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Abstract: In this paper a general-purpose procedure for optimizing a resonant inductive wireless
power transfer link adopting a multiple-input-multiple-output (MIMO) configuration is presented.
The wireless link is described in a general–purpose way as a multi-port electrical network that can be
the result of either analytical calculations, full–wave simulations, or measurements. An eigenvalue
problem is then derived to determine the link optimal impedance terminations for efficiency maxi-
mization. A step-by-step procedure is proposed to solve the eigenvalue problem using a computer
algebra system, it provides the configuration of the link, optimal sources, and loads for maximizing
the efficiency. The main advantage of the proposed approach is that it is general: it is valid for any
strictly–passive multi–port network and is therefore applicable to any wireless power transfer (WPT)
link. To validate the presented theory, an example of application is illustrated for a link using three
transmitters and two receivers whose impedance matrix was derived from full-wave simulations.

Keywords: resonant coils; wireless power transfer; inductive coupling; optimal load; multiple input
multiple output; power gain

1. Introduction

Resonant inductive wireless power transfer (WPT) is an attractive and efficient way
for recharging electronic devices [1–4]. The simplest implementation consists of just
two magnetically coupled resonators in a single-input-single-output (SISO) configuration
where power is wirelessly transferred from a single transmitter to a single receiver. This
configuration has been widely investigated in the literature and the design equations
for maximizing the possible figures of merit of interest have been derived [5–9]. In the
SISO configuration, a possible strategy for improving the performance in terms of either
transfer distance or efficiency consists in using additional resonators interposed between
the transmitter and the receiver [10–12].

One of the main limitation of SISO resonant inductive WPT is the strong dependence
of the performance on the correct alignment between the transmitting and the receiving
coils. As a result, even a small displacement of the receiving coil with respect to the
transmitting coil can lead to a consistent deterioration of the performance. This problem
could be alleviated by using multiple transmitters thus resulting in a multiple-input-single-
output (MISO) configuration [13–17]. In these configurations the number and the positions
of the transmitters can be optimized so to achieve a nearly constant performance for a
receiver positioned in a given volume [14].

In [15] the solution for maximizing the efficiency has been formulated as a convex
optimization problem. In [16] the use of a linear array of transmitters, activated two at
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a time, is suggested for providing a constant output voltage to a load moving along a
linear path. In [17] the case of a link using two transmitters has been considered. In more
detail, in [17] the optimal load for both the maximum power and the maximum efficiency
solutions have been presented.

Another configuration of interest is that using a single transmitter and multiple receivers
(SIMO) that allows us to recharge multiple devices by using a single transmitter [18–23].

In [20], the case of a two-receiver system is considered and the optimal loads are
derived for the case of uncoupled receivers. The case of possibly coupled receivers is
considered in [21–23]. In particular, the maximum power transfer theorem for an N-port
is used in [21] for deriving the expressions of the optimal loads. In [22] a time-division
multiplexing is used to maximize the system efficiency.

The case of a multiple-input-multiple-output (MIMO) configuration has been ana-
lyzed in [24], where the optimal loads are calculated by imposing the first-order necessary
condition consisting in imposing the zeroing of the first-order partial derivatives of the effi-
ciency with respect to the input and output currents. However, the results reported in [24]
are derived assuming that all the couplings among the transmitters and the receivers are
purely inductive; this being equivalent to assume that the conductivity of the propagation
channel is negligibly small.

This limitation has overcome in [25,26], where the solution for maximizing the effi-
ciency is derived from a generalized eigenvalue problem. In [25] the case of a resonant
inductive WPT link in SIMO configuration is solved. In [26] the general solving equation is
derived for a generic multi-port network representative of a generic WPT link. The same
approach is adopted in this paper, where the analysis presented in [26] is specialized and
validated for the case of a resonant inductive WPT link in MIMO configuration.

It is demonstrated that for a strictly passive reciprocal MIMO network the expressions
of the optimal loads maximizing the efficiency can be derived from a generalized eigenvalue
problem. It is shown that the desired solution can be obtained by simple manipulation
of the impedance matrix of the network. Accordingly, in order to solve the problem of
efficiency maximization one just needs the impedance matrix of the link that can be the
result of measurements, simulations or theoretical analysis. A validation of the theory for
the case of a link using three transmitters and two receivers is presented.

The paper is organized as follows. In Section 2 the solution of efficiency maximization,
identified with the power gain of the link, is presented for the general case of a strictly
passive reciprocal (M + N)-port network. In Section 3 the solution is specialized for the
case of a MIMO resonant inductive WPT link. In Section 4 the special cases of MISO and
SIMO configurations are considered and discussed. The derived analytical formulas are
validated in Section 5 and some conclusions are drawn in Section 6.

2. Power Gain Maximization for a Lossy Reciprocal Multiport Network

In this section the general case of a strictly passive reciprocal (M + N)-port network
is considered and the problem of power transfer efficiency maximization is analyzed. It is
shown that the problem of finding the optimal terminating impedances can be formulated
as a generalized eigenvalue problem.

2.1. Statement of the Problem

The analyzed problem is illustrated in Figure 1, a strictly passive reciprocal multiport
network N, operating in sinusoidal steady-state, whose ports are divided into two sets of
M and N ports is considered. In the following the two sets will be referred as the set A and
the set B, and their ports will be denoted by the indexes a1, . . . , aM and b1, . . . , bN . The
network is described in terms of an impedance matrix Z.

It is assumed that the set A of M ports is connected to an M-port power source,
represented by the equivalent Thévenin circuit depicted in Figure 1, which consists of an
M-port network NG, described by an impedance matrix ZG, and of a set of M sinusoidal
generators. The M-vector of the generator voltage phasors will be indicated as VG. In
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many practical cases, the source may consist of a set of uncoupled generators. In these
cases, the matrix ZG is diagonal, i.e. ZG = diag(ZGi ), with i = 1, . . . , M.

ZG1

− +

VG1

Ia1

+

−

Va1

ZGM

− +

VGM

IaM

+

−

VaM

ZL1

Ib1

+

−

Vb1

ZLN

IbN

+

−

VbN

NNG NL

Figure 1. Schematic representation of a multiple-input-multiple-output (MIMO) wireless power
transfer (WPT) link.

It is also assumed that the set B of N is connected to a load network NL, described
by an impedance matrix ZL. In practical cases, NL may consist of N independent load
impedances, hence ZL = diag(ZLi ), with i = 1, . . . , N. According to the impedance matrix
representation of the network, it is possible to write:

V = ZI = (R + jX)I. (1)

It is convenient to partition, with respect to M and N, the vectors V and I of voltage
and current phasors at the ports of N and, accordingly, the matrix Z as Va

Vb

 =

 Za Zc

ZT
c Zb

 Ia

Ib


=

 Ra + jXa Rc + jXc

RT
c + jXT

c Rb + jXb

 Ia

Ib

,

(2)

where T denotes the transpose. The subscript a indicates the M-subvectors and the M×M
submatrices corresponding to the ports of set A. Similarly the subscript b indicates the
N-subvectors and the N × N submatrices corresponding to the ports of set B. Finally, the
subscript c is used to denote the N×M transfer-impedance submatrix relating the voltages
at the ports of set B to the currents at the ports of set A.

The problem of determining the impedances ZG and ZL and the source voltages
VG which realize the maximum power transfer at the input and the output ports of N
simultaneously is then considered.

It can be shown [27] that, in the case of multiport networks, the impedances providing
the maximum power transfer are not univocally defined, but there is a unique set of port
currents corresponding to the maximum power transfer operation. Hence it is convenient
to state the problem in terms of currents, and to seek for the currents Ia and Ib for which
the maximum power transfer between the two sets of ports is achieved.
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Making use of (2), the average powers entering the network N at the two sets of ports
can be expressed as

Pa =
1
4

(
VH

a Ia + IHa Va

)
=

=
1
4

[
IHa
(

Za + ZH
a

)
Ia + IHa ZcIb + IHb ZH

c Ia

]
,

(3)

and
Pb =

1
4

(
VH

b Ib + IHb Vb

)
=

=
1
4

[
IHb
(

Zb + ZH
b

)
Ib + IHb ZT

c Ia + IHa Z∗c Ib

]
,

(4)

where ∗ denotes the conjugate, and H the conjugate transpose. The previous equations can
be cast in the form

Pa =
1
4

IHAI,

Pb =
1
4

IHBI,
(5)

where the matrices A and B are defined as

A =

 Za + ZH
a Zc

ZH
c 0M

 =

 2Ra RT
c + jXT

c

Rc − jXc 0M

 (6)

and

B =

 0N Z∗c

ZT
c Zb + ZH

b

 =

 0N RT
c − jXT

c

Rc + jXc 2Rb

. (7)

Since N is assumed to be reciprocal and strictly passive, Z is symmetric and, for any
nonzero vector I ∈ CM+N , the total average power PT entering N satisfies the condition

PT = Pa + Pb =
1
4

(
VHI + IHV

)
=

=
1
4

IH
(

Z + ZH
)

I > 0.
(8)

Hence Z + ZH, and, consequently, Za + ZH
a and Zb + ZH

b are positive definite symmet-
ric real matrices. It can also be noted that it results

1
2
(A + B) =

1
2

(
Z + ZH

)
= R. (9)

From (6) and (7) it can be recognized that, for M < N, A is singular and B is nonsingu-
lar if and only if Zc has full rank. Similarly, for M > N, B is singular and A is nonsingular
if and only if Zc has full rank. Finally, for M = N both A and B are nonsingular if and only
if Zc is nonsingular.

If the network is operated as shown in Figure 1, i.e., the power supply is provided
at ports a1, . . . , aM, the input power is Pin = Pa and the power delivered to the load is
Pout = −Pb. Hence, the network power gain can be expressed as

G(ab)
P =

Pout

Pin
= −Pb

Pa
= − IHBI

IHAI
. (10)

It is noted that G(ab)
P has the form of a generalized Rayleigh quotient. Its maximum

can be thus determined by solving a generalized eigenvalue problem. As a matter of fact,
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using the quotient rule and taking into account that A and B are Hermitian matrices, the
differential of GP can be calculated as

δG(ab)
P = −2

δIHBI IHAI− IHBI δIHAI(
IHAI

)2 =

= −2δIH
BI + GPAI

IHAI
.

(11)

Hence, requiring δG(ab)
p = 0 yields

− Bu = λAu, (12)

which can be recognized as a generalized eigenvalue problem with λ = G(ab)
p being the

eigenvalue and u = I the corresponding eigenvector.
In the given hypotheses, the maximum power gain, and the corresponding currents

(up to an arbitrary factor) can be determined by solving (12) with the constraint

0 < λ < 1. (13)

In fact, since for u 6= 0 it results

uH
(

Z + ZH
)

u =
(

uHAu + uHBu
)
=

= (1− λ)uHAu > 0,
(14)

condition (13) implies

Pa =
1
4

uHAu > 0,

Pb =
1
4

uHBu = −1
4

λuHAu < 0,
(15)

which confirms that power transfer occurs from ports a1, . . . , aM to ports b1, . . . , bN .
If λo and uo are the maximum eigenvalue and the associate eigenvector satisfying (13),

the maximum power gain, G(ab)
M , and the corresponding port currents, Io, are

G(ab)
M = λo, (16)

and

Io =

 Iao

Ibo

 = uo. (17)

It can be observed that by (12) it is also possible to determine the maximum power
gain when the role of the ports is interchanged, that is when the power supply is provided
at ports b1, . . . , bN . In this case the power gain is G(ba)

P = 1/λ, the corresponding currents
are still given by u, and the solution must satisfy the constraint

λ > 1 (18)

which, according to (14), provides Pa < 0 and, consequently, Pb > 0. In this case the
optimal gain corresponds to the minimum λ satisfying (18).

It can be demonstrated that if λ is a finite nonzero eigenvalue of (12), then also 1/λ is
an eigenvalue. A proof is provided in Appendix A. It will also be shown that the maximum
power gain has the same value in both directions: G(ab)

M = G(ba)
M .
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2.2. Solving the Generalized Eigenvalue Problem

It can be noted that both A and B are independent of Xa and Xb. As a consequence,
the maximum of G(ab)

M and the corresponding port currents do not depend on the reactive
couplings among the ports of set A and among the ports of set B.

When A or B is nonsingular, it is possible to convert (12) into an ordinary eigenvalue
problem by multiplying both sides by A−1 or B−1, however, this transformation can not be
applied in the general case. Nevertheless, it is always possible to transform (12) into an
equivalent problem involving a positive definite matrix by adding −Au to both sides

− (A + B)u = (λ− 1)Au. (19)

By letting

λ =
µ + 1
µ− 1

, (20)

(19) can be transformed into the equivalent problem

Du = µRu, (21)

where the matrix D is

D =
1
2
(B−A) =

 −Ra −jXT
c

jXc Rb

. (22)

Since, as it was previously shown, R is positive definite, (21) can be always trans-
formed into an ordinary Hermitian eigenvalue problem. In fact, by introducing the
Cholesky decomposition of R,

R = CCT, (23)

where C is a lower triangular real matrix, (21) can be rewritten as

C−1DC−Tu = µu. (24)

This allows us to state that all the eigenvalues of (21) and, consequently, all the
eigenvalues of (12) are real. Moreover, according to the Courant–Fischer–Weyl min–max
theorem, the minimum and maximum eigenvalue of (21) correspond to the absolute
minimum and the absolute maximum of the function

µ(u) =
uHDu
uHRu

(25)

for u ∈ CN+M \ {0}.
Since, for µ < −1, G(ab) is a monotonic increasing function of µ with values ranging

in the interval ]0, 1[, if the minimum eigenvalue satisfies the condition µmin < −1, the
maximum power transfer efficiency from A to B is given by

G(ab)
M =

µmin + 1
µmin − 1

= 1− 2
1− µmin

(26)

and the eigenvector associated to µmin represents (up to an arbitrary scale factor) the port
currents in maximum efficiency operation.

In a similar way it is possible to show that the power transfer efficiency from B to A,
has a maximum if the maximum eigenvalue satisfies the condition µmax > 1, and in this
case it results

G(ba)
M =

µmax − 1
µmax + 1

= 1− 2
1 + µmax

. (27)
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2.3. Calculation of the Optimal Terminating Networks NG and NL

After computing the optimal currents (17) the corresponding port voltages

Vo =

 Vao

Vbo

 (28)

can be derived by (2), then the optimal terminations for the network N can be readily
determined as follows.

On the source side, the impedance matrix of NG and the generator voltages are subject
to the constraint

VG − ZGIao = Vao. (29)

In addition, since the M-port source is supposed to operate in maximum power
transfer conditions, Iao must coincide with its optimal current, which requires [27]

VG =
(

ZG + ZH
G

)
Iao. (30)

For M > 1, the values of VG and ZG, which satisfy these conditions, are not unique.
In fact, by combining (29) and (30), the result is that any matrix ZG such that

ZH
GIao = Vao (31)

represents an acceptable solution. In particular it can be noted that it is possible to realize
ZG as a set of M independent passive impedances, provided that the possible zero elements
of Iao correspond to zero elements of Vao, and that the phase difference between any two
corresponding elements of Iao and Vao is ≤ 90◦ in absolute value. In this case it is possible
to set

ZGi = Zaoi =
V∗aoi

I∗aoi

.

VGi = 2 Re
[
ZGi

]
I∗aoi

(32)

On the output side, the impedance matrix of NLis only subject to the constraint

Vbo = −ZLIbo, (33)

hence, also in this case, the solution is not unique. In particular, the diagonal solution

ZLi = Zboi
= −

Vboi

Iboi

(34)

can be realized with passive impedance if the possible zero elements of Ibo correspond to
zero elements of Vbo, and the phase difference between voltages and currents at each port
is ≥ 90◦ in absolute value.

3. The Case of a Resonant Inductive WPT Link

The WPT link illustrated in Figure 2 is considered. It is assumed that the WPT link
is realized by two sets of coupled inductors, La1 , . . . , LaM and Lb1 , . . . , LbN . Each inductor
is compensated by a series capacitor realizing the resonance condition at the angular
frequency ω0: Ca1 = 1/

(
ω2

0 La1

)
, . . . , CaM = 1/

(
ω2

0 LaM

)
and Cb1 = 1/

(
ω2

0 Lb1

)
, . . . , CbN =

1/
(
ω2

0 LbN

)
.

It is also assumed that the WPT link is driven by a set of M sinusoidal generators with
angular frequency ω0. In the following the two sets of inductors will also be referred as the
transmitting coils and the receiving coils, respectively.

The inductor losses are represented by the series resistances Ra1 , . . . , RaM and Rb1 , . . . , RbN .
The mutual inductance between the inductors Lai and Laj , with i 6= j and i, j = 1, . . . , M
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is indicated by Maij . Similarly, the mutual inductance between the inductors Lbi
and Lbj

,
with i 6= j and i, j = 1, . . . , N is indicated by Mbij

. Finally, the mutual inductance between
the inductors Lai and Lbj

, with i = 1, . . . , M and j = 1, . . . , N is indicated by Mcij .
It is convenient to introduce the inductor quality factors

Qai =
ω0Lai

Rai

(i = 1, . . . , M),

Qbi
=

ω0Lbi

Rbi

(i = 1, . . . , N),
(35)

and the coupling coefficients, defined as

kaij =
Maij√
Lai Laj

(i, j = 1, . . . , M i 6= j),

kbij
=

Mbij√
Lbi

Lbj

(i, j = 1, . . . , N i 6= j),

kcij =
Mcij√
Lai Lbj

(i = 1, . . . , M, j = 1, . . . , N).

(36)

Ra1Ia1

La1

Ca1

+

−

Va1ZG1

− +

VG1

RaMIaM

LaM

CaM

+

−

VaMZGM

− +

VGM

Cb1

Lb1

Rb1 Ib1

+

−

Vb1 ZL1

CbN

LbN

RbN IbN

+

−

VbN ZLN

NG NLMa1M Mb1N

Mc11

McMN

Mc1N

McM1

Figure 2. Resonant inductive MIMO WPT link.

The coupling coefficients are such that their absolute value is in the range [0, 1] with
a positive or negative sign depending on the sign of the induced voltage (i.e., a generic
coupling coefficient kij between a coil i and a coil j is positive if a positive current in coil
i induces a positive voltage in coil j, otherwise it is negative). It is also convenient to
normalize the impedance matrix, Z, of the (M+N)-port network formed by the coupled
inductors with respect to the inductor reactances. By introducing the normalization matrix

n =

 na 0M×N

0N×M nb

, (37)

where

na = diag

(
1√

ω0Lai

)
(i = 1, . . . , M),

nb = diag

(
1√

ω0Lbi

)
(i = 1, . . . , N),

(38)
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the normalized impedance matrix, z, is thus computed as

z = nZn =

 za zc

zTc zb

 (39)

and the expressions of the submatrices of z are found to be

za = naZana =



1
Qa1

jka12 · · · jka1M

jka12
1

Qa2
· · · jka2M

...
...

. . .
...

jka1M jka2M · · · 1
QaM

, (40)

zb = nbZbnb =



1
Qb1

jkb12 · · · jkb1N

jkb12
1

Qb2
· · · jkb2N

...
...

. . .
...

jkb1N jkb2N · · ·
1

QbN

, (41)

zc = naZcnb =


jkc11 · · · jkc1N

...
. . .

...
jkcM1 · · · jkcMN

. (42)

As a consequence, the eigenvalue problem (12), and the equivalent one expressed
in (21), can be also stated in terms of normalized matrices as

− bu = λau, (43)

du = µru, (44)

where, making use of (6) and (7), the expressions of the matrices a, b, r, and d, can be
derived as

a = nAn =



2
Qa1

· · · 0 jkc11 · · · jkc1N

...
. . .

...
...

. . .
...

0 · · · 2
QaM

jkcM1 · · · jkcMN

−jkc11 · · · −jkcM1 0 · · · 0
...

. . .
...

...
. . .

...
−jkc1N · · · −jkcMN 0 · · · 0


(45)

and

b = nBn =



0 · · · 0 −jkc11 · · · −jkc1N
...

. . .
...

...
. . .

...
0 · · · 0 −jkcM1 · · · −jkcMN

jkc11 · · · jkcM1
2

Qb1
· · · 0

...
. . .

...
...

. . .
...

jkc1N · · · jkcMN 0 · · · 2
QbN


(46)
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r =
1
2
(a + b) (47)

d =
1
2
(b− a).

It can be noted that the matrices a, b, and, consequently, the maximum gain and
the optimal currents are only determined by the inductor quality factors and by the
coupling coefficients between the transmitting and the receiving coils, while they are
independent of the couplings between the transmitters and between the receivers. This
means that a possible coupling between either the receivers or the transmitters can be
always compensated.

In the next section, the implementation of the general MIMO case for inductive WPT
is illustrated for the special configurations of MISO and SIMO.

4. MISO and SIMO Cases
4.1. MISO: 2TX 1RX

The case of a link using two transmitters and one receiver (i.e., a multiple-input-single-
output case) is considered. The relevant normalized matrices are the following:

z =


1

Qa1
j ka12 j kc11

j ka12
1

Qa2
j kc21

j kc11 j kc21
1

Qb1


a =


2

Qa1
0 j kc11

0 2
Qa2

j kc21

−j kc11 −j kc21 0


b =

 0 0 −j kc11

0 0 −j kc21

j kc11 j kc21
2

Qb1

 (48)

and

r =


1

Qa1
0 0

0 1
Qa2

0

0 0 1
Qb1



d =


− 1

Qa1
0 −j kc11

0 − 1
Qa2

−j kc21

j kc11 j kc21
1

Qb1

.

(49)

The parameter α is introduced and equals for this case:

α =
√

Qb1 Qa2 k2
c21

+ Qa1 Qb1 k2
c11

+ 1

The eigenvalues of (43) are:

µ1 = α (50)

µ2 = −α (51)

µ3 = −1 . (52)
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The expression for the maximum gain GM is readily recovered as

GM =
µmin + 1
µmin − 1

=
µmax − 1
µmax + 1

=
α− 1
α + 1

. (53)

For this eigenvalue the correspondent optimal currents (eigenvectors) are

Io1 = 1

Io2 =
Qa2 kc21

Qa1 kc11

Io3 = −j
α− 1

Qa1 kc11

.

The optimal impedances on the generators’ side are given by Equation

zG1 = zG1

α

Qa1

− j ka12

Qa2 kc21

Qa1 kc11

zG2 =
α

Qa2

− j ka12

Qa1 kc11

Qa2 kc21

(54)

while the optimal impedance on the load is given by (34) as

zL =
α

Qb1

. (55)

The unnormalized values are:

ZG1 = RG1 + j XG1 = Ra1 α− j ka12 Ra1

Qa2 kc21

kc11

ZG2 = RG2 + j XG2 = Ra2 α− j ka12 Ra2

Qa1 kc11

kc21

(56)

ZL = RL = Rb1 α . (57)

The corresponding generators’ values are given by (32) and are:

VG1 =
2α

Qa1

VG2 =
2α

Qa1

kc21

kc11

. (58)

A few observations are in order:

• the optimal currents at the transmitter side are orthogonal to the current at the re-
ceiver’s end;

• by adding a transmitter, α is increased and the maximum gain GM is also increased;
• the optimal load value depends on the coupling with both generators through α and

is increased when we add a second transmitter;
• the optimal generators’ impedances and voltages depend on the coupling of the load

with both generators, while the coupling between the two generators (ka12 ) only affects
the reactive part.

With regard to the impedances of the optimal generators, according to (56) in the case
of coupled transmitters they comprise a compensating reactance. However, referring to
Figure 2, once (56) has been solved, the series compensating capacitors Cai could be adjusted
so to include the compensating reactances XGi , thus avoiding the need of using complex
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impedances for the generators. In particular, by replacing the capacitors Cai = 1/
(
ω2

0 Lai

)
with the following series capacitors:

Cagi
=

Cai

(1−ω2
0 XGi Cai )

(i = 1, 2), (59)

purely resistive impedances can be used for the generators (i.e., ZG1 = RG1 and ZG2 = RG2 ).

4.2. SIMO: 1TX 2RX

The case of a link with a single transmitter and two receivers (i.e., a single-input-
multiple-output case) is considered in this subsection. The relevant normalized matrices
are the following:

z =


1

Qa1
j kc11 j kc12

j kc11
1

Qb1
j kb12

j kc12 j kb12
1

Qb2


a =


2

Qa1
j kc11 j kc12

−j kc11 0 0
−j kc12 0 0



b =

 0 −j kc11 −j kc12

j kc11
2

Qb1
0

j kc12 0 2
Qb2

 (60)

and

r =


1

Qa1
0 0

0 1
Qb1

0

0 0 1
Qb2



d =


− 1

Qa1
−j kc11 −j kc12

j kc11
1

Qb1
0

j kc12 0 1
Qb2

 .

In this case the parameter α takes the following value

α =
√

Qa1 Qb1 k2
c11

+ Qa1 Qb2 k2
c12

+ 1 (61)

and the eigenvalues are:

µ1 =
1− α

2
(62)

µ2 =
1 + α

2
(63)

µ3 = 0 . (64)

The maximum gain GM is obtained by selecting the second eigenvalue and has the
same expression as in Equation (53), with naturally the value of α given by (61). It is noted
that there is a null eigenvalue. The optimal values for the currents are:
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Io1 = 1

Io2 = −j
Qb1 kc11

α + 1

Io3 = −j
Qb2 kc12

α + 1
.

The optimal impedances on the generator side is given by Equation (32)

zG =
α

Qa1

(65)

while the optimal impedances for the loads are given by (34) as

zL1 =
α

Qb1

− j kb12

Qb2 kc12

Qb1 kc11

zL2 =
α

Qb2

− j kb12

Qb1 kc11

Qb2 kc12

. (66)

The unnormalized values are:

ZG = RG = Ra1 α (67)

ZL1 = RL1 + j XL1 = Rb1 α− j kb12 Rb1

Qb2 kc12

kc11

ZL2 = RL2 + j XL2 = Rb2 α− j kb12 Rb2

Qb1 kc11

kc12

. (68)

The corresponding generator value is given by (32) and is:

VG =
2α

Qa1

. (69)

Note that analogous conclusions for the MISO configuration can be drawn as for the
MISO case:

• the optimal currents at the receiver side are orthogonal to the current at the transmit-
ter’s end;

• by adding a receiver, α is increased and the maximum gain GM is also increased;
• the value of the optimal generator impedance depends on the coupling with both

loads through α and is increased when we add a second receiver;
• the optimal voltage VG to be provided by the generator depends only on the coupling

of the generator with both loads, it is independent of the coupling between the
two loads;

• the real parts of the optimal load impedances depend only on the coupling of the
generator with both loads, while the coupling between the two loads (kb12 ) only affects
the reactive parts.

According to (68) in the case of coupled receivers the optimal loads comprise a
compensating reactance. However, as already observed for the MISO case, once (68) has
been solved, the series compensating capacitors Cbi

, see Figure 2, could be adjusted so
to include the compensating reactances XLi , thus avoiding the need of using complex
loads. In particular, by replacing the capacitors Cbi

= 1/
(
ω2

0 Lbi

)
with the following series

capacitors:

Cbli =
Cbi

(1−ω2
0 XLi Cbi

)
(i = 1, 2), (70)
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purely resistive impedances can be used for the loads (i.e., ZL1 = RL1 and ZL2 = RL2 ).

5. Validation

The theory presented in the previous sections can be easily applied starting from
the impedance matrix of a MIMO link. The impedance matrix can be obtained from
calculations, full-wave simulations, or measurements. Once the impedance matrix of the
link is available, the optimal generators (i.e., optimal values of the voltages and impedances
of the generators) and the optimal loads can be derived according to the following steps:

• consider the ports where the generators will be connected and the ports where the
loads will be connected, number the ports of the network as illustrated in Figure 1;

• partition of the Z matrix as indicated in (2);
• calculate the matrices A and B by using (6) and (7);
• calculate the matrices R and D by using (9) and (22)
• solve the eigenvalue problem expressed in (21) for deriving the eigenvalues and the

eigenvectors (i.e., the optimal currents Io);
• compute the optimal voltages Vo from (2);
• compute the optimal values of the voltages and impedances of the generators by

using (32);
• calculate the optimal load impedances by using (34).

By using a computer algebra system, all the above calculations can be easily performed.
In the following part of this section two examples of application of this procedure is
illustrated. In the reported examples the impedance matrix has been derived from full-
wave simulations and the calculations required by the application of the theory have been
performed by using the software wxMaxima.

Numerical Results

In order to validate the theory, the case of a link using 3-TX and 2-RX is considered.
The analyzed configurations are shown in Figures 3 and 4, they will be referred to as Case
1 and Case 2 and differ for the relative position of the RXs with respect to the TXs, leading
to different values of the couplings. The link consists of five identical single turn coils with
a radius Rcoil of 300 mm. The radius of the conductor of the coils is 5 mm and the material
is steel (conductivity equal to 7.69 × 106 S/m). The coils were simulated in air and no
core was used. Referring to the reference system illustrated in Figure 3 with the z axis that
comes out of the sheet to form a right-handed Cartesian coordinate system with (x, y), the
coordinates of the centers of the coils are:

• Case 1
OA1 = (0, 0, 0),
OA2 = (2 Rcoil + 2 dgen, 0, 0),
OA3 = (4 Rcoil + 4 dgen, 0, 0),
OB1 = (3 Rcoil + 3 dgen, 0, 10),
OB2 = (Rcoil + dgen, 0, 10);

• Case 2
OA1 = (0, 0, 0),
OA2 = (2 Rcoil + 2 dgen, 0, 0),
OA3 = (4 Rcoil + 4 dgen, 0, 0),
OB1 = (3 Rcoil + 3 dgen, 0, 10),
OB2 = (0, 0, 10).

The value assumed for the parameter dgen is 10 mm.
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Figure 3. Case 1: geometry analyzed for Case 1. In red the transmitting coils and in black the
receiving coils.

Figure 4. Case 2: geometry analyzed for Case 2. In red the transmitting coils and in black the
receiving coils.

Considering that for the analyzed cases all the coils are identical (same geometry and
material), all the inductors and the resistors modeling the inductor losses assume the same
value (see Figure 2): Lai = L for (i = 1, . . . , 3), Lbj = L, for (j = 1, . . . , 2), Rai = R for
(i = 1, . . . , 3), Rbj = R, for (j = 1, . . . , 2).

The problem has been analyzed by using the time-domain solver of the full-wave
simulator CST MICROWAVE STUDIO and the circuital simulator AWR Design Environ-
ment. First of all, a full-wave simulation of a single coil has been performed in order to
calculate L and R; then, the value of the lumped capacitor to be added in series configura-
tion with the coils has been calculated so to have a frequency of resonance of 13.56 MHz.
The calculated values are summarized in Table 1. After that, full-wave simulations have
been performed for the configurations corresponding to Case 1 and Case 2 obtaining the
following impedance matrices:

ZCase1 =


0.35 −5.862 j −0.309 j −0.894 j 16.338 j
−5.862 j 0.35 −5.862 j 16.338 j 16.338 j
−0.309 j −5.862 j 0.35 16.338 j −0.894 j
−0.894 j 16.338 j 16.338 j 0.35 −5.862 j
16.338 j 16.338 j −0.894 j −5.862 j 0.35

 (71)

ZCase2 =


0.35 −5.93 j −0.328 j −0.923 j −114.34 j
−5.93 j 0.35 −5.872 j 16.405 j 5.93 j
−0.328 j −5.872 j 0.35 16.388 j 0.328 j
−0.923 j 16.405 j 16.388 j 0.35 0.925 j
−114.34 j 5.93 j 0.328 j 0.925 j 0.35

 (72)
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Starting from (71) and (72) the values reported in Tables 1 and 2 have been derived for
the coupling coefficients corresponding to the two analyzed configurations.

According to the theory presented in Section 2, the impedance matrices given in (71)
and in (72) have been used for calculating the matrices A, B, R, and D, then the generalized
eigenvalue problem expressed in (21) has been solved. For Case 1 the following eigenvalues
have been obtained:

µ1 = −79.412, (73)

µ2 = 79.412,

µ3 = −49.244,

µ4 = 49.244,

µ5 = 1.

Accordingly, for Case 1 µmin = −79.412 and µmax = 79.412, thus corresponding to a
maximum realizable gain GM equal to 0.975. For Case 2, the calculated eigenvalues are:

µ1 = −327.171, (74)

µ2 = 327.171,

µ3 = −66.099,

µ4 = 66.099,

µ5 = 1.

Accordingly, for Case 2 µmin = −327.171 and µmax = 327.171, thus corresponding to a
maximum realizable gain GM equal to 0.994.

The analytical data calculated from the theory for the optimal terminating impedances
for Case 1 and Case 2 are summarized in Tables 1 and 2. These values were calculated
as ratios of the optimal currents, that are the eigenvectors obtained from (21), and the
corresponding voltages.

Table 1. Parameters of the equivalent circuit and optimal loads for Case 1. CL,i and CG,j (or LL,i and LG,j) are the optimal
compensating capacitors (or inductors) to be used for the receiver i and the transmitter j.

L C Q f0
(µH) (pF) (MHz)

1.88 73.28 460 13.56

Coupling coefficients

kc11 kc12 kc21 kc22 kc31 kc32

−5.58× 10−3 1.02× 10−1 1.02× 10−1 1.02× 10−1 1.02× 10−1 −5.58× 10−3

ka12 ka13 ka23 kb12

−3.66× 10−2 −1.93× 10−3 −3.66× 10−2 −3.66× 10−2

Optimal loads

GM RLj, j = 1, 2 RGi, i = 1, 2, 3 LL1 LL2 LG1 LG2 LG3
(Ω) (Ω) (nH) (nH) (nH) (nH) (nH)

0.975 27.79 27.794 68.84 68.84 149.21 65.043 149.21
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Table 2. Parameters of the equivalent circuit and optimal loads for Case 2. CL,i and CG,j (or LL,i and LG,j) are the optimal
compensating capacitors (or inductors) to be used for the receiver i and the transmitter j.

L C Q f0
(nH) (pF) (MHz)

1.88 73.28 460 13.56

Coupling coefficients

kc11 kc12 kc21 kc22 kc31 kc32

5.77× 10−3 −7.14× 10−1 1.02× 10−1 3.702× 10−2 1.02× 10−1 2.04× 10−3

ka12 ka13 ka23 kb12

−3.7× 10−2 −2.05× 10−3 −3.67× 10−2 5.77× 10−3

Optimal loads

GM RLj, j = 1, 2 RGi, i = 1, 2, 3 CL1 CL2 CG1 CG2 CG3
(Ω) (Ω) (nF) (nF) (nF) (nF) (nF)

0.994 114.51 114.51 36.30 0.108 6.72 0.215 766.49

In more detail, by setting for both the analyzed cases |Iao1| =1 A, the following values
have been obtained for the other two input currents

• Case 1: Iao2 = 2.12 A, Iao3 = 1 A,
• Case 2: Iao2 = −54.2 mA, Iao3 = −5.24 mA.

For Case 1 the analytically calculated values for the optimal voltages in [V] are:

Vo =


27.794− 12.713 j
58.805− 11.725 j
27.794− 12.713 j
−10.417 + 49.389 j
−10.417 + 49.389 j

, (75)

thus corresponding to the following optimal terminating impedances in [Ω]:

Zao1 = ZG1 = 27.79 + 12.71 j, (76)

Zao2 = ZG2 = 27.79 + 5.54 j,

Zao3 = ZG3 = 27.79 + 12.71 j,

Zbo1 = ZL1 = 27.79 + 5.86 j,

Zbo2 = ZL2 = 27.79 + 5.86 j.

It can be seen that the imaginary parts of the optimal terminating impedances are
positive thus corresponding to the series compensating inductors reported in Table 1.
According to these results, the optimal sources can be implemented by using three voltage
generators delivering the voltages expressed in (32), i.e.,

VG1 = 55.59 V (77)

VG2 = 117.61 V

VG3 = 55.59 V

and having the impedances expressed in (76) in series configuration. With regard to the
imaginary parts of the optimal terminations, as observed in Section 4, purely resistive
values could be used for both the loads and the generators impedances by adjusting the
values of the series capacitors C so to include the reactances reported in (76).



Energies 2021, 14, 2194 18 of 25

The optimal voltages in [V] calculated for Case 2 are:

Vo =


114.51 + 0.323 j
−6.210− 5.899 j
−0.6− 0.009 j
−0.923− 1.893 j
−0.015− 114.314 j

 (78)

and correspond to the following optimal terminating impedances in [Ω]:

Zao1 = ZG1 = 114.51− 0.323 j, (79)

Zao2 = ZG2 = 114.51− 108.779 j,

Zao3 = ZG3 = 114.51− 1.746 j,

Zbo1 = ZL1 = 114.51− 55.834 j,

Zbo2 = ZL2 = 114.51− 0.015 j,

while the optimal voltages to be delivered by the generators are:

VG1 = 229.02 V (80)

VG2 = −12.42 V

VG3 = −1.2 V

For Case 2 it can be seen that the imaginary parts of the optimal terminating impedances
are negative thus corresponding to the series compensating capacitors reported in Table 2.

The analytical data were validated through circuital simulations. In more detail,
simulations were performed by modeling the links corresponding to Case 1 and Case 2 as
black box components described by the impedance matrix calculated through full-wave
simulations and reported in (71) and in (72), respectively. The transmitters ports were
connected to voltage generators with series complex impedances, while the receivers ports
were terminated on complex impedances.

The results obtained for Case 1 are reported in Figures 5–8. In this case the voltages
of the generators VGi and the impedances ZGi were set according to (76)–(77). Figure 5
illustrates the behavior of the power gain as function of the resistive part of the load
impedances RL1 = RL2. In particular, the figure compares the result obtained with and
without the reactive parts of all the terminating impedances. As it can be seen from Figure 5,
GP has its maximum for RL = 27.79Ω, thus confirming theoretical data. However, it can be
also seen that the reactive parts of the terminating impedances have a negligible effect on
the power gain, this is probably due to the small values of the coupling coefficient between
the receivers. The behavior of GP as function of the compensating reactances is further
investigated in Figure 6 where GP as function of the load inductors LL1 = LL2 is reported.
It can be seen that for values of the load inductance up to about 100 nH GP has a very small
dependence on LLi; thus confirming that for the analyzed case the reactances of the loads
do not play a key role.

The dependence on the generators has been also investigated. Figure 7 shows the
results obtained by varying the ratios of the current delivered by the generators, while
Figure 8 shows the power delivered to the loads as function of the generators impedances
RG = RG1 = RG2 = RG3. Both figures confirm the theory; in particular, from Figure 8 it
can be seen that the input power is divided equally between the two loads and that the
output power has a strong dependence on RG.

The results obtained for Case 2 are given in Figures 9–11. Also in this case data
obtained from simulations are in a perfect agreement with the theory. It is worth observing
the results obtained for the output power as function of RG. As it can be seen, as a result
of the application of the presented theory the power transfer takes place substantially
between the transmitter connected at port A1 and the receiver connected at port B2. In
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fact, due to the coupling between La1 and Lb2, that is definitely stronger than all the other
couplings, in order to maximize the power gain the application of the theory leads to
a configuration where most of the input power is provided by the first transmitter and
delivered to the second receiver. This result is due to the optimized figure of merit, i.e.,
the power gain as defined in (10), and highlights that, in the case where it is important
to supply to each receiver a minimum power value, a different figure of merit should be
introduced and optimized.

1 1 0 1 0 0 1 0 0 0
0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0

 w i t h  c o m p e n s a t i n g  r e a c t a n c e s
 w i t h o u t  c o m p e n s a t i n g  r e a c t a n c e s

G P

R L 1  =  R L 2  ( Ω)

2 7 . 7 9

Figure 5. Case 1: efficiency calculated for Case 1 by varying the resistive part of the loads RL1 =

RL2 = RL while all the other parameters are set to the optimal values.

1 1 0 1 0 0 1 0 0 00 . 9 1
0 . 9 2
0 . 9 3
0 . 9 4
0 . 9 5
0 . 9 6
0 . 9 7
0 . 9 8

G P

L L 1  =  L L 2  ( n H )

6 8 . 8 4

Figure 6. Case 1: efficiency calculated for Case 1 by varying the compensating inductor of the loads,
i.e., LL1 = LL2 while all the other parameters are set to the optimal values.
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Figure 7. Case 1: efficiency calculated for Case 1 by varying the ratio of the input currents while all
the other parameters are set to the optimal values.
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Figure 8. Case 1: output power calculated for Case 1 by varying the RG (i.e., the resistive part of the
impedances of the generators).
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 w i t h o u t  c o m p e n s a t i n g  r e a c t a n c e s
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Figure 9. Case 2: efficiency calculated for Case 2 by varying RL while all the other parameters are set
to the optimal values.
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Figure 10. Case 2: efficiency calculated for Case 2 by varying the ratio of the input currents while all
the other parameters are set to the optimal values.
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Figure 11. Case 2: output power calculated for Case 2 by varying the resistive part of the impedances
of the generators, RG.

6. Conclusions

In this paper the problem of efficiency maximization has been solved for a resonant
inductive WPT link using multiple transmitters and receivers (MIMO configuration). For a
WPT link with M transmitters and N loads, the efficiency is defined as the ratio of the sum
of the powers delivered to the N loads and the sum of the powers entering the network from
the M ports connected to the transmitters. The general expressions of the optimal loads
and the optimal source impedances are presented. The proposed theory is general and
can be applied to any possible MIMO WPT link. For this reason, the presented procedure
can be adopted in several application scenarios; it can be exploited: (1) for maximizing
the efficiency of already fabricated MIMO links, starting from their measured impedance
matrix the optimal terminations can be determined, or (2) for designing new WPT links
through the evaluation of the maximum realizable efficiency for different configurations of
the coils.

Among the various application scenarios, the presented theory could be adopted in
designing MISO/SIMO/MIMO links for medical implants, for a desk for wireless recharge
of multiple devices, and in general for all applications where it is necessary to recharge
multiple devices or to obtain performance robust with respect to misalignment problems.

An example of application of the presented approach has been presented starting
from the impedance matrix of a 3-TX and 2-RX calculated through full-wave simulations.
The reported results validate the presented theory and demonstrate that its exploitation is
simple and straightforward.
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Appendix A. Some Insights into the Generalized Eigenvalue Problem

In this section a proof is given for the statement that, for each finite nonzero eigenvalue
λ of problem (12), also 1/λ is an eigenvalue of (12). It will also be demonstrated that
G(ab)

M = G(ba)
M .

This statement can be demonstrated by noting that the determinant of µR−D can be
expanded as

det(µR−D) = (µ−1)N−M det(Ra)det(Rb)

· det(M2µ2+jM1µ−M0)
(A1)

where
M0 = IM + R−1

a XT
c R−1

b Xc

M1 = R−1
a RT

c R−1
b Xc − R−1

a XT
c R−1

b Rc

M2 = IM − R−1
a RT

c R−1
b Rc

(A2)

and IM represents the identity matrix of size M. Equation (A1) shows that there are always
(at least) N −M eigenvalues equal to 1, and that the remaining 2M eigenvalues occur in
pairs (µ,−µ). In fact, it can be observed that M0 and M2 are symmetric matrices, while
M1 is skew symmetric and, consequently, jM1 is Hermitian. Hence it results

det
[
M2(−µ)2+jM1(−µ)−M0

]
= det

[
(M2µ2+jM1µ−M0)

H
]

= det(M2µ2+jM1µ−M0)

(A3)

As a consequence, if µmax > 1 is the maximum eigenvalue, then µmin = −µmax.
Equation (A1) also suggests that problem (21) can be transformed into a quadratic

eigenvalue problem involving M×M matrices. This can be obtained by rewriting (21) as

ia = − 1
µ + 1

R−1
a

(
µRT

c + jXT
c

)
ib

ib = − 1
µ− 1

R−1
b (µRc − jXc)ia

(A4)

and by eliminating ib from (A4), which yields(
µ2M2 + jµM1 −M0

)
ia = 0 (A5)

In order to solve problem (A4), it can be transformed into a linear generalized eigen-
value problem of size 2M× 2M by letting

u =

[
µIa

Ia

]
(A6)

which allows us to rewrite (A4) as −jM1 M

IM 0

u = µ

 M2 0

0 IM

u (A7)
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Finally, it can be noted that M2 is a positive definite matrix. In fact it can be written as

M2 = R−1
a

(
Ra − RT

c R−1
b Rc

)
(A8)

where the two factors are positive definite matrices, since the first factor is the inverse of a
positive definite matrix and the second one is the Schur complement of the block Ra in the
positive definite matrix R. Hence (A7) can be turned into the ordinary eigenvalue problem −jL−1

2 M1L−T2 L−1
2 M0L−T2

IM 0

u = µu (A9)

where
M2 = L2LT

2 (A10)

is the Cholesky factorization of M2. After solving (A9), the currents at the ports of set B
can be computed by the second of (A4).

In the general case the solution of (A5) is quite involved, hence, unless M � N, it
is preferable to solve (21), directly. However, the reduction to the quadratic problem is
particularly advantageous if it results M1 = 0. This happens, for instance, in the cases,
frequently encountered in the study of WPT systems, where the coupling matrix Zc is
purely real or purely imaginary. If Rc = 0 and Xc 6= 0, (A5) can be rewritten as(

IM + R−1
a XT

c R−1
b Xc

)
ia = νia (A11)

with
ν = µ2 (A12)

while, if Xc = 0 and Rc 6= 0, (A5) can be rewritten as(
IM − R−1

a RT
c R−1

b Rc

)
ia = νia (A13)

with
ν =

1
µ2 (A14)

hence, in both cases, (A5) is reduced to an ordinary eigenvalue problem of size M×M.
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