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Abstract: Due to rapid population growth, technology, and economic development, electricity
demand is rising, causing a gap between energy production and demand. With the emergence
of the smart grid, residents can schedule their energy usage in response to the Demand Response
(DR) program offered by a utility company to cope with the gap between demand and supply.
This work first proposes a novel optimization-based energy management framework that adapts
consumer power usage patterns using real-time pricing signals and generation from utility and
photovoltaic-battery systems to minimize electricity cost, to reduce carbon emission, and to mitigate
peak power consumption subjected to alleviating rebound peak generation. Secondly, a Hybrid
Genetic Ant Colony Optimization (HGACO) algorithm is proposed to solve the complete scheduling
model for three scenarios: without photovoltaic-battery systems, with photovoltaic systems, and
with photovoltaic-battery systems. Thirdly, rebound peak generation is restricted by using Multiple
Knapsack Problem (MKP) in the proposed algorithm. The presented model reduces the cost of
using electricity, alleviates the peak load and peak-valley, mitigates carbon emission, and avoids
rebound peaks without posing high discomfort to the consumers. To evaluate the applicability of
the proposed framework comparatively with existing frameworks, simulations are conducted. The
results show that the proposed HGACO algorithm reduced electricity cost, carbon emission, and
peak load by 49.51%, 48.01%, and 25.72% in scenario I; by 55.85%, 54.22%, and 21.69% in scenario
II, and by 59.06%, 57.42%, and 17.40% in scenario III, respectively, compared to without scheduling.
Thus, the proposed HGACO algorithm-based energy management framework outperforms existing
frameworks based on Ant Colony Optimization (ACO) algorithm, Particle Swarm Optimization (PSO)
algorithm, Genetic Algorithm (GA), Hybrid Genetic Particle swarm Optimization (HGPO) algorithm.

Keywords: energy management; battery energy storage systems; photovoltaic; demand response;
scheduling; smart grid

1. Introduction

Electrical energy is one of the most indispensable needs of human life. Developing
countries cannot optimally meet this basic need for residents due to limited financial
budgets and scarce generating stations. The electric utility companies involuntary move
towards load shedding to partially satisfy their consumers. However, load shedding is not
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a solution because it causes frustration to consumers. Considering the above limitations,
one viable solution is Demand Side Management (DSM) via consumer load scheduling.
Optimal DSM is only possible by actively engaging consumers in the DR programs via the
two-way communication infrastructure of a Smart Grid (SG). Moreover, current power-
generating plants are operated on conventional sources, which are limited, scarce, and
expensive and cause pollutant emissions that lead to climate change. Hence, the Renewable
Energy Sources (RESs) are an alternative solution that is abundant, cheap, environment
friendly, and continually replenished [1].

In the literature, three approaches are adopted to perform optimal DSM in SG via DR
programs: mathematical methods, game theory-based methods, and heuristic algorithms.
The mathematical techniques are classified into two classes, namely, deterministic and
stochastic methods. The difference between stochastic and deterministic methods is the
initialization of the initial solution, deterministic methods generate the same initial solution
when addressing the same problem, and stochastic methods randomly initialize solutions
that permit various solutions for the given problem in each run [2]. A novel modular
modelling Energy Management System (EMS) is developed for urban multi-energy sys-
tems [3]. To evaluate the proposed EMS’s saving potential, an extensive case study is
conducted compared to the traditional control strategies. It can be evident from the results
that an annual cost-saving potential between 3 and 6 percent can be attained when the
proposed EMS model is used in combination with additional components such as battery
and thermal energy storage. However, there are still no open source solvers available to
handle large-scale Mixed Integer Linear Programming (MILP). Furthermore, in large-scale
EMS applications (e.g., city districts) such as IBM ILOG CPLEX or GUROBI, the monetary
benefit is usually high enough to justify commercial solvers’ costs. A Mixed Integer Lin-
ear Programming (MILP)-based scheme is introduced for energy-efficient management
in SG [4]. The developed scheme optimally plans smart devices and the charging and
discharging of electric vehicles to reduce energy costs. In the developed model, users
can produce their energy from microgrids containing wind turbines, solar panels, and
Energy Storage System (ESS). The results confirm that the proposed MILP-based energy
management is more effective and productive than legacy models. However, how to
handle the intermittent nature of renewable energy sources is not discussed. A combina-
tion of Sequential Quadratic Programming algorithm (SQP) and Binary Particle Swarm
Optimization (BPSO)-based optimization model is proposed in [5]. The proposed com-
bination model is applied for energy management of the residential sector. The results
validated that the proposed model performed energy management efficiently. However,
for reliability in DR programming, the irregular and indeterminate renewable energy
characteristics will raise substantial challenges. Thus, to improve the reliability of the
renewable energy uncertainty, an appropriate uncertainty processing technology such as
chance-constrained technique and Model Predictive Control (MPC) can be incorporated
into the MINLP model presented in the proposed work. The authors in [6] proposed a
smart home energy management system model including power generation, solar panels,
small wind turbine, battery, and appliances. The proposed model efficiently schedules
household thermal and electrical appliances using time-varying pricing to minimize finan-
cial expenses and to ensure peak demand clipping. A DR program is employed at different
levels [7]: single home, combined home, network level, and market level for consumers
to actively participate in DSM. Electric Vehicles (EVs), Energy Storage Systems (ESSs),
and RESs are actively engaged in the DR program in each scenario. The mathematical
formulation of each level is implemented with uncertainty consideration. However, the
technology barriers such as sensing, controlling, monitoring, and communication infras-
tructure and markets such as policies, regulation, and structure are not considered. The
authors considered the DSM of a home including smart appliances, EVs, ESS, and PV
microgeneration in [8]. The resources and loads are coordinated using indexed pricing
models for DSM to maximize self-generation and to minimize cost by reducing utility
purchase. However, an investigation on minimum software and hardware requirements for
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the unit hosting the Smart Home Controller (SHC) module (an issue that is strictly related
to the task of developing efficient and tailored solution algorithms) and a comprehensive
and detailed cost–benefit analysis of the proposed residential EMS were performed using
approaches such as the ones presented to generate highly realistic sequences of events.
EMS’s modular design for a grid-connected battery-based microgrid was presented in [9].
The developed model was for power generation-side using MILP to handle charging and
discharging of batteries, to encourage self-consumption, and to reduce operating costs.
The proposed model has been tested and experimentally validated at Alborg University at
the Microgrid Research Laboratory. However, this optimization problem can be enhanced
if power losses and DR programs are considered. In [10], a complete scheduling scheme
including distributed generation and residential load was modeled using RESs. However,
the carbon emission was not considered, which is interdependent in distributed generation.
To resolve the problems accompanied by mathematical methods, game-theoretic-based
approaches are adopted. For example, in [11], an adaptive game-theoretic-based model is
proposed to solve the DSM problem by reducing the Peak to Average Ratio (PAR) and saves
the nearby cost location. A Nash game theory-based optimization model is developed for
scheduling building energy consumption under utility and RESs. The proposed model
minimizes energy cost, maintains consumers’ comfort levels, and reduces peak demands
within the imposed constraints. The model is verified with the case studies of the nearby
location in Sydney. It also makes sure that the user does not make a profit if the user
diverges from the consumption pattern assigned to the user. The numerous algorithms’
performance parameters are assessed, and their effects have been discussed on the PAR
and energy costs. However, the mechanism of Common Storage Facility (CSF) discharge
on a bidding process has not been considered. In [12], a game theory-based, dynamic
pricing strategy for the commercial and residential sector electricity market of Singapore
was proposed. The model was evaluated with five loads and datasets prices to cover all
events, i.e., weekdays, weekends, public holidays, and the highest/lowest demand in the
year. Three strategies of the prices were compared and evaluated, i.e., the half-hourly
Real-Time Pricing (RTP), Time-of-Use Price (TOUP), and Day-Night (DN) pricing. The
outcomes show that the RTP increases the peak load reduction for the residential and
commercial sectors by 10% and 5% percent. Furthermore, an increase in the profit by 15.5
percent and 18.7 percent has been observed, and a reduction in the total load is minimized
for a realistic scenario. Moreover, tests on the satisfaction functions that are different from
one another were performed, which includes many user types who knows the impact
of RESs on DSM by taking the dynamic pricing technique and know that the impact of
dynamic pricing on short-term Priced Elasticity Demands (PEDs) for the long term is
not catered. The Stackelberg game approach and the DR model for trading electricity
between utility companies were developed in [13]. The purpose was to balance the supply
and demand by smoothing the load demand curve. The 1-leader was expressed by the
interaction between the leader utility company and follower N-follower. The Stackelberg
game was employed for solving the optimization problem. The RTP as a pricing function
was adopted with the primary aim to encourage the user to join the game to determine
the optimal power generation and power demands. However, the distribution network
evaluation with the nodal pricing approach was not discussed. A hierarchical system
model was introduced in [14], where multiple providers and prosumers interacted to set
the best price and demands for the electricity market. The purpose of the model for overall
energy management was to increase a prosumer’s capacity to produce more energy and to
reduce the dependency on the utility electricity service providers. Thus, in the proposed
work, the price and demands have been improved considering the limitations and various
providers and prosumers by creating a Stackelberg game to model two types of interactions:
(i) provider–consumer and (ii) prosumer–prosumer. Hence, it is verified that there is a
unique equilibrium solution, and it is evident from the results that the proposed method
improves energy consumption and cost. A voltage and frequency relaying scheme-based
DSM model is proposed in [15]. The purpose is to minimize the load on 11 kV distribution
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feeders in peak hours without blanket load shedding. This model’s development is a
crucial step towards cleaner production that minimizes load during peak hours and Green
House Gas (GHG) emission. However, classification modeling to learn anomalous events
and vitals are not considered. Game theory methods have their inherent limitations, which
deprived them of optimal solutions. Thus, heuristic algorithms are adopted to cater to
DSM problems. For instance, DSM framework is presented in [16], PSO algorithm is used
to minimize the PAR and cost of the electricity, which results in achievement of the optimal
sharing schedule and sharing the PEV battery with those nearby. However, the resultant
system is complex. In [17], an optimal energy scheduling strategy for Home Energy Man-
agement (HEM) was developed. The purpose is to acquire the desired tradeoff between
cost and benefit. However, the user comfort in terms of waiting time is increased while
reducing cost and increasing benefits. The authors presented an efficient DSM system that
minimizes the cost of electricity and PAR in [18]. However, users face frustration in terms
of waiting time while reducing their costs. In [19], the authors presented a generic DSM
model for HEM to minimize electricity cost, appliance waiting time, and PAR. However,
the power grid’s reliability and sustainability, and balance between supply and demand
were not catered to, which are indispensable in DSM. The residential loads were controlled
and monitored for a smart home in [20], in which the author has proposed the Grey Wolf
Accretive Satisfaction Algorithm (GWASA) and have compared the achieved results with
other algorithms that resultantly reduced the cost of electricity. However, the PAR was not
addressed. In [21], an efficient heuristic algorithm-based EMC utilizing RESs, and TOUP
and Incline Block Rate (IBR) tariffs was developed for DSM. The DSM problem formulated
was mapped to reduce the electricity cost, user discomfort, and PAR. The simulation results
confirmed that the required objectives were obtained and that the sustainability of the SG
increased. However, the authors do not address the following issues: (i) appliances waiting
time, (ii) frequency of interruption, and (iii) demand curve smoothing. An innovative
home appliance scheduling framework was proposed in [22]. The Grey Wolf and Crow
Search Optimization (GWCSO) algorithm was used and reduced the PAR and electricity
cost. However RESs were not addressed. To reduce the PAR, appliance waiting time,
and electricity cost for residential consumers, the generic DSM model was studied in [23].
A GA-based Energy Management Controller (EMC) was developed for DSM under DR
program. The GA-based EMC scheduled the residential load, keeping in view the operation
limitations of users. To avoid rebound peaks, a combined RTP and IBR tariff was used.
The developed model is useful for both single and multiple users. However, the balance
between supply and demand, user comfort, reliability, and sustainability of the grid was
not catered. In [24], the authors proposed an incentive-based optimal energy consumption
scheduling algorithm in HEM. The energy demand during peak hours were minimized
using the TOUP and DR program. To enhance the cost-saving, a heuristic BPSO technique
was used for appliance scheduling based on HEM and RES. However, Consumers’ comfort
were ignored, which is essential in energy consumption scheduling. An EMC was designed
based on heuristic algorithms such as GA, Bacterial Foraging Optimization Algorithm
(BFOA), Wind Driven Optimization (WDO), PSO, and Genetic Binary Particle Swarm
Optimization (GBPSO) algorithms in [25] to reduce electricity price and PAR. However,
the system model was more complicated. In [26], an optimal control strategy was pro-
posed using GA to obtain the minimum cost of electricity based on the user’s response,
dynamic pricing, and equipment operating power. The proposed technique determines
the optimal operating parameters of each piece of equipment. However, a limited number
of appliances were taken into account. The residential consumer power scheduling for
DR was discussed in [27]. For scheduling, two types of electric appliances, power-flexible
and time-flexible, were considered. However, the PAR was ignored, which is strongly
related to electricity cost. In SG, an advanced RTP algorithm for DSM was presented in [28]
to reduce electricity cost. The main aim was to communicate among smart meters and
utility by exchanging control messages, including real-time cost information and consumer
energy consumption. However, the DSM was performed on increased system complexity.
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A device and ESS scheduling schemes were presented in [29]. The consumers scheduled
their devices by observing the low peak hours and by extending the electricity cost using
smart electricity storage. The latest and updated comprehensive review of the literature
in terms of proposed algorithms, objectives, and limitations are conducted and listed in
Table 1.

Table 1. A comprehensive review of the latest literature in terms of proposed algorithms, objectives, and limitations.

Reference(s) Algorithms(s) Objective(s) Limitation(s)

A novel modular modelling EMS is
developed in [3]

MILP An annual cost savings potential be-
tween 3 and 6 percent can be attained
when the proposed EMS model is
used in combination with additional
components such as battery and ther-
mal energy storage

No open source solvers available to han-
dle large-scale MILP

Energy-efficient management in
SG [4]

MILP Proposed MILP-based energy man-
agement is more effective and pro-
ductive than legacy models

How to handle the intermittent na-
ture of renewable energy sources is
not discussed

The proposed combination model is
applied for energy management of
the residential sector [5]

SQP and BPSO The proposed model performed en-
ergy management efficiently

The irregular and indeterminate renew-
able energy characteristics will raise sub-
stantial challenges

Smart home energy management
system model [6]

MILP Efficiently schedules the household
thermal and electrical appliance us-
ing time-varying pricing to minimize
financial expenses and ensure peak
demand clipping

The system is more complicated

A DR program is employed in differ-
ent levels [7]

MILP Each level is implemented with un-
certainty consideration

The technology barriers such as sensing,
controlling, monitoring, and communica-
tion infrastructure and markets such as
policies, regulation, and structure are not
considered.

DSM of a home including smart ap-
pliances, EVs, ESS, and PV in [8]

Indexed pricing mod-
els

Maximize self-generation and min-
imize cost by reducing utility pur-
chase

Investigation on minimum software and
hardware requirements for the unit host-
ing the SHC module is not addressed

EMS modular design for a grid-
connected battery-based microgrid
in [9]

MILP Promote self-consumption and re-
duce operating cost

Optimization problem can be enhanced
if power losses and DR programs are con-
sidered

Optimal scheduling scheme for
smart residential community [10]

MILP To minimize electricity cost and peak
load

carbon emission is not considered

An adaptive game-theoretic-based
model is proposed to solve the DSM
problem in [11]

Game-theoretic model Minimizes energy cost, maintains
consumers’ comfort level, and re-
duces peak demands within the im-
posed constraints

The mechanism of CSF discharge on a
bidding process has not been considered

Dynamic pricing strategy for the
commercial and residential sector is
proposed in [12]

Game-theoretic model Peak load is reduced for the residen-
tial and commercial sectors

Impact of dynamic pricing on short-term
PEDs for the long term is not catered

DR model for trading electricity be-
tween utility companies are devel-
oped in [13]

Stackelberg game Balance the supply and demand by
smoothing the load demand curve

Distribution network evaluation with the
nodal pricing approach is not discussed

A hierarchical system model is intro-
duced in [14]

Stackelberg game Increased a prosumer’s capacity to
produce more energy and reduce the
dependency on the utility electricity
service providers

The system is more complex

A voltage and frequency relaying
scheme based DSM model is pro-
posed in [15]

Game-theoretic model Minimizes load during peak hours
and GHG emission

Classification modeling to learn anoma-
lous event and vitals are not considered.

DSM framework is presented[16] PSO To reduce PAR and electricity cost The system is more complex
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Table 1. Cont.

Reference(s) Algorithms(s) Objective(s) Limitation(s)

For HEM, an optimal energy schedul-
ing strategy is developed in [17]

Polyblock approxima-
tion algorithm

To obtain the desired tradeoff be-
tween cost and benefit

DTR is increased

An efficient DSM system is pre-
sented in [18]

Scheduling algorithm Reduce the cost of electricity and
PAR

Increased waiting time

A generic DSM model for HEM is
presented [19]

GA To reduce PAR, appliances waiting
time and electricity cost

Power grid reliability and sustainability
are not cosidered

Residential load for smart home is
presented [20]

GWASA To reduce electricity cost PAR is not addressed

An efficient heuristic algorithm is de-
veloped in [21]

Heuristic algorithms To reduce user discomfort, PAR, and
electricity cost

Demand curve smoothing is not consid-
ered

Home appliance scheduling frame-
work is proposed [22]

GWCSO To reduce electricity cost and PAR RESs are not considered

A DSM model is studied in [23] GA To reduce PAR, electricity cost, ap-
pliances waiting time and avoid re-
bound peaks

Sustainability of power grid is consid-
ered

An incentive-based optimal energy
scheduling for HEM [24]

BPSO To Minimize electricity cost and shift
the load from high peak to low peak

RESs integration is not addressed

EMC is designed based on heuristic
algorithms [25]

Four heuristic algo-
rithms

To reduce electricity cost and PAR The system is more complex

Ref. [26] GA and loop search op-
timization algorithm

To minimize electricity cost Limited number of appliances are consid-
ered

DR program is presented in [27] Power scheduling
strategy

To reduce electricity cost PAR is not considered

DSM is presented in [28] Novel real-time pric-
ing algorithm

To minimize the electricity cost The system is more complex

An intelligent energy management
framework is presented in [29]

Aggregator To reduce electricity cost by storing
power during off-peak hours

The system is more complex

The above-discussed methods are valuable assets of literature, and all are capable
of solving DSM problems. However, the mathematical techniques suffer from several
drawbacks such as the incapability to cater to stochastic and nonlinear effects, the necessity
of considering all the periods at once, shifting the load to unfeasible hours, and the risk
of high-dimensionality of the problem. Furthermore, the mathematical models are much
more complex and exhaust too much time, and returned solutions are not robust in a
real-world context. The game theory-based methods suffer due to the techniques of
solving games involving mixed strategies, particularly in a large pay-off matrix, being
very complicated, and the competitive problems cannot be analyzed with the help of game
theory. Furthermore, the assumption that players know their pay-offs and pay-offs of
others is not practical. Similarly, heuristic algorithms suffer from the vast majority of
cases being unable to deliver an optimal solution to the scheduling problem. For example,
heuristic algorithms suffer from premature convergence that leads to losing population
diversity and does not have standard parameters adjustment and termination criteria.
Moreover, the above-discussed literature did not cater to electricity cost, carbon emission,
user comfort, and PAR simultaneously. In this work, a novel HGACO algorithm-based
energy management framework is proposed to simultaneously solve the DSM problems
and to cater to all objectives. The novelty and major contribution of this work is as follows.

• An optimal energy management framework is developed utilizing the SG’s two-way
communication infrastructure under utility and RESs for solving the DSM problems.

• The developed energy management framework has an EMC based on our proposed
HGACO algorithm that schedules smart home loads.

• The DR program’s RTP scheme is mathematically modeled and implemented to
actively engage consumers in DSM to facilitate both consumers and utility.
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• A hybrid generation system comprises PV, ESS, and electric utility companies to
resolve the energy management problems.

• In addition to electricity cost and PAR, carbon emission and user discomfort in terms
of waiting time are mathematically modeled and catered simultaneously.

• To handle the power consumption of smart home appliances in a hybrid generation
system, an objective function and constraints are developed that reduce the electricity
cost, PAR, and carbon emissions and the maximize user comfort.

• To demonstrate the efficiency of the proposed HGACO-based optimal energy man-
agement framework through simulations by comparing it with existing energy man-
agement frameworks based on GA, BPSO, HGPSO, and Ant Colony Optimization
(ACO).

The organization of this work is as follows: The system model is described in
Section 2, and the simulation results, performance, evaluation, and discussions are il-
lustrated in Section 3. At the end, this work is concluded in Section 4.

2. System Model

In this work, a system model is proposed for optimal energy management in SG
to simultaneously cater electricity cost, carbon emission, user discomfort, and PAR. An
abstract view diagram of the proposed model is shown in Figure 1. The proposed model
comprises Advanced Metering Infrastructure (AMI), smart meters, ESS, PV, smart home
appliances, power grid, and In-Home Display (IHD). The DSM framework utilizing two-
way communication infrastructure for optimal energy management is shown in Figure 1.

Communication Flow

Power Flow

Loads

EMC 

SUAsSIAs

Smart MeterPower Grid

AC Bus

AC Bus, having both power flow and 

communication flow

PV Modules

ESS

Invertor

Figure 1. Proposed system model for optimal energy management in smart grid.

2.1. Advanced Metering Infrastructure/Two-Way Communication Infrastructure

AMI is the central processing unit of the proposed model, including Communication
Module (CM) and Meter Data Management System (MDMS), which is shown in Figure 2.
The AMI is used for automated bidirectional communication between the power supplier
and smart meter. Moreover, the AMI is responsible for collecting and transmitting con-
sumption data transmitted from distributed smart meters to power supplier company and
for transmitting the DR signal in real-time to smart meters from the utility company. The
energy consumption data is received by a concentrator and fed to the MDMS. The MDMS
analyzes the received energy consumption data and extracts useful information from the
data. The extracted favorable information is delivered to the power supply company. The
detailed and useful information provided by AMI in real-time empowers the power sup-
plier company to detect power outages, to measure electricity bill, to schedule maintenance,
and to manage assets. The power supplier company provides price-based DR programs
to AMI to encourage consumer participation in DSM via scheduling their energy usage
pattern to reduce electricity cost, PAR, and carbon emission. The power supply company
can also turn on and off household appliances to optimize energy consumption. Between
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the AMI and the EMC, a smart meter is mounted and used to read and to process the
consumption data transmitted to the power grid. For further utilization, the DR signal is
sent to the EMC. The EMC in the DSM framework receives the DR signal, power from RESs
and utility company, and consumer’s preferences to schedule consumer energy usage as
shown in Figure 1. The EMC transmits the generated energy usage schedule to consumers
via a two-way communication infrastructure.
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Figure 2. Advanced metering infrastructure.

2.2. Price-Based Demand Response Programs

Various types of price-based DR programs such as RTP, Critical Peak Pricing (CPP),
TOUP, and Day-Ahead Pricing (DAP) exist in the literature [30]. Among these pricing
signals, RTP provides better flexibility and encourages consumers to participate actively in
DSM. Thus, we used the RTP signal in our work, where the day time horizon is divided
into three price hours: on-peak price hours, mid-peak price hours, and off-peak price. The
RTP signal is mathematically modeled as in Equation (1).

φ(t) =


φ1, i f t7 ≤ t ≤ t10
φ2, i f t10 < t < t15 ,

t4 ≤ t < t7
φ3, i f t1 ≤ t < t4 ,

t15 ≤ t ≤ t4

(1)

where φ1 is on-peak hours, φ2 is mid-peak hours, φ3 is off-peak hours, and t1 to t24 are
24 day time slots. The EMC receives this RTP signal and power signals of RESs and utility
to create consumer’s energy usage schedule.

2.3. Renewable Energy Sources

In nature, RESs include PV, wind, fuel cell, tidal, biogas, etc. However, among RESs,
PV is abundant, free (small operation and maintenance cost), and at ease for all consumers.
Therefore, in this work, PV is considered as a renewable source. The houses and power
grids are equipped with PV panels. The purpose is to effectively utilize energy from the PV
system to minimize electricity cost, PAR, and carbon emission. The following mathematical
equation determines the output power form PV system (2) [31].

Epv(t) = ∂
pv× Apv×Irr(t)× (1− 0.005(Temp(t)− 25)) (2)

where Epv is the output energy produced in an hour, ∂pv is the energy efficiency of PV
panel, and Apv is the area of PV panel. The outdoor temperature and solar irradiation
are represented by Temp(t) and Irr(t), respectively, for the time interval t, and 0.005 is
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the temperature correction factor. The solar irradiation for an hour are modeled using the
Weibull probability density function, which is illustrated in Equation (3).

F(Irr(t)) = ω

(
ψ1
λ1

)(
Irr(t)

λ1

)(ψ1−1)e−(
Irr
λ1 )

ψ1

+ (1−ω)

(
ψ2
λ2

)(
Irr(t)

λ2

)(ψ2−1)e−(
Irr
λ2 )

ψ2

(3)

where 0 < Irr(t) < ∞, ω is a weighted factor, ψ1 and ψ2 are the shape factors, and λ1
and λ2 are the scale factors. The EMC utilized the energy generated from a PV system for
scheduling during on-peak hours and for storing it in ESS during off-peak hours or when
the energy is surplus.

2.4. Energy Storage System

ESS is touted as a “Holy Grail” in alleviating greenhouse gas emission due to high
penetration in electric vehicles, in plug-in electric vehicles, as backup generators during
grid outages, and as storage with RESs. The purpose of ESS is to convert the power grid
into a carbon-free system. The ESS when used with RESs such as PV panels, wind turbine,
etc. takes the generated clean energy during daytime (sky is clear, shinny, and sunny) and
stores it. The stored energy is sent back to the power grid on cloudy days, at night, or
whenever required. Moreover, the ESS smoothes out the fluctuating nature of RESs up to
some extent. Thus, the ESS significantly lowers greenhouse gas emissions and potentially
reduces the electricity bills of prosumers exchanging energy with the power grid when
demand is at peak and energy prices are highest [32]. In this work, the ESS stores energy
during off-peak hours, when power is in surplus, or when the battery is empty (storage
level is lower than the lower charging cutoff). The ESS is mainly to efficiently utilize the
output of the PV system. During charging and discharging of ESS, some energy is lost;
thus, the turn around in efficiency of ESS is mathematically modeled in Equation (4).

PS(t) = PS(t− 1) + η · µESS · EECh(t)− η · EEDch(t)
µESS ∀t (4)

where PS is stored energy (kWh) at time t, µESS is ESS efficiency, η is time duration in our
hours, EECh is power supplied (kW) from PV to ESS, and EEDch is the power supplied
(kW) from ESS to the load. Avoiding deep discharging/overcharging the following limits
are set.

EECh(t) ≤ EECh
UB (5)

EE(t)Dch ≤ EEDch
LB (6)

PS(t) ≤ PSCh
UB (7)

The EMC receives the RTP signal, the power signal of RESs and utility, and consumer’s
priorities of appliances operation to create an energy usage schedule.

2.5. Users’ Smart Appliances

In the DSM framework, users’ smart appliances, instead of interacting with each other,
directly interact with EMC. The EMC would schedule the smart appliances’ operation using
the RTP signal, the power signal of RESs and utility, and consumers’ priorities. In this work,
home appliances are categorized into three types: Shiftable Interruptible Appliances (SIAs),
Shiftable Uninterruptible Appliances (SUAs), and Regular Appliances (RAs). The RAs are
not considered for the proposed model because RAs operated for 24 h consistently. Thus,
the delayed or advanced operation for such appliances is not possible. That is why RAs do
not participate in scheduling. Only the SIAs and SUAs interact with the proposed model’s
EMC and participate in scheduling for DSM to reduce electricity cost, PAR, and carbon
emission. SIAs include humidifiers, water heaters, and dishwashers, and SUAs include
clothes dryers, EVs, and washing machines. The parameter details of these appliances are
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listed in Table 2. This classification and parameters are adopted from [33]. The total energy
consumption per day for SIAs can be determined using Equation (8) adopted from [34].

Eshi = ∑ δshi ∈ Dshi

(
24

∑
t=1

Ωshi × δshi(t)

)
(8)

where Eshi is total energy consumption, As combination of SIAs, Dshi ∈ As represents all
the appliances from SIAs, Ωshi represents the power consumption of each appliance, δshi
shows the on/off status of appliances, and β represents the unit price.

The total cost per day of all the SIAs in time interval T can be calculated using
Equation (9).

αaξshi = ∑ δshi ∈ Dshi

(
24

∑
t=1

Ωshi × β(t)× δshi(t)

)
(9)

The total energy consumption per day for SUAs can be calculated using Equation (10).

Eshu = ∑ δshu ∈ Dshu

(
24

∑
t=1

Ωshu × δshu(t)

)
(10)

where Eshu is total energy consumption, As is the combination of SUAs, Dshu ∈ As repre-
sents all the appliances from SUAs, Ωshu defines the power consumption of each appliance,
δshu shows the on/off status of the appliances, and β represents the unit price. Total cost
per day of all the SUAs for time interval T is obtained using Equation (11).

αaξshu = ∑ δshu ∈ Dshu

(
24

∑
t=1

Ωshu × β(t)× δshu(t)

)
(11)

In this work, the EMC is programmed based on our proposed HGACO algorithm to
generate an optimal power usage schedule using the received the RTP signal, the power
signal of RESs and utility, consumer’s priority, and appliance power ratings. The developed
power usage schedule is shared with smart appliances using a two-way communication
infrastructure.

Table 2. Description of appliances.

Category Appliances Power Rating (kW) Daily Use (Hours)

SIAs Humidifier 0.07 11
Water heater 0.15 9
Dish washer 0.0372 12

SUAs Washing Machine 0.2377 3
Cloth Dryer 0.1 8

Electric Vehicle 0.206 7

2.6. Proposed HGACO Algorithm

A novel algorithm is proposed, namely HGACO algorithm. The EMC controller
is programmed using our proposed HGACO algorithm to perform DSM via optimal
power usage scheduling, resulting in reduced electricity cost, carbon emission, PAR, and
user discomfort. The HGACO algorithm control parameters are listed in Table 3. The
detailed description of HGACO algorithm is as follows. HGACO algorithm is developed
by hybridization of the ACO algorithm and GA. The motivation for this hybridization is
that the ACO algorithm is capable of electricity cost and carbon emission reduction, while
GA is effective in PAR reduction. Thus, we developed HGACO algorithm by applying
a crossover and mutation operation of GA on the optimal global results obtained from
the ACO algorithm to simultaneously reduce electricity cost, alleviate PAR, and minimize
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carbon emission. ACO is based on the following three steps: (i) problem definition, (ii)
parameters initialization, and (iii) position update. In problem definition, the proposed
model minimizes electricity cost, carbon emission, and PAR subjected to total energy
consumption being less than the grid capacity. Different parameters such as swarm size
represent the number of ants in our proposed model that are appliances, then initialize
evaporation rate ∂ = 0.5, and then update the ACO position. Initially, each ant can choose
any path, so we have six ants (6 appliances) and 24 paths (24 h). Each ant has a 1/24
probability to choose a path out of 24 paths. According to the ACO algorithm, one path
is the minimum distance compared to other paths out of 24 paths. It is assumed that all
paths have equal pheromones because we do not have previous knowledge of the solution
paths at the start. During operation, knowledge is gained about the fitness of each path.
Therefore, the pheromone on each path is updated first. The pheromone update formula
confirms that the pheromone associated with the best solution increases while it decreases
for other solutions, in other words, evaporates. The pheromone updates the formula
as follows:

χnew
ab = (1− ∂)χold

ab + ∑k ∆χk
ab (12)

where Equation (12), ∂ ∈ (0, 1) is a user-defined parameter known as evaporation rate, and
the value of ∂ is 0.5. χold

ab is the pheromone amount in the beginning when the ath variable
attains bth value. ∆χk

ab is the pheromone amount laid by the kth ant and is given by the
following formula.

∆χk
ab = Q

fbest
fworst

(13)

In Equation (13), Q is a constant. Usually Q = 2, and it is clear that, in initial iterations,
when the difference between fbest and fworst is large, the ratio of fbest/fworst is small
and Q is fbest/fworst. As the iterations progress, the difference between fbest and fworst
will be small, the ratio fbest/fworst will tend to 1, and Q fbest/fworst will tend to Q = 2.
This pheromone deposition property confirms that less pheromone is deposited in early
iterations to avoid the suboptimal solution’s stagnation. In Equation (12), only the best
ants can deposit the pheromone. If there is more than one best ant at any iteration, then
the summation extends the best ants. In this iteration, we have only one best ant, and
therefore, the summation has only one term and the evaporation rate ∂ = 0 for the best ant.
The pheromone update formula for best ant is as follows:

χnew
ab = χold

ab + ∑k ∆χk
ab (14)

For other ants, the updated formula is as follows:

χnew
ab = (1− ∂)χold

ab (15)

When the best path is selected, then the crossover operator is applied to further
improve the global best derived from ACO.

Table 3. Parameters of the Hybrid Genetic Ant Colony Optimization (HGACO) algorithm.

Parameters Values

antsh 6
evaph 0.5

iteration 200
Qh 2

Nantsh 10
insiteh 2

sumphh 1
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In the end, the global best results from the HGACO algorithm is passed through
MKP, which further improves our desired results by checking the grid capacity if the
scheduled load is greater than the grid capacity. Thus, the proposed algorithm will switch
off the appliances that were operated more than the rest of the appliances and when the
scheduled load is less than the grid capacity. Then, the proposed algorithm will switch on
some appliances to achieve the optimal solution. The optimal global best schedule result
is achieved after MKP. Then the appliances will be scheduled as follows: schedule the
appliances without photovoltaic-battery systems, with PV, and with photovoltaic-battery
systems, where the electricity cost is computed in Equations (9) and (11), where carbon
emission is from Equation (17), and where PAR is from Equation (18). Then, check the
condition: if the value for hour is less than 24, the program will run again for another
hour to schedule all the smart appliances; if not, the program is terminated. The overall
implementation flowchart of the proposed model is depicted in Figure 3.

Initialize HGACO Parameters 

Construct Solution using the probability distribution (Pheromone Trail)

Find the fbest and bworst

Updating of Pheromone

All the ants 

visited through 

paths?

Select the best path

Pass best result to crossover operation of GA

Pass the operated global best schedule to knapsack condition

Classes of appliances using HGACO Algorithm

Operate/ Generated scheduling of appliances using different sources

Solar Energy Energy Stored in Battery Utility Grid Energy

Start

No

Yes

Is termination 

criteria satisfied?

Compute Electricity Cost,

Carbon Emission,

PAR, and DTR.

Compute Electricity Cost,

Carbon Emission,

PAR, and DTR.

Compute Electricity Cost,

Carbon Emission,

PAR, and DTR.

End

No

Yes

Turn off the 

appliances 

among set of 

appliances

Check the sched-

ule load less than 

or equal to grid 

capacity

No

Yes

Schedule without PV and ESS Schedule with PV Schedule with PV and ESS

Figure 3. Complete implementation flowchart of the proposed system model.

2.7. Problem Formulation

The proposed model’s main objectives are to minimize electricity cost by scheduling
power consumption patterns consumers, to alleviate carbon emission, to maximize user
comfort, to mitigate PAR, and to cope with the gap between demand and supply. First,
every objective is elaborated and formulated individually. Then, the overall DSM problem
is formulated. Electricity cost is the bill that a utility company issues to a consumer for the
consumed electricity during the specified time interval. The proposed model includes two
types of appliances: SIAs and SUAs. The cost paid by consumers for using SIAs is αaξshi
and is formulated using Equation (9); the cost paid by consumers for using SUAs is αaξshu
and is formulated as in Equation (10); and the total cost is mathematically modeled as in
Equation (16).

Π = αaξshi + αaξshu (16)

where Π represents total electricity cost paid by the consumers for operating both SIAs and
SUAs.
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Carbon emission is the release of carbon into the atmosphere while operating both
SIAs and SUAs. The mathematical formula for carbon emission as follows.

Υ =
avgEP

ε× ς×= (17)

Equation (17) shows carbon emission in pounds, where avgEP represents the average
amount of electricity price, ε shows the price per kWh, ς shows electricity emission factor,
and = represent hour in a day.

PAR is the ratio of peak power consumption to average power consumption for
specific time slots. The reduction of PAR is beneficial for consumers and utility because
it helps to minimize the gape between demand and supply. It is represented by PAR and
mathematical formulated as follows:

PAR =
maxt∈T(Φt)

1
T

T
∑

t=1
Φt

(18)

where the power used by appliance is Φt in time t.
User comfort is measured in terms of various aspects such as waiting time, energy

consumption, temperature, air quality, illumination, humidity, and demographic profile of
the smart home users [35]. This study measures user comfort in aspects of Delay Time Rate
(DTR). The DTR is the waiting time that an appliance faces before starting operation. The
consumers face delay because the EMC shifted the consumers’ load from on-peak hours
to off-peak hours by giving an incentive to them. The consumers’ power usage pattern
is different with and without scheduling because consumers’ activities are shifted from
high-price hours to low-price hours subjected to rebound peak avoidance. A tradeoff exists
between electricity cost and DTR: those consumers who tolerate high DTR will pay less
utility bill, and those who cannot accept DTR will pay a high utility bill. The user comfort
in terms of DTR is formulated as follows in Equation (19).

wb =

T
∑

t=1

n
∑

b=1

∣∣∣(To,unsch
b,t − To,sch

b,t

)∣∣∣
Tlo

b
(19)

The term wb coveys a DTR that each appliance faces due to delay or advances in
operation, To,unsch

b,t represents the appliance status without scheduling, To,sch
b,t depicts appli-

ance status with scheduling, and Tlo
b represents length of total operation timeslots. The

heuristic-based EMC schedules the power usage pattern of consumers in response to the
RTP signal and consumers priority. The maximum delay that an appliance can tolerate is
determined by Equation (20).

wd
b = Tt

b − Tlo
b (20)

where wd
b represents the maximum delay that an appliance may face while shifting op-

eration from on-peak hours to off-peak hours and Tt
b conveys the appliances total time

interval. The user comfort is negatively related to the maximum delay, i.e., with the increase
in wd

b , the user comfort is compromised. The percentage discomfort can be computed using
the Equation (21).

D =
wb

wd
b
× 100 (21)

The overall objective function DSM problem is to alleviate electricity cost, to minimize
carbon emission, to reduce user frustration, and to mitigate PAR by scheduling consumers
energy consumption. The objective function is formulated as a minimization problem as
follows.
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Min(Π + Υ) (22)

The minimization problem in Equation (22) has the following constraints:

PAR =
maxt∈T(Φt)

1
T

T
∑

t=1
Φt

≤ Pc (23)

Tmin≤t≤Tmax (24)

T

∑
t=1

Λunsh
t =

T

∑
t=1

Λsh
t (25)

Zunsch
t <= Zsch

t (26)

Iunsch
t = Isch

t (27)

Constraint (23) shows that the total PAR must be less than or equal to grid capacity
Pc. The grid capacity is the amount of power available from the power grid. This con-
straint helps to avoid power shortage or the blackout problem. Constraint (24) shows the
scheduling interval. Constraint (25) shows the power consumption constraint in which
the total power consumption before and after scheduling remains the same. Constraint
(26) shows that appliance status before and after scheduling is not the same. Similarly,
constraint (27) shows that the operation time of appliances before and after scheduling are
the same, where I is the operation time of appliances and there are t1 to t24 time slots in
a day.

3. Simulation Results, Performance Evaluation, and Discussions

The proposed model’s simulations based on the HGACO algorithm are conducted
in MATLAB R2013b compared to the benchmark algorithms GA, PSO, ACO, and HGPO.
These algorithms are chosen as benchmark due to architectural similarities to the proposed
algorithm. The control parameters for both proposed and benchmark algorithms are chosen
subjected to pair assessment. The proposed model based on the HGACO algorithm and
knapsack problem formulation to solve DSM problems result in electricity cost, carbon
emission, PAR, and user discomfort reduction to enhance the reliability and sustainability of
the power gird. Additionally, the proposed algorithm is capable of providing power to the
utility giving peak hours from RESs. Two algorithms were taken: ACO effectively reduces
carbon emission and electricity cost, whereas GA reduces PAR and MKP ensures the grid’s
reliability. The proposed HGACO algorithm and benchmark algorithms including RESs
and ESS were compiled and run by considering three scenarios to evaluate the performance
of said algorithms, where the first scenario is comprised without photovoltaic-battery
systems, the second scenario only consists of PV, and the third scenario is comprised of
photovoltaic-battery systems. Consider three power supply sources that are utility grid
power supply, which is available 24 h a day; RES; and ESS to implement the proposed
HGACO where the grid signals that are RTP, solar irradiance, and forecasted temperature
is used in the proposed HGACO model, which are illustrated in Figures 4–6. The PV is
considered a renewable source, and the power generated by PV system is dependent on
solar irradiance and ambient temperature. The charging level of ESS and the estimated
renewable energy is shown in Figures 7 and 8. The proposed and benchmark algorithm-
based EMCs actively engage consumers in DR programs to schedule consumers’ power
usage using pricing signal (RTP), power signal from RESs and utility, and consumers
preferences. The generated schedule without participating in the DR program and the
proposed algorithm-based EMC that actively engages consumers in DR programs are
shown in Tables 4 and 5, respectively.
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Figure 4. Real-Time Pricing (RTP) price-based Demand Response (DR) program.
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Figure 5. Solar irradiance.
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Figure 6. Day-ahead temperature profile.
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Figure 7. Charging behavior of Energy Storage System (ESS).
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Figure 8. Estimated renewable energy.

Table 4. Consumer schedules without participating in a DR program.

Category Appliances 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

SIAs Humidifier 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
WHeater 1 0 0 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
DWasher 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0

SUAs WMachine 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
CDryer 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 0

EV 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0

Table 5. Consumer schedules when participating in a DR program.

Category Appliances 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

SIAs Humidifier 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1
WHeater 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1
DWasher 1 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0

SUAs WMachine 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
CDryer 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1

EV 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1
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From the above results listed in Tables 4 and 5, it is evident that the schedule generated
by the proposed HGACO algorithm is optimal. This optimal schedule is because the
proposed algorithm shifted the load to off-peak hours and mid-peak hours operating in
on-peaks subjected to avoiding rebound peaks. The detailed discussion and evaluation of
each scenario are presented in the subsequent sections.

3.1. Scenario I

In scenario I, the consumer’s power usage schedule of the proposed algorithm and
benchmark algorithms without photovoltaic-battery systems is discussed. In scenario
I, the evaluation of each objective’s achievement, such as electricity cost, PAR, carbon
emission, and user comfort, is discussed as follows. The electricity cost of scheduled and
unscheduled loads without photovoltaic-battery systems are illustrated in Figure 9 and
Table 6. The maximum electricity cost of GA is 63.50 cents in time slot 7, that of PSO is
51.12 cents in time slot 4, that of ACO is 57.92 cents in time slot 16, that of HGPO is 63.76
cents in time slot 16, and that for the proposed HGACO algorithm is 48.36 cents in time slot
23. In 24 h, the unscheduled load’s electricity cost is 921.19 cents compared to GA, PSO,
ACO, HGPO, and HGACO, 660.86, 571.68, 512.69, 548.90, and 465.03 cents, respectively.
Similarly, the total electricity cost evaluation of the proposed and existing algorithms is
graphically shown in Figure 10. Thus, the proposed HGACO algorithm has a minimum
electricity cost either per time slot or aggregated compared to the existing algorithms.
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Figure 9. Electricity cost without photovoltaic-battery systems.

Table 6. Scenario I: electricity cost assessment without photovoltaic-battery systems.

Algorithms Cost (Cents) Difference Reduction (%)

Unscheduled 921.1647 - -
GA 660.8627 260.3377 28.26

ACO 512.6907 408.5057 44.34
PSO 571.6865 349.5099 37.94

HGPO 548.9073 372.2891 40.41
HGACO 465.0335 456.1628 49.51
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Figure 10. Aggregated electricity cost without photovoltaic-battery systems.

The assessment of PAR with and without scheduling is shown in Figure 11 and Table 7.
The existing algorithms GA, PSO, ACO, and HGPO and the proposed algorithm HGACO
minimized the PAR by 17.13, 13.38, 39.10, 4.64, and 25.72, respectively. The HGACO
algorithm uniformly distributed the load in off-peak and mid-peak hours and achieved the
desired objectives. In contrast, the benchmark algorithms generated reboud peaks while
creating power usage schedules, which is dangerous for the reliability of the power grid.
Thus, the proposed HGACO algorithm alleviated the PAR significantly compared to the
existing algorithms.
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Figure 11. Peak to Average Ratio (PAR0 without photovoltaic-battery systems.

Table 7. Scenario I: PAR assessment without photovoltaic-battery systems.

Algorithms PAR Difference Reduction (%)

Unscheduled 3.48 - -
GA 2.88 0.59 17.13

ACO 3.01 0.46 13.38
PSO 2.11 1.36 39.10

HGPO 3.319 0.16 4.64
HGACO 2.58 0.89 25.72
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In scenario I, the unscheduled and scheduled load’s carbon emission is shown in
Figure 12 and Table 8. The existing algorithms and the proposed algorithm emit less
carbon compared to the without scheduling case. However, the proposed algorithm
emits less carbon compared to all benchmark algorithms. The unscheduled load produces
the maximum carbon emission at time slot 2, which is 6.49 pounds. In contrast, the
existing algorithms GA, PSO, ACO, and HGPO emit maximum carbon at 4.65 pounds,
3.61 pounds, 4.02 pounds, and 3.86 pounds in time slot 21, respectively. Thus, all of the
benchmark algorithms outperformed the without scheduling case in terms of carbon
emission. However, the emission of carbon at time slot 21 of the proposed algorithm is
3.27, which is the lowest per time slot carbon emission compared to the existing algorithms.
Similarly, the total carbon emission is discussed as follows: The without power usage
scheduling case emits a total carbon emission of 116.78 pounds in scenario I. On the other
hand, the benchmark algorithms GA, ACO, PSO, and HGPO and proposed algorithm
HGACO emit total carbon at 83.77, 64.99, 72.47, 69.58, and 58.95 pounds, respectively. As
compared to unscheduled carbon emission, GA reduced carbon emissions by 28.26 percent,
ACO reduced carbon emissions by 44.34 percent, PSO reduced carbon emissions by 37.94
percent, HGPSO reduced carbon emissions by 40.41 percent, and HGACO reduced carbon
emissions by 48.01 percent. Thus, the proposed algorithm is effective in carbon emission
reduction either per time slot or in total.
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Figure 12. Scenario I: Carbon emission assessment without photovoltaic-battery systems.

Table 8. Scenario I: Carbon emission assessment without photovoltaic-battery systems.

Algorithms Carbon Emission (Pounds) Difference Reduction (%)

Unscheduled 116.78 - -
GA 83.77 33.00 28.26

ACO 64.99 51.78 44.34
PSO 72.47 44.30 37.94

HGPO 69.58 47.19 40.41
HGACO 58.95 57.82 48.01

3.2. Scenario II

In scenario II, the proposed model is compared with other benchmark algorithms
via scheduling the home appliances with PV and achieving the best results, discussed as
follows.

The electricity cost of scheduled and unscheduled load with PV is illustrated in
Figure 13, and their numerical results are listed in Table 9. The maximum electricity cost
of GA is 57.87 cents in time slot 7, that of PSO is 51.12 cents in time slot 4, that of ACO is
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54.02 cents in time slot 22, that of HGPO is 59.14 cents in time slot 16, and that of HGACO
algorithm is 48.36 cents in time slot 23. In 24 h, the unscheduled load’s electricity cost is
816.68 cents compared to GA, PSO, ACO, HGPO, and HGACO algorithm, 556.35, 467.17,
408.18, 444.39, and 360.52 cents, respectively. Similarly, the net electricity results for the
proposed and existing algorithms compared to the without scheduling case is depicted in
Figure 14. Thus, from the graphical and numerical results, it is evident that the proposed
algorithm outperforms the existing algorithms in terms of per time slot and aggregated
electricity cost.
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Figure 13. Electricity cost with photovoltaic systems.
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Figure 14. Aggregated electricity cost with PV.

Table 9. Scenario II: electricity cost assessment with PV.

Algorithms Cost (Cents) Difference Reduction (%)

Unscheduled 816.6876 - -
GA 556.3538 260.3337 31.8767

ACO 408.1818 408.5057 50.0198
PSO 467.1777 349.5098 42.7960

HGPO 444.3984 372.2891 45.5852
HGACO 360.5247 456.1628 55.8552
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The graphical and numerical results of PAR of scheduled and unscheduled load with
PV are shown in Figure 15 and Table 10, respectively. The proposed HGACO algorithm
and existing algorithms GA, PSO, ACO, HGPO, and HGACO reduced PAR by 21.69, 17.56,
34.49, 8.42, 13.29, respectively. The proposed algorithm uniformly distributes the load in
off-peak hours and checks the grid capacity with the help of knapsack problem formulation
to balance the load and to avoid rebound peaks. In contrast, the benchmark algorithms shift
the load uniformly, resulting in rebound peaks that disturb the reliability of the power grid.
From the results and discussion, it is evident that the proposed algorithm effectively shifts
the load from peak hours to off-peak hours and reduced PAR, which is beneficial for both
consumers and utility. Thus, the performance of the proposed algorithm is outstanding
while scheduling with PV.
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Figure 15. PAR assessment with PV.

Table 10. Scenario II: PAR assessment with PV.

Algorithms PAR Difference Reduction (%)

Unscheduled 3.67 - -
GA 3.03 0.64 17.57

ACO 3.36 0.30 8.42
PSO 2.40 1.26 34.49

HGPO 3.18 0.48 13.29
HGACO 2.87 0.80 21.69

The performance evaluation of the proposed algorithm compared with existing algo-
rithms in terms of carbon emission with and without scheduling using PV is depicted in
Figure 16 and Table 11. From the results, it is evident that scheduling carbon emission to
the environment is more than scheduling based on proposed and benchmark algorithm.
The proposed HGACO algorithm emit less carbon to the atmosphere compared to all
benchmark algorithms. The maximum carbon emitted by the unscheduled load with PV is
5.75 pounds in time slot 21. In contrast, the existing algorithms GA, ACO, PSO, and HGPO
emit maximum carbon emissions of 3.92 pounds at time slot 21, 2.87 pounds at time slot 21,
3.29 pounds at time slot 21, and 3.13 pounds at time slot 21. The maximum carbon emission
at time slot 21 of the proposed HGACO algorithm is 2.54 pounds, which is the lowest of the
existing algorithms. The unscheduled load with PV emits 103.53 pounds of carbon while
the existing and proposed algorithms GA, ACO, PSO, HGPO, and HGACO algorithm
emits 70.52, 51.74, 59.22, 56.33, and 45.70 pounds of carbon. GA reduced carbon emissions
by 31.87% compared to the unscheduled load, ACO reduced carbon emissions by 50.01%,
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PSO reduced carbon emissions by 42.79%, and HGPO reduced carbon emissions by 45.58%.
On the other hand, the proposed HGACO algorithm reduced carbon emissions by 54.22%
which is the highest reduction compared to the without and with scheduling based on
existing algorithms. Thus, the proposed algorithm outperforms the existing algorithms in
terms of carbon emission reduction.
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Figure 16. Carbon emission with PV.

Table 11. Scenario II: carbon emission assessment with PV.

Algorithms Carbon Emission (Pounds) Difference Reduction (%)

Unscheduled 103.53 - -
GA 70.52 33.00 31.87

ACO 51.74 51.78 50.01
PSO 59.22 44.30 42.79

HGPO 56.33 47.19 45.58
HGACO 45.70 57.82 54.22

3.3. Scenario III

In scenario III, the proposed algorithm and existing algorithms with photovoltaic-
battery systems-based scheduling are performed to minimize electricity cost, to alleviate
PAR, to reduce carbon emission, and to mitigate user discomfort. A detail discussion
follows.

The electricity cost assessment using photovoltaic-battery systems with and without
scheduling-based proposed algorithm and existing algorithms are depicted in Figure 17
and Table 12. The maximum electricity cost of GA is 57.87 cents in time slot 7, that of PSO
is 52.12 cents in time slot 4, that of ACO is 54.02 cents in time slot 22, that of HGPO is 57.15
cents in time slot 16, and that of the proposed HGACO algorithm is 48.36 cents in time
slot 23. The unscheduled load’s electricity cost is 772.31 cents compared to GA, PSO, ACO,
HGPO, and the proposed HGACO algorithm, 510.59, 422.8, 363.80, 400.02, and 316.15 cents,
respectively, for the 24 h time horizon. Similarly, the results of the aggregated electricity
cost is shown in Figure 18. The graphical and numerical results of the electricity cost
validate that the electricity minimization of HGACO algorithm is significant compared to
all other benchmark algorithms and without scheduling cases. Thus, the proposed HGACO
algorithm is useful in terms of per time slot and aggregated cost reduction compared to the
existing algorithms.
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Figure 17. Scenario III: electricity cost assessment with photovoltaic-battery systems.
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Figure 18. Aggregated electricity cost with photovoltaic-battery systems.

Table 12. Scenario III: numerical results of electricity cost with photovoltaic-battery systems.

Algorithms Cost (Cents) Difference Reduction (%)

Unscheduled 772.313 - -
GA 510.5990 261.713 33.8870

ACO 363.8072 408.5057 52.8938
PSO 422.8031 349.5098 45.2549

HGPO 400.0238 372.2891 48.2044
HGACO 316.1501 456.1628 59.0645

The PAR evaluation graphical and numerical results with and without scheduling,
considering photovoltaic-battery systems is shown in Figure 19 and Table 13. The proposed
algorithm HGACO algorithm minimize the PAR while adapting the behaviour of ACO
and GA algorithms. The heuristic algorithms GA, PSO, ACO, and HGPO and the proposed
HGACO algorithm minimize the PAR by 40.85, 32.29, 7.85, 4.96, and 17.40, respectively.
The HGACO algorithm uniformly distributed the load in off-peak hours and achieved the
desired objectives. Some of the benchmark algorithms create rebound peaks that disturb
the reliability of the grid. From the results and discussion on PAR evaluation considering
photovoltaic-battery systems, the proposed algorithm significantly reduces PAR compared
to the existing algorithms, which is beneficial for both utility and consumers.
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Figure 19. PAR with photovoltaic-battery systems.

Table 13. Scenario III: PAR assessment with photovoltaic-battery systems.

Algorithms PAR Difference Reduction (%)

Unscheduled 3.77 - -
GA 2.23 1.54 40.85

ACO 3.47 0.30 7.85
PSO 2.55 1.21 32.29

HGPO 3.58 0.18 4.96
HGACO 3.11 0.65 17.40

The carbon emission of unscheduled and scheduled loads considering photovoltaic-
battery systems is shown in Figure 20 and in Table 14. The existing algorithms and the
proposed algorithm emitted less carbon than the unscheduled load. The without scheduling
maximum carbon emitted into the atmosphere is 5.44 pounds in time slot 21. Contrarily,
the maximum carbon emission for GA is 3.92 pounds in time slot 21, that for ACO is 2.56
pounds at time slot 21, that for PSO is 2.97 at time slot 21, that for HGPO at time slot 21 is
2.81 pounds, and the proposed HGACO algorithm emits less carbon is 2.22 pounds at time
slot 21. The unscheduled load emits 97.90 pounds of total carbon emission in scenario III,
whereas GA, ACO, PSO, HGPO, and HGACO algorithm emit 70.52, 46.12, 53.59, 50.71, and
40.07 pounds of carbon emission. Compared to unscheduled carbon emission, GA reduced
carbon emissions by 27.96 percent, ACO reduced carbon emissions by 52.89 percent, PSO
reduced carbon emissions by 45.20 percent, HGPO reduced carbon emissions by 48.20
percent, and HGACO reduced carbon emissions by 57.42 percent. Thus, the carbon released
into the atmosphere by the HGACO algorithm is less than all benchmark algorithms.

Table 14. Scenario III: carbon emission assessment with photovoltaic-battery systems.

Algorithms Carbon Emission (Pounds) Difference Reduction (%)

Unscheduled 97.90 - -
GA 70.52 27.37 27.96

ACO 46.12 51.78 52.89
PSO 53.59 44.30 45.20

HGPO 50.71 47.19 48.20
HGACO 40.07 57.82 57.42
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Figure 20. Scenario III: carbon emission with photovoltaic-battery systems.

The proposed HGACO algorithm-based scheduling was compared with other bench-
mark algorithm (GA, PSO, ACO, and HGPO)-based scheduling to evaluate the DTR that
consumers face. The DTR evaluation of scheduled load using the proposed algorithm
compared to benchmark algorithms are shown in Figure 21. The detailed discussion is as
follows. In GA-based scheduling, average delays of 0.9, 1.6, and 0.5 h are confronted by
SIAs such as humidifiers, water heaters, and dishwashers, respectively. Similarly, SUAs
such as EVs, washing machines, and clothes dryers face average delays of 1.7, 2, and 0.75 h,
respectively, depicted in Figure 21.
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Figure 21. Delay faced by consumers while operating appliances according to power usage schedule
generated by proposed and existing algorithms

The ACO algorithm-based EMC generated power usage schedule for SIAs such as
humidifiers, water heaters, and dishwashers faces average delays of 1.4, 2, and 0.8 h.
Likewise, the SUAs face delays of 2, 2, and 1.5 h observed for EVs, washing machines, and
clothes dryers, respectively, which are illustrated in Figure 21.

The PSO-based EMC created power usage schedule faces delays of 1.95, 0.7, and 0.5 h
for SIAs such as humidifiers, water heaters, and dishwashers, respectively. In a similar
manner, SUAs confronted delays of 1.95, 2, and 1.75 h for EVs, washing machines, and
clothes dryers, respectively, shown in Figure 21.

HGPO algorithm-based schedules introduce average delays of 1.2, 0.9, and 0.85 h
for SIAs such as humidifiers, water heaters, and dishwashers, respectively. Likewise,
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average delays of 1.9, 2, and 1.5 h are posed to EVs, washing machines, and clothes dryers,
respectively. This behavior is illustrated in Figure 21.

With HGACO-based power usage scheduling, average delays of 1.75, 2, and 1.6 h
are posed to SIAs such as humidifiers, water heaters, and dishwashers, respectively. In
a similar fashion, average delays of 2, 2, and 1.5 h are observed by SUAs such as EVs,
washing machines, and clothes dryers, respectively. The DTR faced by consumers while
using the HGACO algorithm is depicted in Figure 21. This evaluation concludes that
a tradeoff exists between DTR and electricity because, when one wants to reduce their
electricity cost, they may accept DTR.

3.4. Performance Tradeoff Analysis

The proposed HGACO algorithm confronted performance tradeoffs between different
conflicting parameters while solving DSM problem via power usage scheduling. The first
tradeoff analysis is observed between electricity cost and PAR. The proposed algorithm
reduced the electricity cost significantly while the PAR increased a little bit. This tradeoff
behavior is observed in all scenarios. However, this tradeoff is natural because it is observed
for the proposed and existing algorithms. The second tradeoff analysis is visualized in the
case of electricity cost and DTR. The proposed algorithm shifted the load from on-peak
hours to off-peak hours to avoid rebound peaks and to reduce the electricity cost. Thus, the
electricity cost is reduced significantly. However, while reducing the electricity cost, the
DTR increased. Thus, the user will confront a little bit of discomfort. This tradeoff analysis
is observed for both proposed and existing algorithms in all scenarios, which makes it
evident that this tradeoff is natural and could not be completely avoided. However, the
tradeoff between electricity cost and DTR is average for our proposed algorithm compared
to existing algorithms. The performance tradeoff (cost and PAR, and cost and DTR) analyses
for scenarios I, II, and II are listed in Tables 15–17, respectively.

Table 15. Scenario I: performance tradeoff analysis of the proposed and existing algorithms without
photovoltaic-battery systems.

Algorithms Cost (Cents) PAR DTR (Hours) Carbon Emission (Pounds)

Unscheduled 921.19 3.48 - 116.781
GA 660.86 2.88 8 83.77

ACO 512.69 3.01 9.3 64.99
PSO 571.68 2.11 8 72.47

HGPO 548.90 3.31 9.25 69.58
HGACO 465.03 2.58 10.1 58.95

The tradeoff among unscheduled load, the benchmark, and proposed algorithms with
PV is shown in Table 16; it shows that HGACO is best in terms of electricity cost, PAR,
carbon emission, and DTR. The tradeoff among different algorithms and unscheduled load
without photovoltaic-battery systems is shown in Figure 10, where the HGACO is best in
terms of producing minimum electricity cost.

Table 16. Scenario II: performance tradeoff analysis of the proposed and existing algorithms with PV.

Algorithms Cost (Cents) PAR DTR (Hours) Carbon Emission (Pounds)

Unscheduled 816.68 3.67 - 103.53
GA 556.35 3.02 8 70.52

ACO 408.18 3.36 9.3 51.74
PSO 467.17 2.40 8 59.22

HGPO 444.39 3.18 9.25 56.33
HGACO 360.52 2.87 10.1 45.70
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Table 17. Scenario III: performance tradeoff analysis of the proposed and existing algorithms with
photovoltaic-battery systems.

Algorithms Cost (Cents) PAR DTR (Hours) Carbon Emission (Pounds)

Unscheduled 772.31 3.77 - 97.90
GA 510.59 2.23 8 70.52

ACO 363.80 3.47 9.3 46.12
PSO 422.80 2.55 8 53.59

HGPO 400.02 3.58 9.25 50.71
HGACO 316.15 3.11 10.1 40.07

4. Conclusions

This study introduces an optimization-based energy management framework to
schedule consumers’ power usage pattern in response to the RTP signal under the grid
and photovoltaic-battery system. Then, the HGACO algorithm is proposed, which is a
hybrid of GA and ACO using MKP to solve the complete scheduling problem for all three
scenarios: without photovoltaic-battery system, with the photovoltaic system, and with
the photovoltaic-battery system. This study aims to stimulate consumers to participate
in RES generation and power usage scheduling to resolve the DSM problem by coping
with the gap between demand and generation. The purpose of solving the DSM problem
is to facilitate utility and end-users by reducing electricity bill, peak load demand, and
carbon emission and by avoiding rebound peak creation. To endorse the applicability of the
HGACO algorithm-based energy management framework, simulations are conducted in
comparison with existing frameworks based on the GA, PSO, ACO, and HGPO algorithms.
The results show that the proposed HGACO algorithm reduced electricity cost, carbon
emission, and peak load by 49.51%, 48.01%, and 25.72% in scenario I; by 55.85%, 54.22%,
and 21.69% in scenario II; and by 59.06%, 57.42%, and 17.40% in scenario III, respectively,
compared to without scheduling.
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