energies

Article

Multiple Input Multiple Output Resonant Inductive WPT Link:
Optimal Terminations for Efficiency Maximization

Giuseppina Monti 1**

and Luciano Tarricone !

check for

updates
Citation: Monti, G.; Mongiardo, M.;
Minnaert, B.; Costanzo, A.; Tarricone,
L. Multiple Input Multiple Output
Resonant Inductive WPT Link:
Optimal Terminations for Efficiency
Maximization. Energies 2021, 14, 2194.
https:/ /doi.org/10.3390/en14082194

Academic Editor: Sangheon Pack

Received: 16 March 2021
Accepted: 9 April 2021
Published: 14 April 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Mauro Mongiardo 21(®, Ben Minnaert 32, Alessandra Costanzo

4

Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy;
luciano.tarricone@unisalento.it

Department of Engineering, University of Perugia, 06123 Perugia, Italy; mauro.mongiardo@unipg.it
College of Applied Sciences, Odisee University, 9000 Ghent, Belgium; ben.minnaert@odisee.be

=W N

Department of Electrical, University of Bologna, 40126 Bologna, Italy; alessandra.costanzo@unibo.it
Correspondence: giuseppina.monti@unisalento.it
1t These authors contributed equally to this work.

Abstract: In this paper a general-purpose procedure for optimizing a resonant inductive wireless
power transfer link adopting a multiple-input-multiple-output (MIMO) configuration is presented.
The wireless link is described in a general-purpose way as a multi-port electrical network that can be
the result of either analytical calculations, full-wave simulations, or measurements. An eigenvalue
problem is then derived to determine the link optimal impedance terminations for efficiency maxi-
mization. A step-by-step procedure is proposed to solve the eigenvalue problem using a computer
algebra system, it provides the configuration of the link, optimal sources, and loads for maximizing
the efficiency. The main advantage of the proposed approach is that it is general: it is valid for any
strictly—passive multi-port network and is therefore applicable to any wireless power transfer (WPT)
link. To validate the presented theory, an example of application is illustrated for a link using three
transmitters and two receivers whose impedance matrix was derived from full-wave simulations.

Keywords: resonant coils; wireless power transfer; inductive coupling; optimal load; multiple input
multiple output; power gain

1. Introduction

Resonant inductive wireless power transfer (WPT) is an attractive and efficient way
for recharging electronic devices [1-4]. The simplest implementation consists of just
two magnetically coupled resonators in a single-input-single-output (SISO) configuration
where power is wirelessly transferred from a single transmitter to a single receiver. This
configuration has been widely investigated in the literature and the design equations
for maximizing the possible figures of merit of interest have been derived [5-9]. In the
SISO configuration, a possible strategy for improving the performance in terms of either
transfer distance or efficiency consists in using additional resonators interposed between
the transmitter and the receiver [10-12].

One of the main limitation of SISO resonant inductive WPT is the strong dependence
of the performance on the correct alignment between the transmitting and the receiving
coils. As a result, even a small displacement of the receiving coil with respect to the
transmitting coil can lead to a consistent deterioration of the performance. This problem
could be alleviated by using multiple transmitters thus resulting in a multiple-input-single-
output (MISO) configuration [13-17]. In these configurations the number and the positions
of the transmitters can be optimized so to achieve a nearly constant performance for a
receiver positioned in a given volume [14].

In [15] the solution for maximizing the efficiency has been formulated as a convex
optimization problem. In [16] the use of a linear array of transmitters, activated two at
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a time, is suggested for providing a constant output voltage to a load moving along a
linear path. In [17] the case of a link using two transmitters has been considered. In more
detail, in [17] the optimal load for both the maximum power and the maximum efficiency
solutions have been presented.

Another configuration of interest is that using a single transmitter and multiple receivers
(SIMO) that allows us to recharge multiple devices by using a single transmitter [18-23].

In [20], the case of a two-receiver system is considered and the optimal loads are
derived for the case of uncoupled receivers. The case of possibly coupled receivers is
considered in [21-23]. In particular, the maximum power transfer theorem for an N-port
is used in [21] for deriving the expressions of the optimal loads. In [22] a time-division
multiplexing is used to maximize the system efficiency.

The case of a multiple-input-multiple-output (MIMO) configuration has been ana-
lyzed in [24], where the optimal loads are calculated by imposing the first-order necessary
condition consisting in imposing the zeroing of the first-order partial derivatives of the effi-
ciency with respect to the input and output currents. However, the results reported in [24]
are derived assuming that all the couplings among the transmitters and the receivers are
purely inductive; this being equivalent to assume that the conductivity of the propagation
channel is negligibly small.

This limitation has overcome in [25,26], where the solution for maximizing the effi-
ciency is derived from a generalized eigenvalue problem. In [25] the case of a resonant
inductive WPT link in SIMO configuration is solved. In [26] the general solving equation is
derived for a generic multi-port network representative of a generic WPT link. The same
approach is adopted in this paper, where the analysis presented in [26] is specialized and
validated for the case of a resonant inductive WPT link in MIMO configuration.

It is demonstrated that for a strictly passive reciprocal MIMO network the expressions
of the optimal loads maximizing the efficiency can be derived from a generalized eigenvalue
problem. It is shown that the desired solution can be obtained by simple manipulation
of the impedance matrix of the network. Accordingly, in order to solve the problem of
efficiency maximization one just needs the impedance matrix of the link that can be the
result of measurements, simulations or theoretical analysis. A validation of the theory for
the case of a link using three transmitters and two receivers is presented.

The paper is organized as follows. In Section 2 the solution of efficiency maximization,
identified with the power gain of the link, is presented for the general case of a strictly
passive reciprocal (M + N)-port network. In Section 3 the solution is specialized for the
case of a MIMO resonant inductive WPT link. In Section 4 the special cases of MISO and
SIMO configurations are considered and discussed. The derived analytical formulas are
validated in Section 5 and some conclusions are drawn in Section 6.

2. Power Gain Maximization for a Lossy Reciprocal Multiport Network

In this section the general case of a strictly passive reciprocal (M + N)-port network
is considered and the problem of power transfer efficiency maximization is analyzed. It is
shown that the problem of finding the optimal terminating impedances can be formulated
as a generalized eigenvalue problem.

2.1. Statement of the Problem

The analyzed problem is illustrated in Figure 1, a strictly passive reciprocal multiport
network 91, operating in sinusoidal steady-state, whose ports are divided into two sets of
M and N ports is considered. In the following the two sets will be referred as the set .4 and
the set B3, and their ports will be denoted by the indexes aj,...,ay and by,...,by. The
network is described in terms of an impedance matrix Z.

It is assumed that the set A of M ports is connected to an M-port power source,
represented by the equivalent Thévenin circuit depicted in Figure 1, which consists of an
M-port network 91g, described by an impedance matrix Z¢g, and of a set of M sinusoidal
generators. The M-vector of the generator voltage phasors will be indicated as V. In
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many practical cases, the source may consist of a set of uncoupled generators. In these
cases, the matrix Zg is diagonal, i.e. Zg = diag(Zg,), withi =1,..., M.

Zg

Zg

Figure 1. Schematic representation of a multiple-input-multiple-output (MIMO) wireless power
transfer (WPT) link.

It is also assumed that the set B of 91 is connected to a load network 91, described
by an impedance matrix Z;. In practical cases, 91}, may consist of N independent load
impedances, hence Z = diag(ZL[), withi =1,..., N. According to the impedance matrix
representation of the network, it is possible to write:

V =ZI = (R+ijX)L )

It is convenient to partition, with respect to M and N, the vectors V and I of voltage
and current phasors at the ports of 91 and, accordingly, the matrix Z as

V. Z, | Z. I,
v, | | zT 'z, || L
- . . 2)
Ra +]Xa R + ]XC I,
| RI+ix{ ‘ Ry +jXp I,

where T denotes the transpose. The subscript a indicates the M-subvectors and the M x M
submatrices corresponding to the ports of set .A. Similarly the subscript b indicates the
N-subvectors and the N x N submatrices corresponding to the ports of set 5. Finally, the
subscript c is used to denote the N x M transfer-impedance submatrix relating the voltages
at the ports of set BB to the currents at the ports of set A.

The problem of determining the impedances Zg and Z; and the source voltages
V¢ which realize the maximum power transfer at the input and the output ports of 9
simultaneously is then considered.

It can be shown [27] that, in the case of multiport networks, the impedances providing
the maximum power transfer are not univocally defined, but there is a unique set of port
currents corresponding to the maximum power transfer operation. Hence it is convenient
to state the problem in terms of currents, and to seek for the currents I, and I, for which
the maximum power transfer between the two sets of ports is achieved.
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Making use of (2), the average powers entering the network 9t at the two sets of ports
can be expressed as

P, = %(VaHIa + IaHVa) = 3)
- i [Iﬁj (za + Z!j)la +IHZ1, + IbHZEIIa}f
and
A= 5 (VEn + V) - @

1
=3 1 (2o + 2 )1 + 10271 + 1701
where * denotes the conjugate, and H the conjugate transpose. The previous equations can

be cast in the form .

P, = 1IHAI,
b 5)
b, = -1I"BI,
b7y
where the matrices A and B are defined as
Z.+Zl | Z. 2R, | RT+ix7
z! | oy Ro—jXc | Oy
and
s ooz | | ov [RI-XT -
2! |z, +zf Re+iXe | 2Ry

Since 91 is assumed to be reciprocal and strictly passive, Z is symmetric and, for any
nonzero vector I € CM*N  the total average power Pr entering 0 satisfies the condition

PT:Pa—FPb:%(VHI—l-IHV) -

- iIH (Z+ZH)I > 0.

®)

Hence Z + ZH, and, consequently, Z, + ZH and 7, + Z{;' are positive definite symmet-
ric real matrices. It can also be noted that it results

(A+B):%(Z+ZH):R. )

1

2

From (6) and (7) it can be recognized that, for M < N, A is singular and B is nonsingu-

lar if and only if Z has full rank. Similarly, for M > N, B is singular and A is nonsingular

if and only if Z has full rank. Finally, for M = N both A and B are nonsingular if and only
if Z. is nonsingular.

If the network is operated as shown in Figure 1, i.e., the power supply is provided

at ports aj, ...,ap, the input power is P, = P, and the power delivered to the load is

Pout = —Pp. Hence, the network power gain can be expressed as
P B MBI
G(ab) _tout b . 10
P P P, IHAI (10)

It is noted that Gl(jab) has the form of a generalized Rayleigh quotient. Its maximum

can be thus determined by solving a generalized eigenvalue problem. As a matter of fact,



Energies 2021, 14, 2194

5of 25

using the quotient rule and taking into account that A and B are Hermitian matrices, the
differential of Gp can be calculated as

ab) _ _2(51HBI IMAL - 1"BIGIMAT _

5G} .
(IHAT) (11)
__,sHBL+ GpAI
IHAI
Hence, requiring & Gf,ab) = 0 yields
— Bu = AAu, (12)

which can be recognized as a generalized eigenvalue problem with A = ij‘b) being the

eigenvalue and u = I the corresponding eigenvector.
In the given hypotheses, the maximum power gain, and the corresponding currents
(up to an arbitrary factor) can be determined by solving (12) with the constraint

0<A<l1. (13)

In fact, since for u # 0 it results

uht (Z+ZH>u = (uHAu—i—uHBu) =

(14)
=(1-AuAu>o0,
condition (13) implies
1
P, = 1uHAu >0,
1 1 (15)
P, = ZuHBu = —iAuHAu <0,

which confirms that power transfer occurs from ports ay, ..., aps to ports by, ..., by.

If A, and u, are the maximum eigenvalue and the associate eigenvector satisfying (13),

the maximum power gain, Gﬁ;b), and the corresponding port currents, I,, are

G = A, (16)
and
Iao
I, = = U,. (17)
Ibo

It can be observed that by (12) it is also possible to determine the maximum power
gain when the role of the ports is interchanged, that is when the power supply is provided
at ports by, ..., by. In this case the power gain is GI(,ba) = 1/A, the corresponding currents
are still given by u, and the solution must satisfy the constraint

A>1 (18)

which, according to (14), provides P, < 0 and, consequently, B, > 0. In this case the
optimal gain corresponds to the minimum A satisfying (18).

It can be demonstrated that if A is a finite nonzero eigenvalue of (12), then also 1/A is
an eigenvalue. A proof is provided in Appendix A. It will also be shown that the maximum

power gain has the same value in both directions: Gl(\ib) = Gl(\za).
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2.2. Solving the Generalized Eigenvalue Problem

It can be noted that both A and B are independent of X, and X},. As a consequence,
the maximum of Gﬁb) and the corresponding port currents do not depend on the reactive
couplings among the ports of set A and among the ports of set 3.

When A or B is nonsingular, it is possible to convert (12) into an ordinary eigenvalue
problem by multiplying both sides by A1 or B!, however, this transformation can not be
applied in the general case. Nevertheless, it is always possible to transform (12) into an
equivalent problem involving a positive definite matrix by adding —Au to both sides

—(A+B)u= (A—-1)Au (19)
By letting
_p+1
A= =1 (20)

(19) can be transformed into the equivalent problem

Du = uRu, (21)
where the matrix D is
—R, | —jxT
D:%(B—A): # 22)
Xe | Ry

Since, as it was previously shown, R is positive definite, (21) can be always trans-
formed into an ordinary Hermitian eigenvalue problem. In fact, by introducing the
Cholesky decomposition of R,

R =CC', (23)

where C is a lower triangular real matrix, (21) can be rewritten as
C'DC Tu = pu. (24)

This allows us to state that all the eigenvalues of (21) and, consequently, all the
eigenvalues of (12) are real. Moreover, according to the Courant-Fischer-Weyl min—-max
theorem, the minimum and maximum eigenvalue of (21) correspond to the absolute
minimum and the absolute maximum of the function

uHDu

p(u) = u"Ru (25)

for u € CN*M\ {0}.

Since, for 1 < —1, G(*Y) is a monotonic increasing function of y with values ranging
in the interval |0, 1], if the minimum eigenvalue satisfies the condition ymin < —1, the
maximum power transfer efficiency from A to B is given by
G — Mmintl 2 (26)
Hmin — 1 1—- Hmin
and the eigenvector associated to pimin represents (up to an arbitrary scale factor) the port
currents in maximum efficiency operation.

In a similar way it is possible to show that the power transfer efficiency from B to A,
has a maximum if the maximum eigenvalue satisfies the condition ymax > 1, and in this
case it results

G(ba) _ Hmax — 1 1 2

=1——. 27
M Hmax + 1 1+ Hmax @7)
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2.3. Calculation of the Optimal Terminating Networks Mg and Ny,

After computing the optimal currents (17) the corresponding port voltages

V
Vo= |—o (28)
Vbo

can be derived by (2), then the optimal terminations for the network 91 can be readily
determined as follows.
On the source side, the impedance matrix of 91g and the generator voltages are subject
to the constraint
VG —Zglao = Vao. (29)

In addition, since the M-port source is supposed to operate in maximum power
transfer conditions, I, must coincide with its optimal current, which requires [27]

Vg = (ZG + zg) Lo. (30)

For M > 1, the values of Vg and Zg, which satisfy these conditions, are not unique.
In fact, by combining (29) and (30), the result is that any matrix Zg such that

Zg Iao = Vao (31)

represents an acceptable solution. In particular it can be noted that it is possible to realize
Z as aset of M independent passive impedances, provided that the possible zero elements
of I, correspond to zero elements of V,,, and that the phase difference between any two
corresponding elements of I, and V,, is < 90° in absolute value. In this case it is possible

to set
*

\%
Ze = Zoo = —22,
Gi T T (32)

Vi, = 2Re[Zg ]I,

On the output side, the impedance matrix of 9 is only subject to the constraint
Vo = —ZrIpo, (33)

hence, also in this case, the solution is not unique. In particular, the diagonal solution

7, =

i (34)
can be realized with passive impedance if the possible zero elements of I},, correspond to
zero elements of Vy,,, and the phase difference between voltages and currents at each port
is > 90° in absolute value.

3. The Case of a Resonant Inductive WPT Link

The WPT link illustrated in Figure 2 is considered. It is assumed that the WPT link
is realized by two sets of coupled inductors, Lay, ..., Lay, and Ly, . . ., Ly, - Each inductor
is compensated by a series capacitor realizing the resonance condition at the angular
frequency wo: Cay = 1/ (w3 Lay), ..., Cay = 1/ (w§ Lay,) and Cp, =1/ (w3 Ly,), .., Coy =
1/ (w3 Ly, ).

It is also assumed that the WPT link is driven by a set of M sinusoidal generators with
angular frequency wy. In the following the two sets of inductors will also be referred as the
transmitting coils and the receiving coils, respectively.

The inductor losses are represented by the series resistances R, . . ., Ra,, and Rp,, -+ Rpy-
The mutual inductance between the inductors L, and Laj, withi # jandi,j=1,...,M



Energies 2021, 14, 2194

8 of 25

is indicated by M,, i Similarly, the mutual inductance between the inductors Ly, and Lb].,
withi # jandi,j=1,..., N isindicated by My, Finally, the mutual inductance between
the inductors L,, and Lb]., withi=1,...,Mandj=1,..., N isindicated by MCi],.

It is convenient to introduce the inductor quality factors

woLy, .
= —L =1,...,M),
Qaz Ral- (l )
woLp, .
QbI:Ri (lzl,...,N),
b

1

and the coupling coefficients, defined as

M,,

\/LaiLaj
My,
koy = ——e (i j=1...,N i#]),
\/ Lo Ly,
o MCij . .
ke, = —2—  (i=1,...,M, j=1,...

kay =

Zg

(35)

(36)

Zg

Figure 2. Resonant inductive MIMO WPT link.

The coupling coefficients are such that their absolute value is in the range [0, 1] with
a positive or negative sign depending on the sign of the induced voltage (i.e., a generic
coupling coefficient k;; between a coil i and a coil j is positive if a positive current in coil
i induces a positive voltage in coil j, otherwise it is negative). It is also convenient to
normalize the impedance matrix, Z, of the (M+ N)-port network formed by the coupled
inductors with respect to the inductor reactances. By introducing the normalization matrix

n, ‘ OnxN

ONxM ‘ n

where

(37)

(38)
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the normalized impedance matrix, z, is thus computed as

Za | Zc
z=nZn= |——— (39)
z} ‘ Zp

and the expressions of the submatrices of z are found to be

Q%,l jkalz e jkalM
. 1 .
jka [ * jka
Zy = NaZyn, = " Q‘Z ™ ’ (40)
Jkarng JKagny < QIM i
1 . . 7
Qb by, o Koy
. 1 .
oy g - kb
zZy, = anbnb = '12 sz .ZN ’ (41)
]kblN jkaN ﬁ |
jkCll ’ jkClN
Zc = NaZcny, = . (42)
jkCMl e jkCMN

As a consequence, the eigenvalue problem (12), and the equivalent one expressed
in (21), can be also stated in terms of normalized matrices as

— bu = Aau, (43)

du = puru, (44)

where, making use of (6) and (7), the expressions of the matrices a, b, r, and d, can be
derived as

[ Qzal 00 ke e ke |
0 --- Qi jkenn + ey
a=nAn= M (45)
—jkeyy + —jkepyy | O - 0
L 7jkC1N e 7jkCMN 0 - 0 |
and ) ;
0 0 | —jkey —jkeiy
0 0 _jkCMl ’ ]kCMN
b =nBn = : : 5 (46)
ey - ]kCM1 Qu, T 0
_jkclN o jkeyn| 0 i ]
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r = -(a+b) (47)

NI = N =

d = =(b-—a).

It can be noted that the matrices a, b, and, consequently, the maximum gain and
the optimal currents are only determined by the inductor quality factors and by the
coupling coefficients between the transmitting and the receiving coils, while they are
independent of the couplings between the transmitters and between the receivers. This
means that a possible coupling between either the receivers or the transmitters can be
always compensated.

In the next section, the implementation of the general MIMO case for inductive WPT
is illustrated for the special configurations of MISO and SIMO.

4. MISO and SIMO Cases
4.1. MISO: 2TX 1RX

The case of a link using two transmitters and one receiver (i.e., a multiple-input-single-
output case) is considered. The relevant normalized matrices are the following:

Qlal Jkay  Jkey

z = Jkay, Qia2 J klczl
Jken ke Qb,
Q2al 0 Jken
a = 0 Q2212 jkey
_j kC11 _j kC21 0
0 0 —jke,
b = . 0 ' 0 _JZCCZl (48)
J kCn J kC21 QT,l
and
1
o ? 0
r _= 0 Qaz ?
0 0 o
- Qlal 0 _j kCn
d = 0 —g5. ke
jkcll jkCZl Qibl
(49)
The parameter « is introduced and equals for this case:
& = \/Qb, Qo K2, + Qay Qv K2, +1
The eigenvalues of (43) are:
i w (50)
o = —a (51)
Uz = —1. (52)
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The expression for the maximum gain Gy is readily recovered as
Gy = Enin 2 s 1 _ K22 53
Hmin — 1 Pmax +1  a+1
For this eigenvalue the correspondent optimal currents (eigenvectors) are
L, =1
Io — Qaz kC21
2 Qal kC11
x—1
I, = —j .
” J Qal kCll
The optimal impedances on the generators’ side are given by Equation
. Qaz kC21
z = zg,— —
Gy Gy Qa1 ) an Qa1 kc11
x . Qa ke
z = — —jka, =1 54
Gy Qn,y ] Kaqp Qay Koy (54)
while the optimal impedance on the load is given by (34) as
«
Z], = —. (55)
Qp,
The unnormalized values are:
. . k
Zg, = Rg +jXg, = Ray & —jkay, Ry %
€11
_ : _ : Qal kCn
ZGZ = RGZ +7J XGZ =Ry a—j kalz R, T (56)
€21
ZL = RL = wa1 0. (57)
The corresponding generators’ values are given by (32) and are:
2u
V =
G] Qa1
20 ke
Vg, = 2L 58
G O For (58)

A few observations are in order:

¢ the optimal currents at the transmitter side are orthogonal to the current at the re-
ceiver’s end;

* Dby adding a transmitter, « is increased and the maximum gain Gy is also increased;

¢ the optimal load value depends on the coupling with both generators through a and
is increased when we add a second transmitter;

e  the optimal generators” impedances and voltages depend on the coupling of the load
with both generators, while the coupling between the two generators (k,,,) only affects
the reactive part.

With regard to the impedances of the optimal generators, according to (56) in the case
of coupled transmitters they comprise a compensating reactance. However, referring to
Figure 2, once (56) has been solved, the series compensating capacitors C;, could be adjusted
so to include the compensating reactances Xg,, thus avoiding the need of using complex
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impedances for the generators. In particular, by replacing the capacitors C, = 1/ (w} La,)
with the following series capacitors:

Ca;

sy (i=1,2), (59)

Cagi =

purely resistive impedances can be used for the generators (i.e., Zg, = Rg, and Zg, = Rg,).

4.2. SIMO: 1TX 2RX

The case of a link with a single transmitter and two receivers (i.e., a single-input-
multiple-output case) is considered in this subsection. The relevant normalized matrices
are the following:

Q%I1 ke jker
z = ] kC11 Qibl ] kb]z
. . 1

ke, jko, Qb,

QZal ke ke,

a = —jkey 0 0
—j ke, 0 0
0 _j kCll _j kClZ
b = ] kC11 Q%,l 0 (60)
Jker 0 Q%Jz
and
a; 0 0
r = 0 Q%l 0
0 0 Q%,Z
- Qlal —J kC11 =] kClz
d = Jken Q%,l 0
j kClZ 0 QLbz

In this case the parameter « takes the following value

&= /Quy Qu, 2, + Qay Qo K2, +1 (61)
and the eigenvalues are:
1—ua
mo= — (©2)
1+a
P2 = 5 (63)
wy = 0. (64)

The maximum gain Gy is obtained by selecting the second eigenvalue and has the
same expression as in Equation (53), with naturally the value of « given by (61). It is noted
that there is a null eigenvalue. The optimal values for the currents are:
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I, = 1
I _ . le kCll
o = )=
x+1
I _ . Qb2 kC]z
> = vt

The optimal impedances on the generator side is given by Equation (32)

«
g = 65
G o (65)
while the optimal impedances for the loads are given by (34) as
v . Opke
z _ — ik 2 "C12
b le ] Fore le kcn
4 . le kC11
zy, = = — . 66
LZ sz ] b12 sz kC12 ( )
The unnormalized values are:
, , Qp, K
Zy, = Ry, +jXy, =Ry a—jky, Ry, k27C12
€11
, . Qp, k
ZLZ = RL2 +7 XLZ = sz x—] kb12 sz klicll . (68)
€12
The corresponding generator value is given by (32) and is:
2
Vg = . 69
¢= o (69)

Note that analogous conclusions for the MISO configuration can be drawn as for the
MISO case:

e the optimal currents at the receiver side are orthogonal to the current at the transmit-
ter’s end;

* by adding a receiver, « is increased and the maximum gain Gy, is also increased;

e the value of the optimal generator impedance depends on the coupling with both
loads through « and is increased when we add a second receiver;

*  the optimal voltage V to be provided by the generator depends only on the coupling
of the generator with both loads, it is independent of the coupling between the
two loads;

¢ the real parts of the optimal load impedances depend only on the coupling of the
generator with both loads, while the coupling between the two loads (k;, ,) only affects
the reactive parts.

According to (68) in the case of coupled receivers the optimal loads comprise a
compensating reactance. However, as already observed for the MISO case, once (68) has
been solved, the series compensating capacitors G, see Figure 2, could be adjusted so
to include the compensating reactances Xi, thus avoiding the need of using complex
loads. In particular, by replacing the capacitors C,, = 1/ (w3 Ly,) with the following series

capacitors:
C Co (i=1,2) (70)
T T 1=1, ’

bl; (1 — (U(z) XLi Cbl-)
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purely resistive impedances can be used for the loads (i.e., Z;, = Ry, and Z;, = Ry,).

5. Validation

The theory presented in the previous sections can be easily applied starting from
the impedance matrix of a MIMO link. The impedance matrix can be obtained from
calculations, full-wave simulations, or measurements. Once the impedance matrix of the
link is available, the optimal generators (i.e., optimal values of the voltages and impedances
of the generators) and the optimal loads can be derived according to the following steps:

*  consider the ports where the generators will be connected and the ports where the
loads will be connected, number the ports of the network as illustrated in Figure 1;

e  partition of the Z matrix as indicated in (2);

e calculate the matrices A and B by using (6) and (7);

* calculate the matrices R and D by using (9) and (22)

e  solve the eigenvalue problem expressed in (21) for deriving the eigenvalues and the
eigenvectors (i.e., the optimal currents I);

*  compute the optimal voltages V,, from (2);

e compute the optimal values of the voltages and impedances of the generators by
using (32);

¢ calculate the optimal load impedances by using (34).
By using a computer algebra system, all the above calculations can be easily performed.

In the following part of this section two examples of application of this procedure is

illustrated. In the reported examples the impedance matrix has been derived from full-

wave simulations and the calculations required by the application of the theory have been

performed by using the software wxMaxima.

Numerical Results

In order to validate the theory, the case of a link using 3-TX and 2-RX is considered.
The analyzed configurations are shown in Figures 3 and 4, they will be referred to as Case
1 and Case 2 and differ for the relative position of the RXs with respect to the TXs, leading
to different values of the couplings. The link consists of five identical single turn coils with
a radius R,,;; of 300 mm. The radius of the conductor of the coils is 5 mm and the material
is steel (conductivity equal to 7.69 x 10° S/m). The coils were simulated in air and no
core was used. Referring to the reference system illustrated in Figure 3 with the z axis that
comes out of the sheet to form a right-handed Cartesian coordinate system with (x, y), the
coordinates of the centers of the coils are:

e Casel
Oa1 = (0,0,0),
Oaz = (2 Reoit + 2dgen/ O/O)/
Oas = (4 R coil +4dgen/ 0, 0),
Op1 = (3 Reoir +3 dgen/ 0, 10>,
Op2 = (Rcoil + dgen/ 0, 10)}

e (Case2
Oa1 = (0,0,0),
Oar = (2 Reoit + 2dgen1 0/0)/
Ousz = (4 Reoir +4dgen/ 0, 0)/
Op1 = (3 Reoir + 3dgen, 0, 10)/
Opy = (0, 0,10).

The value assumed for the parameter dge;, is 10 mm.
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B2 B1
Al A2 A3

Figure 3. Case 1: geometry analyzed for Case 1. In red the transmitting coils and in black the
receiving coils.

Front view
Y
X
B2 B1
Al A2 A3
Back view
Y
X
Bl B2

A3 A2 Al

Figure 4. Case 2: geometry analyzed for Case 2. In red the transmitting coils and in black the
receiving coils.

Considering that for the analyzed cases all the coils are identical (same geometry and
material), all the inductors and the resistors modeling the inductor losses assume the same
value (see Figure 2): L,; = Lfor (i = 1,...,3), Lyj = L, for (j = 1,...,2), R;; = R for
(i=1...,3),Ry =R, for (j=1,...,2).

The problem has been analyzed by using the time-domain solver of the full-wave
simulator CST MICROWAVE STUDIO and the circuital simulator AWR Design Environ-
ment. First of all, a full-wave simulation of a single coil has been performed in order to
calculate L and R; then, the value of the lumped capacitor to be added in series configura-
tion with the coils has been calculated so to have a frequency of resonance of 13.56 MHz.
The calculated values are summarized in Table 1. After that, full-wave simulations have
been performed for the configurations corresponding to Case 1 and Case 2 obtaining the
following impedance matrices:

035 —5.862j —0309; —0.894] 16338
—5862j 035 —5862j 16.338; 16.338]

Zcaser = | —0.309] —5862j 035  16.338] —0.894] (71)
—0.894j 16.338] 16338j 035 —5862]
16.338] 16.338] —0.894] —5.862j  0.35

035  —593j —0328] —0923] —114.34]
—-593j 035 —5872j 16405; 593j
Zcasez = | —0328] —5872j 035  16.388]  0.328] (72)

0923 16405] 16388 035  0.925]
—11434j 593j  0328] 0925; 035
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Starting from (71) and (72) the values reported in Tables 1 and 2 have been derived for
the coupling coefficients corresponding to the two analyzed configurations.

According to the theory presented in Section 2, the impedance matrices given in (71)
and in (72) have been used for calculating the matrices A, B, R, and D, then the generalized
eigenvalue problem expressed in (21) has been solved. For Case 1 the following eigenvalues

have been obtained:

1
H2
U3
M4
M5

—79.412, (73)
79.412,

—49.244,

49.244,

1.

Accordingly, for Case 1 yy,i, = —79.412 and pyax = 79.412, thus corresponding to a
maximum realizable gain Gy equal to 0.975. For Case 2, the calculated eigenvalues are:

1
H2
Hs
Ha
Hs

—327.171, (74)
327.171,

—66.099,

66.099,

1.

Accordingly, for Case 2 pt,,;,, = —327.171 and piyax = 327.171, thus corresponding to a
maximum realizable gain Gy equal to 0.994.

The analytical data calculated from the theory for the optimal terminating impedances
for Case 1 and Case 2 are summarized in Tables 1 and 2. These values were calculated
as ratios of the optimal currents, that are the eigenvectors obtained from (21), and the

corresponding voltages.

Table 1. Parameters of the equivalent circuit and optimal loads for Case 1. Cp; and Cg,j (or L1 ; and Lg ;) are the optimal

compensating capacitors (or inductors) to be used for the receiver i and the transmitter j.

L C Q fo
(uH) (pF) (MHz)
1.88 73.28 460 13.56
Coupling coefficients
ke k12 ket koo ka1 kezo
—5.58 x 1073 1.02 x 101 1.02 x 1071 1.02 x 101 1.02 x 1071 —5.58 x 1073
ka12 ka13 ka3 kp12
—3.66 x 1072 —-1.93 %1073 —3.66 x 1072 —3.66 x 1072
Optimal loads
Gm Rpj,j=12 Rgi,i=1,2,3 Ly Lia Lc Lo Lgs
Q) Q) (nH) (nH) (nH) (nH) (nH)
0.975 27.79 27.794 68.84 68.84 149.21 65.043 149.21
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Table 2. Parameters of the equivalent circuit and optimal loads for Case 2. Cp; and Cg,j (or L1 ; and Lg ;) are the optimal

compensating capacitors (or inductors) to be used for the receiver i and the transmitter j.

L C Q fo
(nH) (pF) (MHz)
1.88 73.28 460 13.56
Coupling coefficients
kc11 k12 keo1 ke2o ka1 ke
5.77 x 1073 —7.14 x 1071 1.02 x 1071 3.702 x 1072 1.02 x 101 2.04 x 1073
ka2 ka3 ka3 kp12
—3.7x 1072 —2.05x 1073 —3.67 x 1072 5.77 x 1073
Optimal loads
Gum R, j=1,2 Rgi,1=1,2,3 Cr1 Cr2 Ca1 Ca2 Ces
Q) Q) (nF) (nF) (nF) (nF) (nF)
0.994 114.51 114.51 36.30 0.108 6.72 0.215 766.49

In more detail, by setting for both the analyzed cases |I,01| =1 A, the following values

have been obtained for the other two input currents

e Casel:I;p=212A,1,3 =1A,
e Case2 I,;p=-542mA, I,;3 = —5.24mA.

For Case 1 the analytically calculated values for the optimal voltages in [V] are:

27.794 — 12713
58.805 — 11.725 j
27.794 — 12713 |,

—10.417 + 49.389

—10.417 +49.389

Vo =

(75)

thus corresponding to the following optimal terminating impedances in [Q]:

Zin = Zg =2779+1271j,
Zyy = Zgy=2779+554],
Zys = Zgz=2779+1271j,
Zyy = Zp1 =2779+586j,
Zyy = Zip=27.79+5.86j.

(76)

It can be seen that the imaginary parts of the optimal terminating impedances are
positive thus corresponding to the series compensating inductors reported in Table 1.
According to these results, the optimal sources can be implemented by using three voltage

generators delivering the voltages expressed in (32), i.e.,

Vo = 5559V
Vo, = 11761V
Ve = 5559V

(77)

and having the impedances expressed in (76) in series configuration. With regard to the
imaginary parts of the optimal terminations, as observed in Section 4, purely resistive
values could be used for both the loads and the generators impedances by adjusting the
values of the series capacitors C so to include the reactances reported in (76).
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The optimal voltages in [V] calculated for Case 2 are:

114.51 4 0.323

~6.210 — 5.899 ]
Vo=| —06-0009] (78)
—0.923 — 1.893 ]

—0.015 — 114.314;

and correspond to the following optimal terminating impedances in [Q]:

Zin = Zg =11451-0.323], (79)
Zwy = Zg =11451-108.779],

Zys = Zgz=11451—1.746],

Zyyy = Zp1=11451—55834],

Zyy = Zpp=11451-0.015],

while the optimal voltages to be delivered by the generators are:

Vo = 229.02V (80)
Vo = —1242V
Vo = -12V

For Case 2 it can be seen that the imaginary parts of the optimal terminating impedances
are negative thus corresponding to the series compensating capacitors reported in Table 2.

The analytical data were validated through circuital simulations. In more detail,
simulations were performed by modeling the links corresponding to Case 1 and Case 2 as
black box components described by the impedance matrix calculated through full-wave
simulations and reported in (71) and in (72), respectively. The transmitters ports were
connected to voltage generators with series complex impedances, while the receivers ports
were terminated on complex impedances.

The results obtained for Case 1 are reported in Figures 5-8. In this case the voltages
of the generators V; and the impedances Zs; were set according to (76)—(77). Figure 5
illustrates the behavior of the power gain as function of the resistive part of the load
impedances Ry; = Ryp. In particular, the figure compares the result obtained with and
without the reactive parts of all the terminating impedances. As it can be seen from Figure 5,
Gp has its maximum for R} = 27.79 Q, thus confirming theoretical data. However, it can be
also seen that the reactive parts of the terminating impedances have a negligible effect on
the power gain, this is probably due to the small values of the coupling coefficient between
the receivers. The behavior of Gp as function of the compensating reactances is further
investigated in Figure 6 where Gp as function of the load inductors L;; = Ly is reported.
It can be seen that for values of the load inductance up to about 100nH Gp has a very small
dependence on L};; thus confirming that for the analyzed case the reactances of the loads
do not play a key role.

The dependence on the generators has been also investigated. Figure 7 shows the
results obtained by varying the ratios of the current delivered by the generators, while
Figure 8 shows the power delivered to the loads as function of the generators impedances
R = Rg1 = Ry = Rgs. Both figures confirm the theory; in particular, from Figure 8 it
can be seen that the input power is divided equally between the two loads and that the
output power has a strong dependence on Rg.

The results obtained for Case 2 are given in Figures 9-11. Also in this case data
obtained from simulations are in a perfect agreement with the theory. It is worth observing
the results obtained for the output power as function of R¢. As it can be seen, as a result
of the application of the presented theory the power transfer takes place substantially
between the transmitter connected at port A; and the receiver connected at port By. In
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fact, due to the coupling between L,; and Ly, that is definitely stronger than all the other
couplings, in order to maximize the power gain the application of the theory leads to
a configuration where most of the input power is provided by the first transmitter and
delivered to the second receiver. This result is due to the optimized figure of merit, i.e.,
the power gain as defined in (10), and highlights that, in the case where it is important
to supply to each receiver a minimum power value, a different figure of merit should be
introduced and optimized.

1.00+
0.95—-
0.90—-
& 0.85—-

0.80-

— with compensating reactances
- - - - without compensating reactances

1 10 100 1000
R,;=R(Q)

Figure 5. Case 1: efficiency calculated for Case 1 by varying the resistive part of the loads Ry; =
R, = Ry while all the other parameters are set to the optimal values.

0.98-
0.97
0.96-
0.95-
o
0 .
0.941
0.93+
0.921

1 10 100 1000

L., =L, (nH)

68.84

Figure 6. Case 1: efficiency calculated for Case 1 by varying the compensating inductor of the loads,
i.e., Lp; = L, while all the other parameters are set to the optimal values.
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0.975-
0.970-

X _
O 0.965-

0.960+

0.955

1,

a

Figure 7. Case 1: efficiency calculated for Case 1 by varying the ratio of the input currents while all
the other parameters are set to the optimal values.

1.0

0.0 ——

1 10 100 1000
Rz (Q)

Figure 8. Case 1: output power calculated for Case 1 by varying the R (i.e., the resistive part of the
impedances of the generators).
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11451

—— with compensating reactances
- - - - without compensating reactances

10 100 1000
R1=R,(Q)

Figure 9. Case 2: efficiency calculated for Case 2 by varying Ry, while all the other parameters are set

to the optimal values.

1.00+
0.994
0.984

Figure 10. Case 2: efficiency calculated for Case 2 by varying the ratio of the input currents while all

the other parameters are set to the optimal values.
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0.0 —r—rry

1 10 100 1000
R

G

Figure 11. Case 2: output power calculated for Case 2 by varying the resistive part of the impedances
of the generators, Rg.

6. Conclusions

In this paper the problem of efficiency maximization has been solved for a resonant
inductive WPT link using multiple transmitters and receivers (MIMO configuration). For a
WPT link with M transmitters and N loads, the efficiency is defined as the ratio of the sum
of the powers delivered to the N loads and the sum of the powers entering the network from
the M ports connected to the transmitters. The general expressions of the optimal loads
and the optimal source impedances are presented. The proposed theory is general and
can be applied to any possible MIMO WPT link. For this reason, the presented procedure
can be adopted in several application scenarios; it can be exploited: (1) for maximizing
the efficiency of already fabricated MIMO links, starting from their measured impedance
matrix the optimal terminations can be determined, or (2) for designing new WPT links
through the evaluation of the maximum realizable efficiency for different configurations of
the coils.

Among the various application scenarios, the presented theory could be adopted in
designing MISO/SIMO/MIMO links for medical implants, for a desk for wireless recharge
of multiple devices, and in general for all applications where it is necessary to recharge
multiple devices or to obtain performance robust with respect to misalignment problems.

An example of application of the presented approach has been presented starting
from the impedance matrix of a 3-TX and 2-RX calculated through full-wave simulations.
The reported results validate the presented theory and demonstrate that its exploitation is
simple and straightforward.
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Appendix A. Some Insights into the Generalized Eigenvalue Problem

In this section a proof is given for the statement that, for each finite nonzero eigenvalue
A of problem (12), also 1/A is an eigenvalue of (12). It will also be demonstrated that
G(ab) — G(ba)
M M -
This statement can be demonstrated by noting that the determinant of uR—D can be
expanded as
det(uR—D) = (u—1)N"Mdet(R,) det(Ry,) (A1)
. det(Mz]/lZ-i-ley—Mo)
where
My = Iy + Ry XTI R, X,
Mo To— AvTo—
M; = R;'RIR; "X — R;'X! R, 'R. (A2)
M, = Iy — R; 'R/ R, 'R,
and I, represents the identity matrix of size M. Equation (A1) shows that there are always
(atleast) N — M eigenvalues equal to 1, and that the remaining 2M eigenvalues occur in
pairs (4, —u). In fact, it can be observed that My and M, are symmetric matrices, while
M; is skew symmetric and, consequently, jM; is Hermitian. Hence it results

det |:M2(—}l)2+jM1 (—“l/l) —Mo}
= det{(MzﬂzﬂMl#—Mo)H] (A3)
= det(Map® +jMy i —M)

As a consequence, if ymax > 1 is the maximum eigenvalue, then pimin = —Hmax-
Equation (A1) also suggests that problem (21) can be transformed into a quadratic
eigenvalue problem involving M x M matrices. This can be obtained by rewriting (21) as

. 1 . .
1a = _mRa ! (.MR;I— +]X;r)lb
X (Ad)
i, = fﬁRgWRC —iXec)ia
and by eliminating i}, from (A4), which yields
(#*Ma + My — Mo )iq = 0 (A5)

In order to solve problem (A4), it can be transformed into a linear generalized eigen-
value problem of size 2M x 2M by letting

I
u= l Ml ] (A6)
I
which allows us to rewrite (A4) as
—iM; | M M; | 0
—————|u=p|————|u (A7)

Iy |0
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Finally, it can be noted that M} is a positive definite matrix. In fact it can be written as

M = R;' (R, - RTR;'R.) (A8)

where the two factors are positive definite matrices, since the first factor is the inverse of a
positive definite matrix and the second one is the Schur complement of the block R, in the

positive definite matrix R. Hence (A7) can be turned into the ordinary eigenvalue problem

LML T | LMLy T

u=pu (A9)
T | 0

where
M; = L,L) (A10)

is the Cholesky factorization of M. After solving (A9), the currents at the ports of set B
can be computed by the second of (A4).

In the general case the solution of (A5) is quite involved, hence, unless M < N, it
is preferable to solve (21), directly. However, the reduction to the quadratic problem is
particularly advantageous if it results M; = 0. This happens, for instance, in the cases,
frequently encountered in the study of WPT systems, where the coupling matrix Z. is
purely real or purely imaginary. If Rc = 0 and X # 0, (A5) can be rewritten as

(IM + R;lxIRglxc) iy = vi, (A11)

with
V= yz (A12)

while, if X. = 0 and R # 0, (A5) can be rewritten as

(IM - R;lRIRglRC)ia = vi, (A13)
with .
V= ﬁ (A14)
hence, in both cases, (A5) is reduced to an ordinary eigenvalue problem of size M x M.
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