed to connect the previous two parts of the pipelines. This pipeline
was successfully validated and utilized in other research projects [24], where a classic RL
algorithm—Q-learning—was applied to develop the optimal voltage control for TCLs’
power consumption.

3. Results and Discussion

To evaluate the performance and ability of the DDQN method to generalize
(see Section 2.1.2), the experiments with the developed controller (see Figure 2) were
conducted considering the following two case studies:

1. Evaluation of the DDQN algorithm’s performance and applicability for provid-
ing the voltage-based ancillary service for 20 stochastically initialized TCLs in the
controlled feeder.

2. Evaluation of the DDQN generalization capability that was tested on 40 stochastically
initialized TCLs in the controlled feeder.

Each experiment with a certain configuration (20 TCLs or 40 TCLs in the feeder) was
repeated five times to make sure the results are consistent and robust. Each repeated
experiment included 200 episodes of the RL-driven controller training in a stochastic
environment and 100 episodes of testing. Testing was always performed on the same 100
episodes. In all the experiments that were conducted, the episode was performed for a
simulation time interval of 0–200 s. A time step of 1 s was used to measure actual and
reference power level in order to apply the control.

The performance of a controller was measured as a mean of squared differences MSE
between APL and RPL measured during an episode. That is, for the whole experiment
testing phase, 100 values are received-1 for each testing episode. Because of that, the
performance in different experiments was compared using mean, median, and standard
deviation for these 100 values, as well as qualitative comparison of two distributions using
distribution plots.

3.1. Evaluation of the DDQN Algorithm’s Performance and Applicability for Providing the
Voltage-Based Ancillary Service (20 TCLs Setup)

The setup to evaluate the DDQN performance was made for a lesser number of TCLs
to ease the observability and tracking of the learning process, as well to speed up the
process itself. When the hypothesis that the state-of-the-art method in the reinforcement
learning-double deep Q-network is capable of solving the task is verified, the experiment
can be scaled further.

To maximize the DDQN algorithm’s performance to find an optimal combination of
hyperparameters values, the hyperparameters tuning was performed. The size and the
number of hidden layers were considered as the hyperparameters, as the capacity of the
neural network change may influence the performance of the algorithm. The double DQN
algorithm was tested with different target network update intervals. The hyperparameters
tuning was performed in the following manner:

1. A set of possible values was chosen for each hyperparameter using knowledge transfer
from other deep learning and reinforcement learning applications. If possible, values
in a range of possible values were taken in a logarithmic scale, e.g., 1, 10, 100, 1000,
10,000 for an interval of [1;10,000] for target network update steps.
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2. An experiment was run with one updated hyperparameter’s value, while other
parameters were set to default values. The performance of the solution was measured
for 100 episodes, as the mean squared difference between APL and RPL measured at
discrete timesteps during each episode.

3. The value of a hyperparameter that minimizes the measured median performance
was chosen as an optimal value for a considered hyperparameter.

The chosen hyperparameters after the tuning procedure are listed in Table 1. It is
worth mentioning that the hyperparameters tuning for a target update step parameter
produced interesting results. According to the received results (see Table 1), the optimal
value for this parameter equals 10. The higher values of the target update step seem to
decrease performance, while smaller values of the parameter decrease the time efficiency
of the algorithm without any benefits in performance. These results are on the contrary to,
for example, Atari games solved with DDQN [38]. An optimal value of the target update
step for the Atari games was measured in the thousands. This is due to a much higher level
of complexity and dimensionality of a set of measured environmental variables in the case
of the Atari games.

Table 1. The chosen hyperparameters after the DQN tuning.

Parameter Value Values Considered in Hyperparameters Tuning

Number of hidden layers 2 was not tuned
Hidden layer size 128 [32; 64; 128; 256]

Batch size 32 [32; 64; 256]
Replay buffer size 256 [256; 512; 1024; 2048]

Learning rate 0.001 [0.001, 0.0001]
Optimizer Adam was not tuned

Target network update step 10 [1; 10; 100; 1000; 10, 000]

The convergence of the controller training can be observed in Figure 9. It is a line
chart of a controller performance metric (MSE) versus the number of training episodes.
The performance of the proposed solution was evaluated by using an MSE between values
of actual power consumption and reference power level measured each second during the
considered time interval. These values were sampled at the time steps when control action
is applied. The line chart is smoothed with an average in the window of size 20 to account
for the stochasticity of each episode caused by stochastic TCLs’ initialization. It can be
observed that the smoothed MSE of the episode declined until it reached a certain level,
meaning that the algorithm converges to a solution. Grey lines on a line chart correspond to
the individual experiments, whereas the red one is an average value. An ideal, but usually
not achievable, value of the MSE performance metric is equal to zero. It is observed that
during the controller’s training, MSE decreased significantly compared to the initial level.
This indicates that the controller is actually learning efficient control policy. At a certain
training episode, the controller reached a plateau and its performance fluctuated around
that level due to the stochasticity of each training episode.

An example of system behavior after the controller was trained, that is, power mea-
surements during one of the test episodes, can be observed in Figure 10, where the grey
line corresponds to the reference power level, the red line corresponds to the actual power
level when a trained RL-driven controller is utilized, and the blue line corresponds to when
the competing approach is applied. When the trained RL-driven controller is utilized, the
actual power consumption profile is much closer to the reference power level, while the
competing approach produces much bigger deviations both on average and in the extreme.
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Figure 9. Smoothed MSE for the episode as a measure of the controller’s performance during training
repeat (grey) and summarized (red).

Figure 10. Actual and reference power level example for a trained controller and the compet-
ing approach.

Each testing episode in an experiment produces one value of the performance metric
(i.e., MSE), therefore, the whole experiment produces a set of MSE values. To compare
performance achieved with different parameters or control strategy, both qualitative and
quantitative analyses were performed. For the quantitative analysis, a set of MSE values
was considered as a performance metric that is sampled with corresponding sample statis-
tics metrics: mean, median, and standard deviation (std). These aggregated performance
measures for the experiment with optimal hyperparameters is given in Table 2. The com-
peting approach, in this case, has chosen parameter k = 7 as optimal control. For the first
result in Table 2, median, mean, and std are very high when no control is applied, that is,
the voltage controller is removed from the system. For the RL-driven controller case (best
DDQN in Table 2), the median of MSE is more than four times smaller and the mean MSE
is more than two times smaller, compared to the competing approach. This means that on
average proposed RL-driven controller outperforms the competing approach by two to
four times.
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Table 2. Performance comparison in terms of MSE statistical properties for the proposed solution
and the competing approach (proportional control) for 20 TCLs feeder.

Method Median Mean Std

No control 0.0546 0.0613 0.0196
Competing approach (k = 7) 0.013 0.0144 0.0054

Best Double DQN 0.0030 0.0055 0.0084

The quantitative analysis was supported by a qualitative analysis. To this end, the
distributions of MSE samples for the presented and competing approaches were compared
using the distribution plot visualization technique. As an ideal value of performance
metric (MSE) equals 0, the more samples are close to 0, the better. A comparison of the
performance distribution for the presented solution and the competing approach is in
Figure 11. It can be observed that a MSE distribution is located much closer to zero than
the distribution for the competing approach. That is, it can be stated that on average (in
most cases) the presented solution performs much better than the competing approach.

Figure 11. Performance metric (MSE) distribution for the developed RL controller and the competing approach (proportional
control) for the 20 TCLs setup.

The developed RL-based ancillary service has shown the capability to work efficiently
in a stochastic environment. This allows for the successful application in a previously un-
seen environment, using the following approach: the controller is trained in the stochastic
environment that is similar to the planned utilization environment using a simulation of a
power system. Then, it is deployed to the power system and utilizes the optimal control
policy learned from many similar environments. As was shown with a qualitative and
quantitative analysis, this leads to significantly better performance than the performance
of a competing approach for most cases. Although, the RL-driven controller has never
observed those specific environments that were used for testing.

However, a standard deviation of the MSE sample for the RL-driven controller is
approximately 1.5 times higher and a long right tail is observed in the performance distri-
bution (Figure 11) for some cases. This long right tail of the distribution consists of just
several observations with high MSE. This indicates that for these rare cases, the RL-driven
approach is not as efficient as the competing approach. Because of that, the stability of the
performance may require improvement and should be treated carefully in applications.
The performance is still comparable with a competing approach, although the controller
was not trained to act in that particular environments.

One of the possible solutions to a stability problem can be additional controller calibra-
tion after its deployment to the target system. That is, after the controller learned a more
general version of an optimal control strategy from interactions with similar environments,
it is deployed to the power system of interest and is calibrated with a short period of
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additional training. This way, the controller preserves general knowledge learned from
many environments and, at the same time, adapts to the particularities of the environment
where it should operate.

Another option to tackle the stability problem can be provided with an ensembling
technique—by combining several models one can smooth the effect of one model erroneous
decisions and therefore avoid clearly bad scenarios. In addition, such an ensemble can
be enriched with domain knowledge serving the same purpose—avoiding performance
worse than classic competing approaches. This way, in that rare cases, if the RL-driven
controller will not be significantly more efficient than the competing approach, it will not
cause any inefficiencies. In other words, it will provide benefits in most cases, and for rare
cases it will show the same performance as existing solutions.

Although most likely by combining all these techniques, one can achieve high perform-
ing solution, the domain expertise and/or some safety rules should always be involved
in a system including machine learning algorithms. This is due to the risk that unstable
behavior will still be present even for well-studied machine learning models. A good exam-
ple of such a case are adversarial attacks in the computer vision domain, when models are
intentionally confused with very little perturbations of the input, although their production
performance remains excellent [42,43].

3.2. Evaluation of the DDQN Generalization Capability (40 TCLs Setup)

To test the generalization capabilities of the developed RL controller, a setup with a
bigger number of TCLs was organized. A comparison of the RL controller’s performance
with the competing approach (proportional control) was made using both qualitative and
quantitative analyses. Statistical measures (mean, median, and std) collected in the process
of the quantitative analysis are presented in Table 3. The competing approach, in this
case, has chosen k = 7 as optimal control. The median of the MSE distribution for the
proposed solution is more than two times smaller than for the competing approach, the
mean is almost two times smaller and even standard deviation is approximately 1.4 times
smaller for the proposed RL controller. This indicates that the performance of the proposed
approach is significantly better than the proportional control. Moreover, high standard
deviation is not observed in the 40 TCLs setup in contrast to the 20 TCLs setup, and thus it
can be stated that these observations with high MSE are very rare.

Table 3. Performance comparison for 40 TCLs setup.

Method Median Mean Std

Competing approach (k = 7) 0.0173 0.0187 0.0064
Best Double DQN 0.0085 0.01 0.0045

The qualitative analysis represented by the visualization of MSE sample distributions
are given in Figure 12. It can be observed that the distribution of MSE samples for the
proposed approach (red) is shifted to the left, closer to zero, compared to the distribution
of proportional control performance samples (grey). This confirms that the received results
of the controller application are aligned with the initial goal because the control goal is to
reduce MSE.

The results of the qualitative and quantitative analyses confirm that the presented
solution performance is significantly better than the performance of the competing ap-
proach for the 40 TCLs setup. A rough estimate is that a proposed solution shows two
times better results. Thus, the proposed RL-driven controller works efficiently not only
in the 20 TCLs setup, where it was finetuned, but also in the 40 TCLs setup, where it was
applied without additional tuning. This is the evidence of the generalization capabilities of
the proposed solution.
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Figure 12. Performance metric (MSE) distribution for the developed RL controller and the competing approach (proportional
control) for the 40 TCLs setup.

3.3. Evaluation of the Expected Decrease in Costs

The evaluation of the achieved decrease in costs for considered setups was done to
give an intuition of the possible impact of the proposed solution. To calculate the expected
decrease in costs, the following assumptions were made: 1 p.u. in the simulated power
system equals 1 kW; 1 kWh cost equals USD 0.18—peak hours pricing according to [8].
That is, each 1 kWh of deviation from the reference power profile causes inefficiency in
costs equal to USD 0.18.

First, deviation of the actual power consumption and reference power profile was
measured in kWh for both the proposed and the competing approaches. The case with
no control in the system was not considered, as it is strongly inferior to the competing
approach. Second, the positive impact of the RL-driven controller was measured as a
decrease in deviation compared to the competing approach. The calculated decrease in
deviation of power consumption compared to the competing approach is presented in
Table 4. According to the received data, utilization of the RL-driven controller instead of the
proportional controller allows us to achieve a 56% decrease in deviation from the planned
power profile for the 20 TCLs setup and approximately 39% for the 40 TCLs setup, i.e.,
after the proposed controller’s application, the actual power consumption is significantly
closer to the reference power profile. For a power system setup with 40 TCLs, the change
is more modest than for a setup with 20 TCLs. This is due to finetuning that was done
for 20 TCLs case, while exactly the same model was applied to the 40 TCLs case and no
finetuning was performed.

Table 4. Achieved decrease in deviations of actual power consumption from the reference power
profile compared to the competing approach (proportional control) for 200 s period, in kWs.

Method Median Mean Std Total for 100 Episodes Relative Change

Best DDQN (20 TCLs setup) 11.71 12.14 3.49 1171.09 56.04%
Best DDQN (40 TCLs setup) 9.77 9.03 4.73 903.17 38.89%

After calculating the decrease in deviation from the planned power profile, a cor-
responding decrease in costs was calculated. There may be other improvements in cost
efficiency implicitly caused by improvements in a profile of actual power consumption, but
this evaluation accounts only for an explicit positive effect of having a power consumption
close to the planned profile. The calculated decrease in cost compared to the competing
approach is presented in Table 5. Numbers are given in USD × 10−4 for readability, as
calculated costs for a 200 s interval considered in the experiment are small.
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Table 5. Achieved decrease in costs compared to the competing approach (proportional control) for
200 s period, in USD × 10−4.

Method Median Mean Std Total for 100 Episodes

Best DDQN (20 TCLs setup) 5.855 6.07 1.745 585.545
Best DDQN (40 TCLs setup) 4.885 4.515 2.365 451.585

A significant decrease of costs is achieved for both cases, according to the results. It is
important to emphasize that this efficiency is achieved without any significant influence
to customers comfort or overriding consumers decisions. This is because of the chosen
problem formulation that excludes direct interventions to the consumer side processes and
operates using only customer-agnostic information.

However, it can be observed that the decrease of costs for the 40 TCLs setup is smaller
than for the 20 TCLs setup. This is because the RL-driven controller was not finetuned
for the 40 TCLs case and thus achieved an approximately 17% smaller decrease in the
deviation from the planned power profile. This can be improved with additional calibration
of the RL-driven controller. Such a calibration can be done by performing hyperparameters
tuning for a particular power system setup or performing calibration via a short period
of additional training in the power system of interest. Both options are likely to improve
performance and, thus, help to achieve higher costs decrease.

4. Conclusions

The proposed solution introduces a DDQN-based approach to provide ancillary
services using a set of TCLs by controlling voltage change on a feeder. The presented DDQN
controller performs significantly better than the proportional control used as a reference for
comparison as a competing approach. While effectively achieving the goal of approaching
actual power consumption to the reference power profile, the presented approach aims
for customer comfort and does not require any interventions on the consumer side of a
power grid.

From the technical point of view, an additional advantage of the DDQN algorithm
utilization is the possibility to use continuous input variables without discretizing them.
Because of that, the proposed RL-driven controller can be utilized without a sophisticated
tuning or configuration in any setup when the corresponding input signals and control ac-
tions are available. The high applicability of the approach makes wide utilization possible.

Wide utilization of such ancillary services could help to decrease inefficiencies in
terms of costs in the power grid at a global scale. This may be utilized to explicitly decrease
consumer electricity costs. In addition, a decrease in actual power consumption profile
deviation from the planned one allows keeping a balance of the grid operation. This way,
energy resources can be consumed in the optimal and planned way, e.g., the need for
unexpected peak energy generation, usually backed up by non-renewable energy sources,
will be decreased. This will not only lead to costs optimization but also help to achieve
sustainable development goals and reduce harmful effects on the environment often caused
by non-renewable energy sources.

As in rare cases, RL-driven controller has shown performance that is not superior
to the competing approach, it is worth considering extending controller workflow with
a calibration part. That is, after learning a more general version of the optimal control
strategy from other similar environments, the controller can be calibrated by additional
short training in the specific power system, so that it can adapt to the specific properties
of a new environment. To ensure safe functioning in the real world, it also makes sense
to help the controller avoid clearly erroneous decisions, e.g., by adding safety measures
employing expert knowledge in the power system domain.

In addition, it is reasonable to attempt changing the controller design by aiming
to improve performance of the controller. For example, a possible option to improve
performance is the employment of consumer-side information. This will require a total
reformulation of the considered technical problem and increase the complexity of envi-
ronment state and action spaces, although this may lead to some improvements in the
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performance. However, the applicability of such an approach is limited, as it can be
utilized only if most TCL devices are equipped with smart technologies and proper autho-
rization is received for information gathering and/or consumer-side actions from all the
corresponding customers.
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Abbreviations
The following abbreviations are used in this manuscript:

TCL Thermostatically Controlled Loads
IoT Internet of Things
RL Reinforcement Learning
DQN Deep Q-network
DDQN Double Deep Q-network
MSE Mean Squared Error
SOTA State-of-the-Art
std standard deviation

Appendix A. Nomenclature Table

Table A1. Nomenclature table of the variables mentioned in the paper.

Variable Description Units

θ temperature of TCL ◦C
θmin lower temperature threshold in TCL ◦C
θmax upper temperature threshold in TCL ◦C
θa ambient temperature ◦C
t time s

Th time of TCL heating s
Tc time of TCL cooling s

APL actual power level per units (p.u.) or W
RPL reference power level per units (p.u.) or W

P powers, consumption per units (p.u.) or W
R thermal resistance of TCL ◦C/kW
v voltage V
g0 conductance 1/Ω
C thermal capacitance of TCL -

range width of TCLs thermal capacities range -
u random number from uniform distribution in [0; 1] -

switch binary indicator if TCL is on (1) or off (0) -
s state of the environment -
a agent’s action -

Q(s; a) Q-value function -
V(s) state value function -

R(s; a) reward function -
p probability -
γ discount factor -
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