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Abstract: The article presents an original simulation model of a wind farm (WF) consisting of 30 wind
turbine-generator units connected to the electrical power system (EPS) through power converters.
The model is dedicated to the evaluation of the WF capabilities to participate in frequency and voltage
regulation services in the power system. A system that allows for frequency and voltage control
is proposed and implemented in the presented model. The system includes primary frequency
regulation with synthetic inertia and secondary regulation available on request from the system
operator. The concept of a reference power generation unit was introduced, according to which
only one wind generator unit was modeled in detail, and the other units were replaced with simple
current sources. Such a solution allowed for the reduction of size and complexity of the model as
well as shortened the simulation time. Simulation tests were conducted in the PSCAD/EMTDC
environment for an electrical power system composed of the wind farm, a synchronous generator,
and a dummy load. The performance of the wind farm control system was analyzed in different
operation conditions, and the control capabilities of the farm were assessed. Selected simulation
results are presented and discussed in the paper. They illustrate the regulatory properties of the WF
and confirm the correctness of the developed model.

Keywords: wind farm control; frequency control; voltage control; modelling and simulation

1. Introduction

Basic regulation processes in conventional electrical power systems (EPSs) are pro-
vided by synchronous generators to maintain the power balance between production and
demand and the required quality of the energy delivered to consumers. The growth in the
power of renewable energy sources (RESs) installed in EPSs increases the possibilities of
power balancing, but at the same time, it extends the area of power generation that can be
regarded as excluded from the central control due to unstable power generation and the
low inertia of the system. Maintaining the tendency of the growing share of RESs in an
overall power and energy balance will make it necessary for system operators to change
the method of controlling the operation of the whole power system and to include these
sources in the provision of system regulation services [1].

The ability of individual RESs to participate in system regulation depends on the
technology that is used to produce energy. It includes the type of primary energy, the
presence of rotating components, the method of evacuating power from the source into the
system, and the structure of regulatory systems [2].

At present, wind farms (WFs) are regarded as the most promising technology, owing
to the presence of rotating components that constitute the source of natural inertia [3–6].
Wind power plants that are currently used in Polish EPSs are characterized by the inertial
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response at the level from 2 to 3.5 s, i.e., a value that is ca. half as high as the value charac-
teristic for conventional steam units with inertia constant from 5 to 8 s [7–13]. However,
compared to other RESs, such as photovoltaic systems (PVs) that have no inertia, it is quite
a significant value.

In accordance with the current Polish Grid Code [14], WFs with the power equal to
or exceeding 50 MW should be equipped with a system for controlling and regulating
active power, making it possible for the farm to operate within the limitations defined
by the system operator and to participate in frequency regulation, as well as a system for
controlling reactive power, ensuring the possibility of cooperating with primary voltage
regulation systems [15]. Similar technical requirements are specified for WFs in other
countries’ grid codes [16]. Thus, it can be claimed that WFs participation in frequency and
voltage regulation is not only justified by the need to raise the level of system services, but
it should also be technically possible provided that the requirements resulting from the
current regulations are fulfilled.

Owing to the degree of complexity of EPSs and the specific character of WFs, it can be
stated that an analysis of wind farm participation in the provision of system regulatory
services is a difficult issue and an interesting research problem. It becomes necessary to
develop methods and tools of assessing the impact of WFs operation on the power system,
and, in particular, of verifying their regulatory capabilities. In the case of a power system,
performing direct tests is limited; therefore, a simulation method based on the system
models is the most effective and sometimes the only one to apply.

Extensive studies are conducted worldwide to assess the possibility of providing
system services by WFs [17]. This subject is discussed in numerous articles and concerns
both simulation studies [18,19] and studies conducted on real WFs [6,20–22], whereby
various aspects of their operation are analyzed. The key directions of research concern the
comparison of various types of generators used in wind power plants [5,23] in terms of
manufacturing technology, the impact of farms on the power system operation, and the
power quality as well as maximizing energy production in WFs.

Various simulation models are used in the studies, the features of which depend on
the specific application. The models dedicated to closed loop on-line control to optimize the
power production of wind turbines [24–29] belong to the class of control-oriented dynamic
models and differ in terms of the degree of fidelity. Other models are used for the WFs
layout optimization. It is especially useful at the farm design stage to help WFs produce as
much power as possible while minimizing the wake impact that can disturb the flow of
the wind inside a wind farm [30,31]. The awakening of one or more turbines causes the
wind to become turbulent and the wind speed to decrease, which can significantly reduce
the energy production of the wind farm. Such optimization is carried out with the use of
advanced optimization algorithms (e.g., genetic algorithms), and its aim is to maximize
the power production in the farm and to limit the mutual influence of turbines on each
other [32–34].

Some publications deal with the regulatory capabilities of wind generators and WFs
in terms of voltage regulation in medium voltage distribution networks [35–37]. They
describe an indirect method of regulation through the control of reactive power by an
interface converter. In [37], a simulated study was performed to compare using reactive
power for voltage regulation and for losses reduction in the network.

Numerous papers [38–44] concern the issue of frequency control. In [38], a control
strategy for an islanded system with a WF and a hydrogenerator is presented. A mod-
ification of the control algorithm applied for the real WF was proposed to improve the
control quality. A detailed review on the frequency response of WFs with different types of
generators is presented in [39]. A simulation study showing the behavior of the real WF
during the event of frequency nadir is discussed in [40]. Frequency control in an islanded
system with drop characteristics applied in WTs is the subject of paper [41]. In [42], the
contribution of WFs equipped with DFIG generators in secondary frequency control in the
power system is analyzed. In the control system described, the PID (proportional–integral–
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differential) controller was used, which reduced overshooting in the frequency response.
In [43], an extended study of applying WFs for primary frequency control in the power
system is presented. A method based on rootlocus analysis was applied for tuning control
parameters. In [44], the NREL simulation model of a WF with DFIG generators was used to
study the participation of the farm in the frequency secondary regulation. The active power
control was designed using adaptive pole placement control and fuzzy gain-scheduled PI
(proportional–integral) controller.

Models used for the analysis in the literature differ in the structure of the power
grid, the type of WFs generators, and a different share of WFs in the power balance. The
presented results indicate that including proper frequency controls in the wind turbines
can significantly improve the frequency response of the power system.

This paper presents a comprehensive simulation model of a WF connected to the
EPS through power converters and participating in frequency and voltage regulation.
The model has been developed using the PSCAD software and consists of wind turbine-
generator units and their control systems allowing them to react to frequency and voltage
changes in the power system. As the model is dedicated to studying the power system
behavior under regulation (the cooperation of the WF with the power system), the authors
focused on the electrical part of the system. Component modules from the PSCAD library
were used in the model, such as the wind turbine model. It enables programming variables
for various types of winds (blasts, turbulences) as an input and regulates the turbine power
by changing the attack angle of the blades; however, it does not take into account the
wake effect. The model, firstly presented in [45], has been extended and modified. Virtual
inertia was introduced to the frequency control, which improved the behavior of the system
under the violation of the power balance. The frequency regulation encompasses primary
regulation with virtual inertia and secondary regulation on request of the system operator.
Based on the simulation tests conducted using the PSCAD software, an analysis of the
WF response to a change in operating conditions and to the limitations imposed by the
operator was conducted. The reaction of the farm to the input signals applied to control
systems was also shown, illustrating its capability to participate in the system regulation.

The paper is organized as follows: Section 2 describes the basic principles of regulating
frequency and voltage in power systems. Particular attention was paid to the analysis of the
WF potential in terms of providing regulatory services depending on the type of generator
used in the wind power unit. Section 3 presents the power system for which simulation
studies were carried out. Section 4 describes the models of individual elements of the
tested system. The electromechanical elements and the algorithm of the wind turbine are
presented in detail. Section 5 contains the results of the simulation tests. The conclusions
from the tests and the evaluation of the created model are included in Section 6.

2. Principles of Frequency and Voltage Regulation in the EPS
2.1. Frequency Control

Frequency regulation is performed basically by the conventional power and is aimed
at controlling active power production during frequency changes. In a steady state, the
power generated by energy sources is equal to the power consumed by loads; i.e., the
EPS is in an equilibrium point. Any change in the generated or consumed power results
in the violation of the power balance. Then, the primary frequency regulation is carried
out locally by the speed governors of synchronous generators according to their static f-P
characteristic, which leads to a new equilibrium point but for a different frequency. To
restore frequency to the value before a disturbance, secondary regulation is accomplished.
Secondary regulation results from a coordinated impact of the central control system on
selected generators.

The capabilities of WFs to participate in frequency control as well as the applied
control methods depend on the type of a generator unit. Various types of generators are
used in wind power plants. Currently, the double-feed induction generators (DFIGs) and
two types of synchronous generators (SG and PMSG) are most commonly used in WFs [46].
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The SG has an excitation circuit, while in the PSMG generator, the source of excitation
are permanent magnets. All these types are connected to the network through power
electronic converters. In the case of the DFIG generator, the converter is located in the rotor
circuit, which means partial separation from the network. The synchronous generators are
completely separated from the grid because the converter is located in the stator circuit.

As the generators are electromechanically isolated from the grid, they cannot provide
the primary frequency control by means of a rotational speed governor, unlike synchronous
generators in conventional power plants. The control system is located in the power con-
verter. Its characteristic feature is a small inertia and immediate response after disturbing
the power balance.

The frequency regulation in wind power plants with synchronous generators can be
performed by means of controlling the pitch angle of the turbine blades, so called pitch
control. [47]. It affects the turbine mechanical torque and, as a result, changes the active
power generation. To obtain regulatory capabilities in terms of both positive and negative
frequency variations, it is necessary to maintain a power regulatory reserve, i.e., limit the
power generation in the WF.

An additional service that can be provided by WFs is the imitation of the responses of
conventional generators through virtual inertia and thus damping power oscillations. The
purpose of virtual inertia is to make a portion of energy accumulated in the turbine rotating
elements available for control purposes. A system with greater inertia is less sensitive to
frequency fluctuations in case of sudden changes in the power balance.

To increase the capabilities of frequency control in systems with a significant number
of WFs, a feedback loop with a frequency-dependent signal is added to the WF active
power control system [10,11,48]. To enhance this effect, WFs are also combined with energy
storage [49–52]. The existing systems make it possible to obtain additional active power
for control purposes with a value of even 5–10% of the rated power for a time dependent
on the value of the inertia constant [53,54]. The value of the additional active power in
primary regulation depends on the amplitude of the frequency change (∆f) and the rate of
this change (df/dt). There are many publications in the literature describing the method
of selecting the gain coefficient of the virtual inertia algorithm [55]. The gain value can be
selected experimentally as a constant value or vary according to the amplitude of frequency
change [56].

2.2. Voltage Control

Direct and indirect methods for voltage regulation are used in the EPS. Direct methods
involve changing the voltage level at the generators’ terminals or the transformation ratio
of power transformers. Indirect methods include the change of reactive power flow in
the system.

Voltage regulation is possible for all types of turbine-generator units and entire WFs
by modifying the control system or connecting additional devices. Three operating modes
of WF control system are defined [26]: operation with a constant power factor tgϕ, direct
voltage regulation at the point of WF connection to the EPS (the Point of Common Coupling,
PCC) and the control of the reactive power fed into the grid as a function of voltage. All
these modes of operation may be implemented for DFIG and PMSG generators. They can
work with a set value of reactive power, voltage, or power factor. This requires a modifi-
cation of the control system by adding an additional control loop to the voltage control
system [57,58]. An additional increase in the range of the reactive power generated by the
farm is possible through the use of dedicated devices for reactive power compensation, e.g.,
static compensators (STATCOM) [59,60]. Such a combination is used in the case of very
poor connection to the network and to improve Low Voltage Ride-Through (LVRT) [61].

Based on the analysis of the literature, it can be concluded that the capabilities of a
WF to participate in frequency or/and regulation processes may be associated with the
necessity of modifying the control system or the installation of additional equipment.
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3. System under Study
3.1. System Layout

A diagram showing the analyzed system is presented in Figure 1. It consists of three
basic components: a WF with 60 MW installed capacity, a conventional power plant with
a synchronous generator of 360 MW rated power, and an equivalent network load with
defined voltage characteristics.
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Figure 1. A scheme of the considered system.

The wind farm consists of thirty E70 wind turbine-generator units with synchronous
generators of 2 MW rated power. The generators are connected to the farm internal power
network of 30 kV using power electronic converters and 0.4/30 kV transformers. The WF
is connected to an external power grid through a 110/30 kV substation with a transformer
of 63 MVA rated power and a cable line of 110 kV voltage.

An equivalent generator and a 22/400 kV block transformer were used in the “Conven-
tional power plant” block. The parameters of the generator correspond to the GTHW-360
bipolar generator, which is most frequently used in the Polish national EPS. Power output
from the power plant is transmitted using a 400 kV overhead line. A connection with the
110 kV power grid was implemented using a 450 MVA autotransformer with the ratio of
400/115 kV and Yd11 winding connections.

3.2. Assumptions for WF Control

For the participation of the WF in system regulation services, the control system
of wind turbines should allow for the active power control when the power balance or
frequency set value is violated and reactive power control when the voltage exceeds the
required range. To accomplish these tasks, two modes of operation were assumed for the
turbine-generator units:

• Normal operation mode with available power or power limitations,
• Intervention mode, operation with performing voltage and/or frequency regula-

tion services.

In the first mode, power generation results from the available wind energy. If there
are no limitations imposed by the operator, the usage of renewable energy is maximal. The
system operator may limit the power generation below the level that is possible to obtain
in given weather conditions in order to obtain a reserve of regulatory power. In such a
case, the WF can contribute to power balancing in the system when frequency changes due
to a disturbance. Participating in power balancing in the power system corresponds to
primary frequency regulation. The second mode is called interventional and is activated
on the request of the system operator. In this mode, secondary frequency and/or voltage
regulation service is performed.
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4. System Model
4.1. The Wind Farm Model

The model of the analyzed system was created in the PSCAD™/EMTDC™ program
environment using modules from the program library [62].

A wind farm model includes individual wind turbine-generator units, the farm inter-
nal network, and the main 110/30 kV power substation. Due to limitations in the number
of computing nodes, only one turbine-generator unit, called the reference wind generator,
was fully modeled. The remaining units were modeled as controlled current sources.
Assuming that all turbine-generator units of the WF are of the same type as the reference
one, it was accepted that reference currents of the sources correspond to the currents of
the reference wind generator. Owing to that, simulation computations were conducted
considerably faster.

A model of the reference wind-generator unit consists of the following main blocks:
wind turbine, synchronous generator, electronic power converter system, and an interface
transformer, as shown in Figure 2. The control system was modeled separately and is
described in detail in the next section.
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Figure 2. A block diagram of the reference turbine-generator unit model.

The wind turbine was modeled using a “Wind Source” block, which enables program-
ming variables for various types of winds (blasts, turbulences). A modified power curve
corresponding to the characteristics given by the manufacturer for the E70 turbine was
used in it [63]. The turbine power is regulated by changing the attack angle of the blades.

A low-speed multi-polar (36 pole pairs) generator, operating with a variable rotational
speed in the range from 8 to 21.5 rpm was used in the model. The generator was connected
to the power network using a power electronic converter consisting of a rectifier, voltage
stabilization system, and an inverter.

The wind farm data correspond to the real WF installed in the Polish EPS.

4.2. The Wind Farm Control

The WF control system was designed to meet the requirements specified in Section 3.2.
The following signals are supplied to the control system module:

• The angle speed of the turbine-generator unit ωw,
• The values of the mechanical and electromagnetic torque Te, Tm,
• The values of active and reactive power set by the operator, divided equally between

individual turbine-generator units POSD, QOSD,
• Measured active power Pm,
• Measured deviations of frequency and voltage ∆f, ∆U.

The output signals from the block are the attack angle of turbine blades β (pitch
control) and reference values of active power Pref and reactive power Qref that should be
supplied to the power network.
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A diagram of the turbine-generator unit active power control is presented in Figure 3.
Basic regulation results from the balance of mechanical and electromagnetic torques de-
scribed by the following equation [64].

J × (dω/dt) = (Tm − T0) − Te (1)

where J—moment of inertia of the generator rotor,ω—rotational speed of the rotor, Tm—
mechanical torque, Te—electromagnetic torque, T0—loss torque.
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Block Fω allows for considering the dependence of the loss torque on the generator
angle speed.

An additional path introducing the virtual inertia of the turbine has been added to the
control system in order for the WF to be able to take part in power balancing and the first
moment of a disturbance [65–67]. This part of the system reacts to frequency deviations
resulting from the violation of power balance in the electric power system. Additional
power obtained due to virtual inertia is described by the following equation [68–70].

∆p = 2H × fm × (dfm/dt) (2)

where H—inertia constant [s], and fm—measured system frequency (p.u.).
Using virtual inertia, the WF can contribute to reducing frequency variations dynamics

in the initial state after a disturbance. However, to have this functionality, the wind farm
should operate with some power reserve to be able to contribute to power balancing in
case of load increase. The system operator may limit the power generation below the level
that is possible to obtain in given weather conditions using the signal POSD. Power reserve
is also needed if the WF is to participate in frequency secondary regulation. This regulation
starts after the OPF control signal is supplied. Then, the WF power is corrected depending
on the frequency deviation so that the frequency returns to its nominal value.

The control processes in turbine-generation units are conducted by means of the pitch
control, which causes a limitation of the turbine mechanical torque to the required value
Tm. The β angle control system is activated when there is any change in the reference value
of active power due to the operation of the control system or the power system operator’s
decision. The regulation of the β angle also protects the wind turbines against mechanical
overloads that may occur when the permissible wind speed is exceeded. In the simulation
model, power PMAX corresponds to the rated turbine rotational speed equal to 2.3 rad/s.

A diagram of the turbine-generator unit reactive power control is presented in Figure 4.
The control system allows the farm to generate reactive power with the value QOSD set by
the operator (when no value is set by the operator, the generated reactive power is equal to
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zero) or to operate in the voltage regulation mode obtained after the OPV control signal
is supplied.

Energies 2021, 14, x FOR PEER REVIEW 8 of 17 
 

 

The control processes in turbine-generation units are conducted by means of the 

pitch control, which causes a limitation of the turbine mechanical torque to the required 

value Tm. The β angle control system is activated when there is any change in the reference 

value of active power due to the operation of the control system or the power system 

operator’s decision. The regulation of the β angle also protects the wind turbines against 

mechanical overloads that may occur when the permissible wind speed is exceeded. In 

the simulation model, power PMAX corresponds to the rated turbine rotational speed equal 

to 2.3 rad/s. 

A diagram of the turbine-generator unit reactive power control is presented in Figure 

4. The control system allows the farm to generate reactive power with the value QOSD set 

by the operator (when no value is set by the operator, the generated reactive power is 

equal to zero) or to operate in the voltage regulation mode obtained after the OPV control 

signal is supplied. 

 

Figure 4. The wind farm reactive power control system. 

The inverter of the reference turbine-generator unit is current-controlled. The refer-

ence currents iref are determined on the basis of the Pref and Qref power signals obtained 

from the active and reactive power control systems. 

4.3. The Conventional Power Plant Model 

In the considered system, the conventional power plant with an equivalent synchro-

nous generator constitutes an element that balances power and energy, so that it takes on 

a role of the equivalent EPS. The turbine-generator unit model was built using the follow-

ing modules from the PSCAD library: “Synchronous Machine”, “Exciter”, “Power System 

Stabilizer”, and “Steam Governor”. The steam governor controls the influx of steam to the 

turbine. A static excitation system maintains a constant voltage value on the generator 

terminals. In order to limit the oscillation of the output power, the authors used a power 

system stabilizer that impacts on the excitation system, depending on the changes in the 

rotational speed of the generator shaft. A block diagram of the turbine-generator system 

is shown in Figure 5. 

 

Figure 5. A block diagram of the equivalent turbine-generator unit. 

Figure 4. The wind farm reactive power control system.

The inverter of the reference turbine-generator unit is current-controlled. The reference
currents iref are determined on the basis of the Pref and Qref power signals obtained from
the active and reactive power control systems.

4.3. The Conventional Power Plant Model

In the considered system, the conventional power plant with an equivalent syn-
chronous generator constitutes an element that balances power and energy, so that it takes
on a role of the equivalent EPS. The turbine-generator unit model was built using the
following modules from the PSCAD library: “Synchronous Machine”, “Exciter”, “Power
System Stabilizer”, and “Steam Governor”. The steam governor controls the influx of
steam to the turbine. A static excitation system maintains a constant voltage value on the
generator terminals. In order to limit the oscillation of the output power, the authors used
a power system stabilizer that impacts on the excitation system, depending on the changes
in the rotational speed of the generator shaft. A block diagram of the turbine-generator
system is shown in Figure 5.
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Connecting a single generator to a network with loads makes it rotate at a speed cor-
responding to the mechanical torque of the turbine, counterbalancing the electromagnetic
torque. The change in the rotational speed of the turbine results in the change in the power
output as a result of the steam governor activation, which is in accordance with its static
control characteristics [71].

A diagram of the turbine power control system is shown in Figure 6 [72]. The input
signals are the reference turbine speed ωref and measured speeds ωgen and the reference
power Pref that determines the operating point on the P = f(ω) characteristics. The speed
error is fed to the block 1/R, which is the slope of the P(f) characteristic.
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Figure 6. The steam turbine power regulation system.

The output signal is the turbine mechanical torque, which depends on the degree of
opening steam supply valves c. Level c = 0 corresponds to closed valves, and c = 1 corre-
sponds to completely open valves. The slope of generation characteristics can be regulated
by changing the coefficient 1/R, where statism R is the setting of the control system. The
basic actuator, i.e., the hydraulic actuator, is presented as a first-order inert element.

4.4. The Load Model

A model of the equivalent load was built using the “FixedLoad” module from the
PSCAD library. The model makes it possible to define the load active and reactive power
in a grid node on the basis of known voltage characteristics:

P = PL × (U/UN)ˆNP. × (1 + KPP × df) (3)

Q = QL × (U/UN)ˆNQ × (1 + KQP × df) (4)

where PL, QL—rated phase load, U,UN—measured and rated voltage, NP, NQ, KPP,
KQF—coefficients.

5. System Model

Simulation tests were performed to study the operation of the WF in the EPS in
different operating conditions. Some simulation cases that illustrate the WF control abilities
are presented below.

5.1. Participation of the WF in Frequency Regulation

The participation of the WF in frequency regulation requires maintaining a reserve of
active power, which means that the generated power is lower than the power that it is able
to generate under given conditions.

In the discussed scenario, it was assumed that the WF operates with the power limited
by the operator to the value of 15 MW, at the set reactive power equal to 5 Mvarind. In the
2nd second of the simulation, the load was increased by 30 MW and 10.5 Mvarind and after
a steady state was reached, the frequency regulator was switched on in the 7th second of
the simulation (Figures 7 and 8).
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Figure 7. Changes in the active power balance in the system, resulting from the operation of the
farm in the frequency regulation mode: PLD—active equivalent load power, PWF—active WF power,
PGEN—active generator power, ∆P—active power losses in the network.



Energies 2021, 14, 2250 10 of 17

Energies 2021, 14, x FOR PEER REVIEW 10 of 17 
 

 

In reaction to the increased load, the generator power rose, which resulted in a de-

crease in frequency to 49.98 Hz. The active and reactive power generated in the WF did 

not change, while voltage decreased to 113.3 kV at the point of load connection. 

When the wind power plant began operating in the frequency regulation mode, the 

active power generation rose to 40 MW as the attack angle of the wind turbine blades 

decreased to 12° (Figure 11). At the same time, there was a decrease in the power of the 

synchronous generator as a balancing source (Figure 7). 

A change in the active load distribution between energy-generating units in the sys-

tem resulted in a change of the reactive power flow in the system (Figure 8) and thus in a 

change of the voltage value in the load node (Figure 9). 

 

Figure 7. Changes in the active power balance in the system, resulting from the operation of the 

farm in the frequency regulation mode: PLD—active equivalent load power, PWF—active WF 

power, PGEN—active generator power, ΔP—active power losses in the network. 

 

Figure 8. Changes in the reactive power balance in the system, resulting from the farm operation 

in the frequency regulation mode: QLD—reactive power of the equivalent load, QWF—reactive WF 

power, QGEN—reactive generator power, QNET—network capacitive reactive power. 

 

Figure 9. Changes in the voltage value in the receiving node, resulting from the farm operation in 

the frequency regulation mode. 

The operation of the frequency control system in the WF resulted in an increase of 

the power generated by the farm and a rise in frequency to the reference value equal to 

50 Hz (Figure 10).  

Figure 8. Changes in the reactive power balance in the system, resulting from the farm operation
in the frequency regulation mode: QLD—reactive power of the equivalent load, QWF—reactive WF
power, QGEN—reactive generator power, QNET—network capacitive reactive power.

In accordance with the active power balance shown in Figure 7, the demand power
was mainly met using the conventional power plant generator at the initial stage of the
simulation. Under those conditions, the value of the supply voltage was 115 kV (Figure 9),
and the frequency was equal to 50 Hz (Figure 10).
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Figure 10. Frequency changes in the receiving node, resulting from the operation of the farm in the
frequency regulation mode.

In reaction to the increased load, the generator power rose, which resulted in a
decrease in frequency to 49.98 Hz. The active and reactive power generated in the WF did
not change, while voltage decreased to 113.3 kV at the point of load connection.

When the wind power plant began operating in the frequency regulation mode, the
active power generation rose to 40 MW as the attack angle of the wind turbine blades
decreased to 12◦ (Figure 11). At the same time, there was a decrease in the power of the
synchronous generator as a balancing source (Figure 7).



Energies 2021, 14, 2250 11 of 17

Energies 2021, 14, x FOR PEER REVIEW 11 of 17 
 

 

 

Figure 10. Frequency changes in the receiving node, resulting from the operation of the farm in the 

frequency regulation mode. 

 

Figure 11. Changes in the attack angle of the blades after including the farm in frequency regulation. 

This confirms the effectiveness of operation of the applied WF frequency and the ac-

tive power regulation system.  

5.2. WF Frequency Response Using Virtual Inertia 

In the next part of the research, the frequency response of the WF was analyzed with 

increasing and decreasing the load. The inertia coefficients for the WF were 0, 0.5, 1, and 

2, respectively. During the tests, the farm worked with the secondary frequency control 

mode turned off (the OPF control in Figure 3). The activation of the virtual inertia algo-

rithm took place after setting the inertia constant greater than zero. The frequency re-

sponse analysis was performed while increasing the system load from 180 MW to 210 

MW. Figure 12 shows the course of frequency changes depending on the set inertia coef-

ficients. Before the load change, the frequency in the system was close to 50 Hz. After 

increasing the load, its value decreased to 49.977 Hz. According to Equation (2), the max-

imum reaction of the virtual inertia algorithm occurs in the first moment after the disturb-

ance, when the derivative of frequency changes in time achieves the highest value. In the 

analyzed case, the maximum frequency deviation with the load increase by 30 MW and 

inertia switched off was approximately 13 mHz. The maximum overshoot for all inertia 

coefficients occurred about 40 msec after the disturbance. 

 

Figure 12. Frequency changes during load increase for selected inertia coefficients. 

Figure 11. Changes in the attack angle of the blades after including the farm in frequency regulation.

A change in the active load distribution between energy-generating units in the system
resulted in a change of the reactive power flow in the system (Figure 8) and thus in a change
of the voltage value in the load node (Figure 9).

The operation of the frequency control system in the WF resulted in an increase of the
power generated by the farm and a rise in frequency to the reference value equal to 50 Hz
(Figure 10).

This confirms the effectiveness of operation of the applied WF frequency and the
active power regulation system.

5.2. WF Frequency Response Using Virtual Inertia

In the next part of the research, the frequency response of the WF was analyzed with
increasing and decreasing the load. The inertia coefficients for the WF were 0, 0.5, 1, and 2,
respectively. During the tests, the farm worked with the secondary frequency control mode
turned off (the OPF control in Figure 3). The activation of the virtual inertia algorithm took
place after setting the inertia constant greater than zero. The frequency response analysis
was performed while increasing the system load from 180 MW to 210 MW. Figure 12
shows the course of frequency changes depending on the set inertia coefficients. Before
the load change, the frequency in the system was close to 50 Hz. After increasing the load,
its value decreased to 49.977 Hz. According to Equation (2), the maximum reaction of
the virtual inertia algorithm occurs in the first moment after the disturbance, when the
derivative of frequency changes in time achieves the highest value. In the analyzed case, the
maximum frequency deviation with the load increase by 30 MW and inertia switched off
was approximately 13 mHz. The maximum overshoot for all inertia coefficients occurred
about 40 msec after the disturbance.
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Along with the increase of the inertia coefficient, the overshoot amplitudes and their
number are reduced. In the case of constant inertia equal to H = 2 s, the first maximum
overshoot was smaller by half and amounted to ca. 6 mHz, while the second overshoot
(upwards) practically did not occur.

The second of the analyzed cases, i.e., the reduction of the system load from 210 to
180 MW, resulted in an increase in frequency from 49.977 to 50.001 Hz. The course of
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frequency changes in the system is aperiodic, which results from the system inertia. In
the absence of virtual inertia in the frequency course, there are three overshoots with the
maximum value of the first of them at the level of 13 mHz (Figure 13). When the virtual
inertia was increased to the value of H = 2 s, there was only one overshoot of the maximum
value of 3 mHz.
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5.3. Participation of the WF in Voltage Regulation

The reactive power generation capacity of WFs makes it possible to use them in the
process of voltage regulation in a network. In order to illustrate the regulation effect, the
results of simulation are shown below, where the starting point corresponded to the voltage
and frequency values obtained at the previous stage of the calculations (frequency—50 Hz,
voltage—115 kV). In the 2nd second, the network load was increased by 30 MW and
10.5 Mvarind, and then, in the 7th second, a voltage regulation system was activated. Power
balances in the system are shown in Figures 14 and 15.
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Figure 15. Reactive power changes in the system, resulting from the farm operation in the voltage
regulation mode (the symbols used correspond to those in Figure 9).

After a short-lasting transient state, the system was balanced again. The values of the
active and reactive power generated by the farm did not change owing to the operator



Energies 2021, 14, 2250 13 of 17

limitations, while the power balance in the system was ensured by appropriately increasing
the generator output to 149 MW of active power and 16 Mvarcap of reactive power.

As a result of changes in the reactive power flow, there was a decrease in voltage at
the load busses (Figure 16), and thus, the capacitive reactive power of the network also
decreased (Figure 15). The increasing generator active power caused frequency reduction
to the level of 49.98 Hz (Figure 17).
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Switching on the voltage regulator in the WF in the 7th second of the simulation
resulted in a change of the value and character of the reactive power generated by the WF
(Figure 15). As a result, the character and value of the reactive power generated in the
conventional generator also changed.

As a result of the regulator operation, the voltage at the load connection node rose
from 113.3 kV to the set value equal to 115 kV (Figure 16). The voltage regulation process
had a negligible effect on frequency, which stabilized again after a transient state at a
slightly lower level of 49.97 Hz (Figure 17).

6. Conclusions

Due to the complexity of the EPS and the specific character of RESs, the investigation of
WFs capabilities to participate in system regulation services is an interesting and important
issue, taking into account the continuous increase in the number and power of WFs in the
system. This paper proposes a simulation tool that makes it possible to assess the operation
of control systems of cooperating sources and to analyze the regulatory process under
different operating conditions.

Participation in frequency regulation requires the creation of a regulatory reserve
of active power and operation of the WF with active power below the value that could
be obtained in given wind conditions. The implementation of an additional control loop
reflecting the inertia of conventional generators significantly improves the WFs response
during short-term frequency control. The ability to generate reactive power enables WFs to
be used in voltage regulation.
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The WF model presented in the paper makes it possible to study the dynamic charac-
teristics of power systems including large wind farms. Due to the concept of one so-called
reference power generation unit modeled in detail and other units replaced with simple
current sources, the size and complexity of the model were reduced and the simulation
time was shortened.

The simulation results presented in the paper illustrate the regulatory properties of
the WF and confirm the correctness of the developed model. Taking into account their
control capabilities, it can be stated that WFs could be effectively used for providing system
services in terms of frequency and voltage regulation, thus contributing to an increase in
the safety of operation of electrical power systems.

It can be concluded that the selection of the appropriate model, solution technique,
and proper algorithms for a particular application is important for efficient modeling
and can contribute significantly to developing a reliable and efficient wind-energy based
power system.
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3. Klempke, H.; McCulloch, C.B.; Piekutowski, M.; Wong, A. Impact of high wind generation penetration on frequency control. In

Proceedings of the 20th Australasian Universities Power Engineering Conference, Christchurch, New Zealand, 5–8 December 2010.
4. Ulbig, A.; Borsche, T.; Andersson, G. Impact of low rotational inertia on power system stability and operation. In Proceedings of

the IFAC, Cape Town, South Africa, 24–29 August 2014; pp. 7290–7297. [CrossRef]
5. Muljadi, E.; Singh, M. Understanding inertial and frequency response of wind power plants. In Proceedings of the IEEE

Conference: Power Electronics and Machines in Wind Applications (PEMWA), Denver, CO, USA, 16–18 July 2012. [CrossRef]
6. Miller, N.W.; Clark, K.; Shao, M. Frequency responsive wind plant controls: Impacts on grid performance. In Proceedings of the

IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011. [CrossRef]
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