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Abstract: For the resonance treatment of a very high temperature reactors (VHTR) fuel with the
double heterogeneity, an extension of the pin-based pointwise energy slowing-down method (PSM)
was developed and implemented into DeCART. The proposed method, PSM-double heterogeneity
(DH), has an improved spherical unit cell model with an explicit tri-structural isotropic (TRISO)
model, a matrix layer, and a moderator for reflecting the moderation effect. The moderator volume
was analytically derived using the relation of the Dancoff factor and the mean chord length. In the
first step, the pointwise homogenized cross-sections for the compact was obtained after solving
the slowing down equation for the spherical unit cell. Then, the shielded cross-section for the
homogenized fuel compact was generated using the original PSM. The verification calculations were
performed for the fuel pins with various packing fractions, compact sizes, TRISO sizes, and fuel
temperatures. Additionally, two fuel block problems with very different sizes were examined and the
depletion calculation was carried out for investigating the accuracy of the proposed method. They
revealed that the PSM-DH has a good performance in the VHTR problems.

Keywords: PSM; double heterogeneity; resonance treatment; VHTR

1. Introduction

The Korea atomic energy research institute (KAERI) has been developing very high
temperature reactors (VHTR) with various sizes for the purposes of hydrogen production
application or electricity supply for remote locations. The cores consist of graphite mod-
erator and the fuel compact which contains a graphite matrix and tri-structural isotropic
(TRISO) particle fuels randomly dispersed in the matrix. It introduces a unique neutronic
characteristic, the double heterogeneity (DH), which is the combination of two level of
heterogeneities: one for the fuel compact and the moderator and the other for the TRISO
and the matrix within the compact.

The DH effect causes considerable complexity for the resonance treatment in a lattice
calculation step. The SCALE code system employed a two-step resonance treatment
method [1] for the DH fuel. The method generates pointwise homogenized cross-sections
for the fuel compact through pointwise slowing down calculation for a spherical unit cell
model with a fuel kernel and a matrix layer. By using the homogenized cross-sections for
the fuel compact, the DH problem can be transformed into a single heterogeneity problem.
However, this method not only ignores the effects of coating layers and moderator but
also needs excessive computation time. The verification report [2] shows that the spherical
unit cell without coating layers and a moderator causes error over 300 pcm. Afterward, a
new resonance treatment method [3] for DH fuel was proposed based on the equivalence
theory with the intermediate resonance (IR) approximation [4,5] and the Dancoff factor [5]
for the particle fuel without coating layer. Kim [6] extended the method to take the coating
layer of TRISO into account using the analytical Dancoff factor for TRISO particle fuel [7].
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Another approach to enhance the accuracy of the equivalence theory for the DH fuel is to
estimate accurate Dancoff factor using Monte Carlo method [8].

However, recent papers [9,10] report the limitation of the equivalence theory, overesti-
mation of 238U absorption cross-section. The pin-based pointwise energy slowing-down
method (PSM) [10] was developed to overcome the limitation of the equivalence theory.
It can generate problem dependent self-shielded cross-sections in the lattice calculation
step and has better accuracy than the pre-generated library within reasonably acceptable
calculation time.

The lattice code developed at KAERI, DeCART (Deterministic Core Analysis based
on Ray Tracing) [11], uses the pre-generated multi-group library. The library is prepared
using the subgroup method [12] and the direct resonance integral table method [13] which
are based on the equivalence theory with the IR approximation. The library generation
procedure developed for conventional light water reactor (LWR) is used for the generation
of the multi-group library for VHTR with a modification for DH fuel. During the library
generation procedure for VHTR, the resonance integral table is corrected by using a Monte
Carlo code. However, this correction leads to the dependency of the library on the specific
reactor which the correction is performed based on. In addition, for improving the inaccu-
racy and system-dependency of the pre-generated library of DeCART, an extension of PSM
for the resonance treatment of a DH fuel, PSM-DH, was developed and implemented into
DeCART [14]. For extension of the PSM to a DH fuel, it is necessary to homogenize the
fuel compact region. This approach is similar to the two-step resonance treatment method
of SCALE but PSM-DH has an improved spherical unit cell model with the explicit TRISO
fuel and a moderator to reflect the effect of the coating layers and moderator. Additionally,
it applies the PSM in place of the equivalence theory for the homogenized fuel compact.

In this work, for completing our previous work [14], a new method for increasing the
calculation speed of PSM-DH was proposed and the procedure for depletion calculation
was established and the verification result was presented. Additionally, the DH effect
of the proposed method was examined for typical VHTR problems and the verification
calculations with various compact size and TRISO radius were performed.

2. Methods

The PSM-DH is essentially based on the PSM which can generate the self-shielded
cross-section for a homogenized fuel region. The method needs a pointwise homogenized
cross-section for a DH fuel of VHTR prior to the resonance treatment by PSM.

In order to provide a detailed description for the PSM-DH, a simple review of the
PSM is firstly stated in Section 2.1 and then the extension of the PSM to a DH region is
described in the next section.

2.1. Simple Review of Pin-Based Point-Wise Slowing down Method

The PSM solves the slowing down equation [10,15] for tens of thousands of energy
points within the resonance energy range in lethargy space as follows:

Σt,i(u)φi(u)Vi = ∑
j∈F

Pji(u)VjQs,j(u) + PMi(u)VMQs,M(u), (1)

where
i, j: sub-region indexes,
u: lethargy,
Σt,i(u): total cross-section at sub-region i,
φi(u): the flux at sub-region i,
Pji(u): probability that a neutron escaped from sub-region j has its first collision at

sub-region i,
Vi: volume of a sub-region i, and
Qs,j(u): slowing down scattering source of a sub-region j.
Note that the subscript M is the index of the moderator region.
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The collision probability (CP) tables for the given system should be known prior to
solving Equation (1). The CP Pij can be evaluated by combining the CP table for an isolated
fuel pin, Piso

ij and the shadowing effect correction factor of the fuel region, ηF. To evaluate

Piso
ij for every energy points, it is necessary to solve the fixed source neutron transport

equation, Equation (2), for an isolated pin for every energy points.

Ω · ∇ψ(r, Ω) + Σt(r)ψ(r, Ω) =
1

4π
δi(r), (2)

where

δi(r) =
{

1 (r ∈ Ωi)
0 (r /∈ Ωi)

and

Ωi: sub-region i.
However, there are tens of thousands of energy points and it is time consuming

to solve Equation (2) for every energy points. The computation time can be saved if the
number of solution calculation of Equation (2) is reduced. Because the only input parameter
of Equation (2) is the total cross-section (XS), Piso

ij is a function of fuel region total XS, Σt,F
and it can be tabulated by solving Equation (2) for hundreds of Σt,F values using method of
characteristics (MOC). The CP table for an isolated fuel pin can be tabulated as a function
of Σt,F as follow:

Piso
ij

(
Σk

t,F

)
=

Σk
t,Fφj

(
Σk

t,F

)
Vj

Vi
, (3)

where φj

(
Σk

t,F

)
is the flux at the sub-region j with the k-th level total cross-section of the

fuel region, Σk
t,F, in the isolated fuel pin problem.

The shadowing effect correction factor of the fuel region ηF is defined as the ratio
between the fuel escape probability in a lattice problem and the fuel escape probability in
an isolated pin problem as shown in Equation (4).

ηF(u) =
Pe,F(u)

Piso
e,F(u)

, (4)

where
Pe,F(u): fuel escape probability in a lattice problem and
Piso

e,F(u): fuel escape probability in an isolated pin problem.
The fuel escape probabilities for the two systems can be calculated from the Carlvik’s

two-term rational approximation [16] with Dancoff factor. The Dancoff factor is obtained by
solving the fixed source problem for the lattice problem using MOC, applying the enhanced
neutron current method [17].

With the assumption that the ratio of Pij and Piso
ij can be approximated as shown in

Equation (5), Pij is expressed in terms of the ηF and Piso
ij as shown in Equation (6).

Pij

Piso
ij
≈

∑
j∈F

Pij

∑
j∈F

Piso
ij

and (5)

Pij(u) ≈ Piso
ij (u)

1− Pe,i(u)

∑
j∈F

Piso
ij (u)

≈ Piso
ij (u)

1− ηF(u)

(
1− ∑

j∈F
Piso

ij (u)

)
∑

j∈F
Piso

ij (u)
, (6)
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where the following relationships are used:

∑
j∈F

Pij(u) = 1− Pe,i(u), (7)

Pe,i(u) ≈ ηF(u)Piso
e,i (u), and (8)

Piso
e,i (u) = 1−∑

j∈F
Piso

ij (u). (9)

The CP table for an isolated fuel pin, Piso
ij (u), is evaluated as follow using the tabulated

function as prepared in Equation (3):

Piso
ij (u) ≈ Piso

ij (Σt,i(u)). (10)

Finally, the flux at an energy point of the slowing down equation, Equation (1), can
be calculated with the CPs. Additionally, the effective multi-group cross-section for a
resonance energy region can be simply obtained by the energy condensation as follow:

σx,i,g =

∫
∆ug

σx,iφi(u)du∫
∆ug

φi(u)du
, (11)

where ∆ug is the lethargy width for an energy group g.
Detailed derivation and further information on the PSM can be found in the refer-

ence [10].

2.2. Pointwise Energy Slowing down Method for a DH Region

For a lattice problem with double heterogeneous compacts, it is necessary to obtain
the pointwise homogenized cross-sections for the compact prior to the resonance treatment
by the PSM. Figure 1 shows the new spherical unit cell model proposed in this work. The
spherical unit cell consists of an explicit TRISO, a matrix layer, and a moderator in the
outermost layer. The moderator layer is to reflect the effect of the moderator in the pin cell.
It is noted that one uniform XS region including the DH region in MOC calculation has
one corresponding spherical unit cell. Thus, the homogenized compact can consider the
effect of the radial particle distribution.
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Figure 1. A spherical unit cell for a fuel compact.

The radii of the TRISO layers are given in the problem and the radius of the graphite
matrix layer can be easily determined as follows:

Rm =
RT
3
√

F
, (12)

where F is the packing fraction of the TRISO particles in the compact and RT is the radius
of the TRISO.

For determining the radius of the moderator layer in the unit cell, the volume of the
moderator for a specific pin cell of the lattice problem can be analytically derived from the
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Dancoff factor and the average chord length of the moderator region. Generally, they have
the following relation [4]:

1− D =
exp(−Σt,M l̂)

Σt,M · (l − l̂) + 1
, (13)

where D is Dancoff factor and l is the mean chord length of the moderator region. l̂ is
the minimum distance between two compacts and Σt,M is the total cross-section in the
moderator. The Dancoff factor is calculated during the process of the PSM as described in
Section 2.1. After replacing the mean chord length l in Equation (10) with 4VM

2π(Rp+Rc)H , the
moderator volume for a pin cell of the lattice problem can be determined as follows:

VM =
π(Rp + Rc)H

2

{[
exp(−Σt,M l̂)

1− D
− 1

]
1

Σt,M
+ l̂

}
, (14)

where Rc, Rp, and H are the radius of the compact, effective radius of the pin, and the
height of the compact, respectively. Assuming that the moderator equally affects all TRISO
particles in the compact, the outer radius of the moderator layer can be derived as follows:

RM = 3

√
3

4πNT
(πR2

c H + VM), (15)

where NT is the number of the TRISO particles in a fuel compact.
The pointwise energy slowing down equation for the spherical unit cell is as follow:

Σt,l(u)φl(u)Vl =
L

∑
k=1

Pk,l(u)VkQs,k(u), (16)

where
l, k: layer indices,
L: total number of layers in a unit cell, and
Qs,k: scattering source in layer k.
The collision probability for the layer of the unit cell, Pk,l , can be straightforwardly

calculated by applying Kavenoky technique [18] which is widely used for CPs of a spherical
geometry. Note that the CPs should be calculated with the white boundary condition for
the unit cell. Equation (16) can be rewritten using the reciprocity relation as follow:

φl(u) =
∑
k

Qs,k(u)
Pl,k(u)Vl Σt,l(u)

Σt,k(u)

Σt,l(u)Vl
= ∑

k
Qs,k(u)

Pl,k(u)
Σt,k(u)

. (17)

After obtaining the pointwise energy flux for all layers from Equation (17), the point-
wise homogenized cross-sections for the compact can be generated. The pointwise homog-
enized microscopic cross-section for a nuclide in the compact region can be obtained by the
spatial homogenization as follows:

σn
x,c(u) =

∑
k∈c

Nn
k σx,k(u)φk(u)Vk

∑
k∈c

Nn
k φk(u)Vk

, (18)

where c represents the compact region which consists of the TRISO and matrix layer and
Nn

k is the number density of nuclide n in layer k.
In the second step, the pointwise energy slowing down equation, Equation (1), for the

homogenized fuel compact and moderator region can be readily solved by the original PSM.
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2.3. Improvement of Calculation Speed for Collision Probability of Spherical Unit Cell

In Equation (16), Pk,l should be obtained for all fuel compacts and all energy points
at every burnup points in depletion calculation, which is a heavy computational burden.
However, the computation time for the CP can be considerably cut down by applying the
idea from the table of a CP used in the PSM.

In generating the CP table for the spherical unit cell by Kavenoky technique, it is
assumed that the total cross-sections of all the layers except the fuel layer are constant
in the resonance energy range and the CPs depend only on the total cross-section of the
fuel kernel. Based on this assumption, the CPs are tabulated as a function of the total
cross-section of the fuel kernel. This simplification can be justified by the comparison
between the CPs of the original model and the simple model with the assumption. Figure 2
compares the CPs from the two models. The reference values are the CPs from the original
model and were calculated with the total cross-sections for each their layer at the resonance
energy region. On the contrary, the CPs from the simple model were calculated with the
total cross-section of the fuel kernel at the energy point and the constant cross-sections
for the other layers. The constant values for the layers were simply determined at the
middle point of the resonance energy range. Except the very small oscillation in the low
energy region, they are in a very good agreement. Actually, it was confirmed that the
multiplication factors for pin problems obtained from two models are nearly the same.
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In this work, the CPs from a layer to a layer for the spherical unit cell were calculated
using Kavenoky technique for wide range of total cross-sections with 500 levels from 10−2

to 104 cm−1 and were tabulated as a function of the total cross-section of the fuel kernel. In
a practical problem, the CP table for the specific spherical unit cell is prepared only once
prior to the resonance treatment, regardless of a pin position inside a fuel block. Therefore,
this technique can significantly reduce the computation time by determining the CPs for
all spherical unit cells in the whole problem domain using the linear interpolation from the
CP table as below in place of Kavenoky technique:

Pk,l = Ptable
k,l

(
Σt,F(u)

)
, (19)

where Σt,F(u) is the total cross-section of the fuel layer at an energy point.

2.4. Reconstruction of Nuclide Number Densities for Depletion Calculation in a DH Region

In order to perform depletion analysis using the PSM-DH, a nuclide reconstruction
process is needed for the pointwise unit cell slowing down calculation at the next burnup
step. After a transport calculation using MOC, a depletion calculation for nuclide number
densities at the next burnup step is performed for the homogenized compact region. The
updated nuclide number densities for the homogenized compact can be simply converted
to those for the fuel kernel using the reverse process of the homogenization. Afterward,
the pointwise slowing down calculation for the double heterogeneous compact at the new
burnup step can be performed using PSM-DH.

2.5. Calculation Procedure of DeCART with PSM-DH

Figure 3 shows the calculation procedure of the DeCART with PSM-DH. First, the
collision probabilities for all layers of the spherical unit cell are calculated from the CP table
which is priory generated using Kavenoky technique. After solving the pointwise slowing
down equation for the spherical unit cell, the pointwise flux for all layers can be obtained
and the pointwise homogenized cross-sections for the compact can be generated. The
self-shielded multi-group cross-sections for the homogenized compact region can be then
determined by applying the PSM. Finally, DeCART uses the cross-sections for a transport
calculation in a DH region. In a depletion calculation, nuclide number densities of the fuel
kernel of the spherical unit cell at the new burnup step should be reconstructed from the
homogenized compact.
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3. Numerical Results

For verifying the performance of the PSM-DH, the resonance treatment and transport
calculations for various HTGR problems with DH regions based on MHTGR-350 [19] were
performed and the results were compared with the reference values by McCARD [20] with
ENDF/B-VII.1 library. DeCART used the multi-group cross-section based on ENDF/B-VII.1
for the fast and thermal energy range, which was processed by GROUPR of NJOY [21]. For
the resonance energy groups, the PSM-DH module integrated in DeCART directly reads
point-wise cross-sections processed by BROADR of NJOY and generates the self-shielded
cross-sections. DeCART used the ray space of 0.02 cm, the number of polar angles of 4, and
the number of azimuthal angles of 8 for the MOC calculation option.

3.1. MHTGR-350 Benchmark Problems

Figure 4 shows the configuration of the DH fuel pin used in the verification calculation
and Table 1 lists nuclide number densities of the materials. The pin problem is taken from
the OECD/NEA MHTGR-350 benchmark exercise III [19].
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DHHOM
DH kk
f 11 −= , (20)

 

  

UCO TRISO + 
Graphite

Fuel Compact

1.87961.245

Graphite

Figure 4. Configuration of the MHTGR fuel pin with DH region.

Table 1. Number density for the MHTGR pin problem.

Material Nuclide Number Density
(#/barn-cm)

TRISO
Fuel Particle

Kernel

U-235 3.70 × 10−3

U-238 1.99 × 10−2

O-16 3.55 × 10−2

Graphite 1.18 × 10−2

Porous Carbon Graphite 5.02 × 10−2

IPyC Graphite 9.53 × 10−2

SiC

Si-28 4.43 × 10−2

Si-29 2.25 × 10−3

Si-30 1.49 × 10−3

Graphite 4.81 × 10−2

OPyC Graphite 9.53 × 10−2

Compact Matrix Graphite 8.27 × 10−2

Block Graphite Graphite 9.28 × 10−2

Tables 2–5 compare the multiplication factors and the DH effect by McCARD and
DeCART with PSM-DH for various packing fractions (PF) at 300 K, 600 K, 900 K, and 1100 K,
respectively. The DH effect is defined with the multiplication factors of the homogeneous
and double heterogeneous compact as follow:

fDH =
1

kHOM
− 1

kDH
, (20)
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Table 2. kinf and DH effect of MHTGR pin problems with various PFs at 300 K.

Packing
Fraction

TEMP = 300 K

Multiplication Factor Double Het. Effect

McCARD(M)
(σ ≈ 14 pcm)

DeCART(D)
with

PSM-DH
Diff.(D-M)

(pcm)
McCARD(M)

(pcm)
DeCART(D)

with PSM-DH
(pcm)

Diff.(D-M)
(pcm)

10% 1.67515 1.67490 −25 3687 3704 17
15% 1.59333 1.59231 −102 3794 3794 0
20% 1.52335 1.52155 −180 3727 3685 −42
25% 1.46397 1.46208 −189 3537 3502 −35
30% 1.41348 1.41198 −150 3297 3297 0
35% 1.37090 1.36950 −140 3084 3091 8
40% 1.33370 1.33324 −46 2839 2895 55

Table 3. kinf and DH effect of MHTGR pin problems with various PFs at 600 K.

Packing
Fraction

TEMP = 600 K

Multiplication Factor Double Het. Effect

McCARD(M)
(σ ≈ 14 pcm)

DeCART(D)
with

PSM-DH
Diff.(D-M)

(pcm)
McCARD(M)

(pcm)
DeCART(D)

with PSM-DH
(pcm)

Diff.(D-M)
(pcm)

10% 1.63835 1.63843 8 4066 4021 −45
15% 1.55027 1.54939 −88 4310 4231 −79
20% 1.47587 1.47463 −124 4256 4165 −90
25% 1.41441 1.41284 −157 4093 3978 −115
30% 1.36300 1.36150 −150 3874 3741 −133
35% 1.31897 1.31854 −43 3577 3488 −89
40% 1.28143 1.28231 88 3259 3235 −24

Table 4. kinf and DH effect of MHTGR pin problems with various PFs at 900 K.

Packing
Fraction

TEMP = 900 K

Multiplication Factor Double Het. Effect

McCARD(M)
(σ ≈ 14 pcm)

DeCART(D)
with

PSM-DH
Diff.(D-M)

(pcm)
McCARD(M)

(pcm)
DeCART(D)

with PSM-DH
(pcm)

Diff.(D-M)
(pcm)

10% 1.60965 1.61059 94 4244 4189 −55
15% 1.51790 1.51730 −60 4622 4508 −114
20% 1.44131 1.43984 −147 4634 4504 −130
25% 1.37792 1.37643 −149 4463 4343 −120
30% 1.32624 1.32421 −203 4256 4110 −146
35% 1.28159 1.28088 −71 3887 3846 −41
40% 1.24432 1.24464 32 3546 3575 28

Table 5. kinf and DH effect of MHTGR pin problems with various PFs at 1100 K.

Packing
Fraction

TEMP = 1100 K

Multiplication Factor Double Het. Effect

McCARD(M)
(σ ≈ 14 pcm)

DeCART(D)
with

PSM-DH
Diff.(D-M)

(pcm)
McCARD(M)

(pcm)
DeCART(D)

with PSM-DH
(pcm)

Diff.(D-M)
(pcm)

10% 1.59459 1.59604 145 4351 4304 −47
15% 1.50021 1.50045 24 4755 4708 −47
20% 1.42191 1.42157 −35 4818 4761 −57
25% 1.35817 1.35729 −88 4668 4637 −31
30% 1.30582 1.30466 −116 4462 4431 −31
35% 1.26244 1.26117 −127 4188 4185 −4
40% 1.22552 1.22497 −55 3876 3926 50

The differences of the kinf in all cases are within 203 pcm and those of the double
heterogeneous effect are within 146 pcm. McCARD uses the JT algorithm [22] for the
random distribution of the TRISO particles and the random distribution of the TRISO
particle causes additional statistical uncertainty in multiplication factor over 100 pcm.
Additionally, it is known that the PSM has error of about 100 pcm [10]. Besides that, there is
another error cause. The PSM-DH can consider the DH effect only for the resonance energy
range. However, it was found that the error caused by the spatial self-shielding effect of
DH in the thermal energy range and fast energy range is about 30 pcm in the problem.
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Hence, considering the statistical uncertainty caused by the random distribution in the
McCARD and the inherent error of the PSM, it is clear that they are in good agreement.

Figure 5 compares the multi-group absorption cross-sections in the resonance energy
range for the homogenized compact with a packing fraction of 35% at 1100 K. There are
differences of the maximum 4% between those by the two codes. Figure 6 shows the
disadvantage factors of the fuel kernel and the matrix calculated by PSM-DH method.
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Additionally, for verifying the accuracy of the proposed method for the moderation
effect inside a fuel block, two fuel block problems with different size were examined. They
are a normal size fuel block with 210 fuel pins and a small size fuel block with 12 fuel pins
which have the same configuration with the pin problem as shown in Figure 4 and Table 1.
Figure 7 shows the configuration of the two problems.
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Tables 6 and 7 compare the results for the problems. They reveal that the differences
of all cases are under 100 pcm. In the small size block, it is noted that there is a rapid
change of the moderation effect between the outer fuel pin and the inner fuel pin due to
the outmost moderator region. Nevertheless, the code produced the accurate results in the
small size block.

Table 6. kinf of MHTGR single block.

Packing Fraction
TEMP = 1100 K

McCARD(M)
(σ ≈ 14 pcm)

DeCART(D)
with PSM-DH

Diff.(D-M)
(pcm)

15% 1.59923 1.59960 37
25% 1.48566 1.48523 −43
35% 1.40028 1.39935 −93

Table 7. kinf of small size block.

Packing Fraction
TEMP = 1100 K

McCARD(M)
(σ ≈ 14 pcm)

DeCART(D)
with PSM-DH

Diff.(D-M)
(pcm)

15% 1.65946 1.66040 94
25% 1.57386 1.57407 21
35% 1.50224 1.50195 −29
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Table 8 shows the burnup calculation results for the MHTGR pin problem. It was
calculated under the condition of the hot full power for the DH pin with the packing
fraction of 35% and the burnup at the 1500 effective full power day is about 98 GWD/MTU.
The result shows that the differences between the two codes are within ±120 pcm. It can be
seen that the PSM-DH/DeCART also has a good performance in the depletion calculation.

Table 8. Burnup calculation results for MHTGR pin problem.

Burnup
(Days)

TEMP = 1200 K, PF = 35%

McCARD(M)
(σ ≈ 14 pcm)

DeCART(D)
with PSM-DH

Diff.(D-M)
(pcm)

0.00 1.25293 1.25215 −78
50.00 1.20219 1.20136 −83

100.00 1.18029 1.17974 −56
150.00 1.15836 1.15828 −8
200.00 1.13718 1.13711 −7
250.00 1.11675 1.11670 −5
300.00 1.09726 1.09733 7
350.00 1.07902 1.07912 10
400.00 1.06180 1.06211 31
450.00 1.04615 1.04626 11
500.00 1.03140 1.03149 8
562.50 1.01411 1.01440 28
625.00 0.99865 0.99871 6
687.50 0.98421 0.98426 5
750.00 0.97105 0.97092 −13
812.50 0.95877 0.95854 −23
875.00 0.94677 0.94700 23
937.50 0.93577 0.93621 44
1000.00 0.92589 0.92607 18
1062.50 0.91629 0.91653 24
1125.00 0.90707 0.90750 43
1187.50 0.89824 0.89894 70
1250.00 0.89035 0.89080 45
1312.50 0.88257 0.88304 47
1375.00 0.87460 0.87563 103
1437.50 0.86740 0.86853 113
1500.00 0.86071 0.86173 102

3.2. Large Size Compact and Various Size TRISO Problems

Table 9 shows the results for the pin problems with very large size compact. The half
pitch size and the PF of the pin are fixed by 2.0 cm and 35%, respectively. The material
compositions are the same with those of the previous problems. Considering the compact
radius of the MHTGR-350 pin, 0.6225 cm, it is noted that they can cover large compact
problem. The results reveal that the discrepancy between two codes are within 250 pcm
and they are similar to the previous comparisons.

Table 9. kinf of pin problems with large size compact and pitch.

Half
Pitch
Size

Compact
Radius

Multiplication Factor (PF = 35%)

TEMP = 300 K TEMP = 1100 K

McCARD(M)
(σ ≈ 12

pcm)

DeCART(D)
with

PSM-DH
Diff.(D-M)

(pcm)
McCARD(M)

(σ ≈ 12
pcm)

DeCART(D)
with

PSM-DH
Diff.(D-M)

(pcm)

2.0 0.8 1.68542 1.68352 −190 1.61091 1.61089 −2
2.0 1.0 1.58182 1.57932 −250 1.49405 1.49323 −82
2.0 1.5 1.30827 1.30644 −183 1.20270 1.20094 −176
2.0 1.8 1.17886 1.17840 −46 1.07542 1.07315 −227
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Table 10 shows the results for the pin problems with various fuel kernel and TRISO
radius. The compact radius was fixed by 0.6225 cm. In all cases, the results by two codes
are similar within 150 pcm. It is clear that they are in a good agreement considering the
statistical uncertainty by the random distribution of the particles.

Table 10. kinf of pin problems with various fuel kernel size.

TRISO
Radius

Fuel
Kernel
Radius

Multiplication Factor (PF = 35%)

TEMP = 300 K TEMP = 1100 K

McCARD(M)
(σ ≈ 18

pcm)

DeCART(D)
with

PSM-DH
Diff.(D-M)

(pcm)
McCARD(M)

(σ ≈ 18
pcm)

DeCART(D)
with

PSM-DH
Diff.(D-M)

(pcm)

0.0385 0.0175 1.43830 1.43758 −72 1.33052 1.33075 23
0.0410 0.0200 1.39114 1.39032 −82 1.28218 1.28208 −10
0.0460 0.0250 1.31868 1.31744 −124 1.21207 1.21103 −104
0.0485 0.0275 1.29118 1.28986 −132 1.18695 1.18545 −150

3.3. Computational Efficiency for PSM-DH

Table 11 compares the calculation time in DeCART with the pre-generated library and
the PSM-DH for MHTGR single block problem as shown in Figure 5a. Actually, the existing
DH treatment method in DeCART is the Sanchez–Pomraning method [23]. It needs much
more calculation time than a homogenous case, because it performs the DH treatment for
the explicit compact geometry with TRISO and matrix. However, DeCART with PSM-DH
treats DH region as a homogeneous region and the calculation time was cut down to 72%
compared with that by the existing DH treatment module for the DH problem.

Table 11. Calculation time for MHTGR single block problem.

Calculation Module
DeCART with Pre-Generated

Library (D)
(sec)

DeCART with
PSM-DH (P)

(sec)
Ratio (P/D)

Resonance Treatment 785.3 477.4 0.61
MOC 1561.3 1196.1 0.77

Total Calculation 2374.7 1699.4 0.72

4. Conclusions

In this paper, the extension of the PSM was proposed for performing the resonance
treatment of a DH fuel of VHTR and the verification results for various VHTR fuel pins
and fuel blocks were presented.

The pointwise homogenized cross-sections for the compact was obtained after solving
the slowing down equation for a spherical unit cell composed of an explicit TRISO, a matrix
layer, and a moderator layer. The moderator volume was analytically derived using the
relation of the Dancoff factor and the mean chord length. Then, the shielded cross-section
for the homogenized fuel compact was obtained using the original PSM.

The verification calculations were performed for the fuel pins with various packing
fractions, compact sizes, TRISO sizes, and fuel temperatures. Additionally, two fuel block
problems with very different sizes were examined and the depletion calculation was carried
out for investigating the accuracy of the proposed method. They revealed that the PSM-DH
has a good performance.

The PSM-DH has an advantage that problem dependent self-shielded cross-sections
can be generated in the lattice calculation step for a VHTR problem. Thus, it is expected
that the method could be applied for the development of the various type VHTRs. In the
near future, it is planned that an improved model for considering multiple TRISO types in
a compact will be examined.



Energies 2021, 14, 2179 14 of 14

Author Contributions: Conceptualization, T.-Y.H. and J.-Y.C.; methodology, T.-Y.H.; software, T.-
Y.H.; validation, T.-Y.H. and H.-C.L.; writing—original draft preparation, T.-Y.H.; writing—review
and editing, H.-C.L.; project administration, C.-K.J.; funding acquisition, C.-K.J. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2020M2D4A2067322).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Williams, M.L. Resonance Self-Shielding Methodologies in SCALE 6. Nucl. Technol. 2011, 174, 149–168. [CrossRef]
2. Ilas, G.; Ilas, D.; Kelly, R.P.; Davidson, E. Validation of SCALE for High Temperature Gas-Cooled Reactors Analysis; ORNL/TM-

2011/161; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2012.
3. Williams, M.L.; Choi, S.; Lee, D. A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel—I: Theory.

Nucl. Sci. Eng. 2015, 180, 30–40. [CrossRef]
4. Knott, D.; Yamamoto, A. Lattice physics computations. In Handbook of Nuclear Engineering; Springer Science and Business Media

LLC: Berlin/Heidelberg, Germany, 2010; pp. 913–1239.
5. Stamm’ler, R.J.J.; Abbate, M.J. Methods of Steady-State Reactor Physics in Nuclear Design; Academic Press: London, UK, 1983.
6. Kim, H.; Choi, S.; Park, M.; Lee, D.; Lee, H.C. Extension of double heterogeneity treatment method for coated TRISO fuel particles.

Ann. Nucl. Energy 2017, 99, 124–135. [CrossRef]
7. Ji, W.; Liang, C.; Pusateri, E.N. Analytical Dancoff factor evaluations for reactor designs loaded with TRISO particle fuel.

Ann. Nucl. Energy 2014, 63, 665–673. [CrossRef]
8. Singh, I.; Degweker, S.B.; Gupta, A. Treatment of Double Heterogeneity in the Resonance and Thermal Energy Regions in

High-Temperature Reactors. Nucl. Sci. Eng. 2017, 189, 243–258. [CrossRef]
9. Zhang, Q.; Wu, H.; Cao, L.; Zheng, Y. An Improved Resonance Self-Shielding Calculation Method Based on Equivalence Theory.

Nucl. Sci. Eng. 2015, 179, 233–252. [CrossRef]
10. Choi, S.; Lee, C.; Lee, D. Resonance treatment using pin-based pointwise energy slowing-down method. J. Comput. Phys. 2017,

330, 134–155. [CrossRef]
11. Cho, J.Y.; Han, T.Y.; Park, H.J.; Hong, S.G.; Lee, H.C. Improvement and verification of the DeCART code for HTGR core physics

analysis. Nucl. Eng. Technol. 2019, 51, 13–30. [CrossRef]
12. Kim, K.-S.; Hong, S.G. A new procedure to generate resonance integral table with an explicit resonance interference for transport

lattice codes. Ann. Nucl. Energy 2011, 38, 118–127. [CrossRef]
13. Hong, S.G. Iterative resonance self-shielding methods using resonance integral table in heterogeneous transport lattice calcu-

lations. Ann. Nucl. Energy. 2011, 38, 32–43. [CrossRef]
14. Han, T.Y. Extension of pin-based pointwise energy slowing-down method into double heterogeneity fuel. Trans. Korean Nucl. Soc.

Virtual Spring Meet. 2020, 584.
15. Stoker, C.; Weiss, Z. Spatially dependent resonance cross sections in a fuel rod. Ann. Nucl. Energy 1996, 23, 765–778. [CrossRef]
16. Carlvik, I. The Dancoff Correction in Square and Hexagonal Lattices. Nucl. Sci. Eng. 1967, 29, 325–336. [CrossRef]
17. Yamamoto, A. Evaluation of background cross section for heterogeneous and complicated geometry by the enhanced neutron

current method. J. Nucl. Sci. Technol. 2012, 45, 1287–1292. [CrossRef]
18. Marleau, G. DRAGON Theory Manual, Part 1: Collision Probability Calculations. Tech. Rep. 2001, 1.
19. Ortensi, J. OECD Benchmark for Prismatic Coupled Neutronics/Thermal Fluids Transient of the MHTGR-350 MW Core Design:

Benchmark Definition. Tech. Rep. 2013.
20. Shim, H.-J.; Han, B.-S.; Jung, J.-S.; Park, H.-J.; Kim, C.-H. Mccard: Monte Carlo Code for Advanced Reactor Design and Analysis.

Nucl. Eng. Technol. 2012, 44, 161–176. [CrossRef]
21. MacFarlane, R.E. The NJOY Nuclear Data Processing System. In LA-UR-17-20093; Los Alamos National Laboratory: Los Alamos,

NM, USA, 2018.
22. Jodrey, W.S. Computer simulation of close random packing of equal spheres. Phys. Rev. A 1985, 32, 2347–2351. [CrossRef] [PubMed]
23. Sanchez, R.; Pomraning, G. A statistical analysis of the double heterogeneity problem. Ann. Nucl. Energy 1991, 18, 371–395. [CrossRef]

http://doi.org/10.13182/NT09-104
http://doi.org/10.13182/NSE14-68
http://doi.org/10.1016/j.anucene.2016.07.026
http://doi.org/10.1016/j.anucene.2013.09.025
http://doi.org/10.1080/00295639.2017.1402568
http://doi.org/10.13182/NSE13-108
http://doi.org/10.1016/j.jcp.2016.11.007
http://doi.org/10.1016/j.net.2018.09.004
http://doi.org/10.1016/j.anucene.2010.08.005
http://doi.org/10.1016/j.anucene.2010.08.022
http://doi.org/10.1016/0306-4549(95)00074-7
http://doi.org/10.13182/NSE67-A17280
http://doi.org/10.1080/18811248.2008.9711916
http://doi.org/10.5516/NET.01.2012.503
http://doi.org/10.1103/PhysRevA.32.2347
http://www.ncbi.nlm.nih.gov/pubmed/9896349
http://doi.org/10.1016/0306-4549(91)90073-7

	Introduction 
	Methods 
	Simple Review of Pin-Based Point-Wise Slowing down Method 
	Pointwise Energy Slowing down Method for a DH Region 
	Improvement of Calculation Speed for Collision Probability of Spherical Unit Cell 
	Reconstruction of Nuclide Number Densities for Depletion Calculation in a DH Region 
	Calculation Procedure of DeCART with PSM-DH 

	Numerical Results 
	MHTGR-350 Benchmark Problems 
	Large Size Compact and Various Size TRISO Problems 
	Computational Efficiency for PSM-DH 

	Conclusions 
	References

