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Abstract: With continuous proliferation of private battery electric vehicles (BEVs) in urban regions,
the demand for electrical energy and power is constantly increasing. Electrical grid infrastructure
operators are facing the question of where and to what extent they need to expand their infrastructure
in order to meet the additional demand. Therefore, the aim of this paper is to develop an activity-
based mobility model that supports electrical grid operators in detecting and evaluating possible
overloads within the electrical grid, deriving from the aforementioned electrification. We apply our
model, which fully relies on open data, to the urban area of Berlin. In addition to a household travel
survey, statistics on the population density, the degree of motorisation, and the household income
in fine spatial resolution are key data sources for generation of the model. The results show that
the spatial distribution of the BEV charging energy demand is highly heterogeneous. The demand

per capita is higher in peripheral areas of the city, while the demand per m?

area is higher in the
inner city. For reference areas, we analysed the temporal distribution of the BEV charging power
demand, by assuming that the vehicles are solely charged at their residential district. We show that
the households” power demand peak in the evening coincide with the BEV power demand peak

while the total power demand can increase up to 77.9%.

Keywords: electric vehicle; activity-based simulation; transportation electrification; charging power
demand; spatial temporal distribution; open data

1. Introduction

Poor air quality in cities and continuously rising greenhouse gas emissions worldwide
have led to a steady tightening of emission limits in recent years. The European Union
has committed itself to reducing greenhouse gas emissions by 2050 by 80-95% of the level
of 1990 [1]. In Germany, greenhouse gas emissions are planned to be reduced by 50% by
2030 compared to 1990 [2]. One key driver of this reduction is the substitution of internal
combustion engine vehicles (ICEVs) with vehicles with alternative drive systems, primarily
battery electric vehicles (BEVs). However, an increasing number of BEVs and the resulting
large demand of electrical energy and power can lead to bottlenecks in the power supply if the
necessary electrical grid infrastructure is not established or reinforced [3—6]. The investigations
in this paper are restricted to the electrification of private internal combustion engine cars. The
electrification of other urban vehicles such as buses or urban freight transport vehicles was
investigated, for example, by the authors of [7-9]. The additional demand of private battery
electric cars for electrical energy and power varies greatly depending on spatial and temporal
factors. In general, areas with high population density and a high vehicle per capita rate have
a higher demand for electrical energy compared to sparsely populated areas with few vehicles
per inhabitant [6,10,11]. The authors of [3,4,6,12] show that the electrical energy and power
demand for charging BEVs differs depending on the time of the day and the type of the day
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(working day or weekend day). This large degree in variability creates difficulties concerning
the planning of the expansion and optimisation of the electric grid, which is necessary to meet
the additional charging energy and power demand. To overcome this limitation, data-based
models with high spatial resolution are required in order to make realistic statements about
the spatial and temporal energy and power requirements arising from the electrification of
motorised individual traffic.

The authors of [13] developed a model based on diffusion theory that determines the
spatial power requirements in the city of Porto, considering different charging capacities
and five battery electric vehicle penetration rates from 10% to 100%. However, the study
does not include a differentiated temporal determination of the power demand. By gen-
erating commuting travel chains for their investigation, the authors of [12] estimate the
spatial and temporal distribution of the charging power demand of BEVs in urban areas.
Result-relevant values such as the start time of the first trip or the covered trip distance are
random and independent of the activity drawn from a normal distribution and a lognormal
distribution, respectively. The distributions are adjusted to average values derived from
a travel survey. The authors of [14] simulate the spatial and temporal distribution of the
charging energy demand for an artificial city consisting of a city center, suburban areas,
and connecting highways. All simulated persons and their vehicles undertake a round
trip, which starts in a suburban area then goes to a random point within the city center and
back. Within the city center, the persons decide whether to charge their car, depending on
the depth of discharge. The arrival and departure times of the vehicles in the city center
are drawn from a gamma distribution and are imprinted on the vehicles. The distribution
is fitted to the results of a travel survey, which was conducted in Chicago.

Another approach to modelling the spatial and temporal energy and power demand
deriving from electrification of the traffic is offered by activity-based models [10,11,15]. In
activity-based models, the individual properties of individual persons within the research
space are used to create full-day travel schedules for those persons. The resulting daily
patterns for individual persons consist of a consecutive sequence of activities and trips.
According to [15], activity-based models are particularly suitable for simulating the energy
and power demand of BEVs. They capture the relationship between activity and mobility
patterns, which can be used to determine the dwell times of the persons and their vehicles
at different locations. The energy and power demand can then be determined by imposing
charging strategies.

An example for an activity-based mobility model is the framework FEATHERS [16],
which the authors of [11] used to simulate spatial and temporal charging power demand
in the Flemish region in Belgium. Therefore, they divided the region into several dis-
tricts. As there were no empirical data such as a travel survey available in the region, the
authors used self-acquired data including “activity-travel diaries”, information on “activ-
ity (re)scheduling decisions of individuals” and “data on household multi-day activity
scheduling”. The vehicle class category distribution, which has a significant impact on
the energy and power demand (larger and heavier vehicles tend to have a higher energy
consumption compared to smaller and lighter vehicles), matches the numbers for the entire
region and not the individual districts. This results in a non-precise estimate of the spatial
distribution of the energy and power demands. Furthermore, the authors do not verify
their results by comparing them with the empirical data from the underlying survey. The
authors of [10] used a household interview travel survey to create a activity-based mobility
model for the Singapore urban area. After the division of Singapore into several districts,
they used their model to estimate the spatial and temporal distributions of the charging
energy demand for a working day and a weekend day, considering different electrification
rates for private vehicles. Similar to [11], the vehicle class categories were drawn from
a distribution that matches the overall vehicle class category distribution in Singapore.
Additionally, the mobility model was not verified by comparison with the underlying
survey results.
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In their research on decarbonisation of the urban traffic, the authors of [17] used the
activity-based simulation framework MATSim [18,19] to analyse the effects of complete
replacement of the current population of ICEVs with BEVs in urban regions. The authors
focused on electrification of the entire transport system including private vehicles, the public
transportation sector, and commercial and municipal traffic. Since the authors studied the
impact of ICEV electrification for the entire urban area of Berlin and not its districts, they did
not focus on the spatial resolution of the occurring charging energy and power demand. The
vehicle class categories were drawn from a distribution that matches the overall vehicle class
category distribution in Berlin and not the distribution in the Berlin districts. Between the
MATSim data basis, namely census data, and the resulting trips in the simulation, there are
several process steps leading to a risk of inaccuracies in spatial resolution. For this reason,
we decided to infer the activity pattern and the energy and power demand in the individual
districts directly from the census data and other data sources.

The aim of this paper is to develop a model that supports electrical grid operators to
detect and evaluate possible overloads within the electrical grid, deriving from the elec-
trification of private ICEVs in urban regions. Therefore, we develop a methodology, the
novelty of which lies in the generation of an activity-based mobility model through the direct
combination of a survey on travel behaviour [20-22], with data sets containing information
about the population density [23], the degree of motorisation (which indicates the amount of
vehicles per 1000 inhabitants) [24], and the household income in fine spatial resolution [25,26].
Through this direct combination, our model provides data-based results with high spatial
and temporal resolution. Furthermore, the fine resolution of the household income enables
us to determine the vehicle class category distribution in fine spatial resolution, which has,
as we discussed in the previous paragraphs, a significant impact on the energy and power
demand and is neglected by other researchers. In contrast to most other scientific works, we
do not use a person-based but a vehicle-based approach. This allows us to realistically depict
the use of the same vehicle by several persons (for example, in family groups). Since all used
data sets are openly available and therefore relatively easy to acquire in most places of the
world, our methodology is transferable to other urban areas. We apply our methodology
to the urban area of Berlin and assume a scenario where 100% of the current private car
population is electrified. We consider a working day and a Saturday in our simulation. We
exclude Sundays from our simulation as 69% of the vehicles remain parked on Sundays,
compared to 56% on Saturdays. In addition, the average distance of all vehicles is 23.9 km on
Sundays, which is below the 26.1 km on Saturdays [22]. A higher energy and power demand
on Sundays compared to Saturdays is therefore not to be expected. By applying the charging
strategy “home-charging”, we calculate the spatial and temporal energy and power demand
distribution resulting from charging the BEVs.

In the city of Berlin, 40% of the population has access to private car parking spaces [22]
while the remaining cars are parked in public spaces. Therefore, in this paper “home-
charging” does not mean that all cars are charged in private parking lots at the owner’s
place of residence but that they are charged within the district where the owner of the
vehicle lives. We assume that sufficient public charging infrastructure is available. We
chose the strategy “home-charging” since, according to [27], 65% of the German population
prefers home charging to charging at public charging stations (15%) or at work (7.5%).
Reference [27] is a study on the acceptance of e-mobility in Germany. It was conducted in
2019 by interviewing 1200 German households.

This paper is structured as followed: In Section 2, our methodology is described and
the implemented scenario is presented. The results are shown and analysed in Section 3.
Finally, the main conclusions of this paper are derived in Section 4.

2. Methodology

The methodology used for our mobility model consists of three main parts. As a first
step, we divide the city of Berlin into districts and determine for each the number of electric
vehicles and the vehicle class categories within it. To do so, we use data sets containing
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information about the population density [23], the degree of motorisation [24], and the
household income within the districts [25,26]. In the second step, we generate individual
daily patterns for the vehicles based on a household travel survey [20-22]. Finally, we use
these daily patterns to determine the energy and power demand generated by charging
the BEVs for a working day and a Saturday. These results are compared to the base power
demand of the households within the districts.

2.1. District Classification and Vehicle Population

Most activity-based mobility models share one disadvantage. When the daily patterns
of the persons are created and the means of transport is chosen, they assign each person
their own vehicle. Therefore, multiple use of one vehicle is not considered. Since the dwell
times of the vehicles are then determined incorrectly, the determination of the temporal
distribution of the charging power demand is inaccurate. To overcome this problem, in
our mobility model, we do not consider the individual persons but the vehicles within the
system boundaries. We assume a scenario where 100% of the current private car population
is electrified having the same share regarding vehicle class category as the current car pop-
ulation. Due to the lack of open data, commercially used vehicles such as delivery vehicles
or taxis are not considered in our study. According to the “Kraftfahrtbundesamt”, which is
the German Federal Motor Transport Authority, 1.203 million cars were registered in Berlin
in 2018, of which 1.045 million of them were private cars [28]. In order to distribute this
number of vehicles spatially correctly, we make use of the official classification of the Berlin
administration [29], which divides the twelve Berlin districts into 448 subdistricts, called
“Lebensweltlich orientierte Riume” (LOR). The LOR classification was firstly introduced in
2006. Within each LOR, the structure of the contained buildings and the socioeconomical
status of the inhabitants are similar. The LORs are usually separated from each other by
major roads, rivers, or rails.

We derive the number of inhabitants for each LOR from [23], which is a freely available
statistic provided by the Berlin authorities. The statistic is created by counting all registered
residents within the LORs in 2018. The LOR classification, the population density, and the
number of inhabitants within the LORs are depicted in Figure 1.

Map tiles by Stamen Design, CC BY 3.0 - Map data (C) OpenSt

tM

w
o

35 = G
I N & { I 30
N
, Y
L. &)

{ Firay

[y
o

- 25
= 5 W '
2 |- N "i"‘..‘g&fi I feo
02 | TN “_%\ ‘\-‘vit«d =
=} =9 -, =
g _4;5 15 ;E
%] Y Q
15 g i::
= E
[
=
=

Map tiles by Stamen Design, CC BY 3.0 - Map data (C) O

(a) Inhabitants in the Berlin LORs (b) Population density in the Berlin LORs
Figure 1. Distribution of the population in the Berlin subdistricts, “Lebensweltlich orientierte Riume” (LORs).

To estimate the number of vehicles in each LOR, we use freely available data about
the degree of motorisation (amount of vehicles per 1000 inhabitants) in each LOR [24]. The
degree of motorisation for the Berlin LORs is depicted in Figure 2. It can be seen that the
degree of motorisation is higher in LORs that are located in the peripheral areas of the city
compared to the city center. By multiplying the amount of vehicles per person with the
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total amount of persons within the LORs, we calculate the number of vehicles for each
LOR separately.
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Figure 2. Degree of motorisation in the Berlin LORs.

Since the BEVs’ energy consumption is highly dependent on the vehicle class category
(larger and heavier vehicles tend to have a higher energy consumption compared to
smaller and lighter vehicles), the vehicle class category distribution for all vehicles within
the LORs has to be determined. To do so, we make use of the 2017 German household
travel survey (GHTS) [20-22]. The survey contains information on 316,361 persons from
156,420 households in Germany and on almost one million trips. For the study, the members
of a household were asked about their activities and trips during reference days. This
allowed for conclusions on daily travel patterns. Furthermore, as a classical household
travel survey, the study contains sociodemographic information such as gender and age,
or the income of the household. It contains further information, such as the amount of
vehicles in the household and information on the vehicle class category. The data set can
be obtained freely, either as raw data [22] or already pre-evaluated [21]. As the data set
contains information on the travel behaviour in all of Germany, we initially limited the
data set to households and persons within the city of Berlin. Furthermore, we excluded all
trips that were not undertaken by car.

According to the GHTS data set, the amount of cars per household in Berlin correlates
with the income of the household. In general, households with higher income own more
vehicles compared to households with lower income. Furthermore, the GHTS indicates
that the vehicle class category distribution in Berlin also depends on the income of the
household. Households with high income tend to own larger vehicles. The distributions
are depicted in Table 1. In the GHTS data set, the household’s income is divided into five
income categories. For a one-person household, the average net income for the income
category “very low” lies below €900, between €900 and €1500 for the category “low”,
between €1500 and €2800 for the category “medium”, between €2800 and €4000 for the
category “high”, and above €4000 for the category “very high”.

Table 1. Correlation between household income and vehicles in Berlin.

Household Income

Average Amount of Cars per Household

Relative Frequency Vehicle Class Category

Mini Compact Compact Medium Large

very low 0.3 0.31 0.37 0.27 0.054
low 0.5 0.35 0.35 0.25 0.052
medium 0.7 0.27 0.39 0.26 0.074
high 1.0 0.24 0.34 0.32 0.11
very high 1.3 0.18 0.30 0.34 0.19
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In their research on the socio-structural situation in Berlin, the authors of [30] show
that the residential area quality strongly correlates with the household income. This means
that households with higher income tend to live in areas with higher quality. High-quality
residential areas are mostly located close to the city center and are usually characterised
by rather high greening. In comparison, low-quality residential areas mostly have high
building density, which may be intermixed with or adjacent to commerce and industry.
In addition, simple residential areas usually have little greenery [26]. According to [30],
we estimate the shares of household income in the LORs by analysing the residential area
quality [26]. To verify our results, we check whether our results match the distributions
of the household income in the twelve Berlin districts. We derived those distributions
from the 2018 census data [25]. The census is conducted on a yearly basis in Germany
by interviewing 1% of the population. It is freely available and provides information
on the economic and social situation of the population in Germany, such as information
on household and family structures, employment, or income situation. The resulting
distribution of the household income for the Berlin LORs is depicted in Figure 3.

By combining the aforementioned information, we obtain the amount of vehicles for
each vehicle class category within the LORs.
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Figure 3. Household income distribution in the Berlin LORs.

2.2. Mobility Profiles

As a basis for the mobility profiles of the vehicles, we analysed the data set from the
2017 German household travel survey (GHTS) [20-22]. A mobility profile is a sequence of
activities and trips between those activities. For our study, we assumed that BEV drivers
show the same mobility behaviour as ICEV users. In Figure 4, a general mobility profile
of a vehicle is shown. The vehicle starts at “Home” in the morning before spending 7 h
and 50 min at the activity “Working” and 30 min at the activity “Shopping”. It arrives
back “Home” at 17:00. In order to create mobility profiles, we extracted the relevant
information on trips (activity, departure and arrival times, and trip distance) from the
GHTS data. The data set distinguishes more than 25 activities. Similar to [10,19], we divide
those activities into five superordinate activities for simplification reasons: “Working”,
“Shopping”, “Education”, “Home”, and “Else”.

7 h 50 min 30 min
10 km ] 5 km . 8 km
Home Working Shopping Home
07:45 08:10 16:00 16:10 16:40 17:00

Figure 4. Example of a general mobility profile.

The GHTS data set is evaluated for an average working day (Monday-Thursday) and
Saturdays. We exclude Fridays from our analysis, as the average distance of all vehicles is
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15.1 km on Fridays, which is less than half of the 32.6 km average distance on the other
working days. On Fridays, 62% of the vehicles remain parked, compared to 45% on the
other working days. Sundays are excluded from our analysis, as 69% of the vehicles remain
parked compared to 56% on Saturdays. In addition, the average distance of all vehicles
is 23.9 km on Sundays, which is below the 26.1 km on Saturdays. A higher energy and
power requirement on Sundays compared to Saturdays and on Fridays compared to the
other working days is therefore not to be expected. The creation of the mobility profiles is
performed successively for each individual vehicle within the individual LOR. The basis for
this process is the distribution of the vehicle class categories we derive in Section 2.1. For
each of the four vehicle class categories, we considered three reference vehicles, making in
total a sum of twelve considered reference vehicles, which are depicted in Table 2. For each
reference vehicle, the energy demand per 100 km and the vehicles’ battery capacity can be
obtained from Table 2. The average consumption is divided into inner-city trips, which
are characterised by distances of less than 20 km and outer-city trips. The values of the
energy consumption and the battery capacity are based on test drives of the “Allgemeine
Deutsche Automobil Club” (ADAC), a German motoring association, and already include
charging losses [31].

Table 2. Reference vehicles.

. Inner City Consumption Outer City Consumption

Class Model Battery Capacity (kWh) (KWh/100 km) (KWh/100 km)
Mitsubishi i-MiEV [32] 15.9 11.3 16.9
Mini compact Renault Zoe [33] 64.3 145 19.0
VW e-Up! [34] 18.6 14.0 17.7
BMW i3 [35] 48.8 13.0 17.9
Compact Hyundai Kona E [36] 739 14.0 195
VW e-Golf [37] 34.9 12.7 18.2
Kia e-Niro [38] 72.3 12.5 18.1
Medium Nissan Leaf [39] 68.4 17.2 22.7
Tesla Model 3 [40] 60.0 17.4 19.3
Audi e-tron [41] 94.3 23.5 25.8
Large Mercedes EQC [42] 93.1 23.0 27.6
Tesla Model S [43] 100.4 212 242

The general process for creating the mobility profile for one vehicle consists of six
main steps (1)—(6). The process is depicted in Figure 5 and is described below. Taking the
vehicle class category of the vehicle as input, one of the three reference vehicles is drawn
from Table 2 with equal distribution (1).

In (2), the number of trips per day for the vehicle is drawn. We derive the underlying
discrete probability distribution by analysing the GHTS data set. A separate probability
function is evaluated for each vehicle class category. If the number of trips is zero, no
mobility profile is created for the vehicle and the process starts with the next vehicle. If
the number of trips is greater than zero, the starting time of the first trip is drawn from
a probability distribution we generated for a 24 h interval by analysing the GHTS data
set (3). The probability distributions we use in (3) are depicted in Figure 6 for a working
day (Monday-Thursday) and a Saturday. On a working day, one sharp peak can be seen
at around 08:00 in the morning. This is due to the fact that many vehicles are used early
in the morning on the way to work. In comparison, two less sharp peaks can be seen on
Saturdays. Vehicles tend to be used on weekends for shopping or leisure activities, which
start either in the late morning or afternoon.



Energies 2021, 14, 2081 8 of 21

Start

!

/ Vehicle Class Category /

!

(1) Draw Reference Vehicle

!

(2) Draw Amount of Trips

Amount Trips > 0

(3) Draw Trip Starting Time

!

(4) Draw Trip Activity

l no

(5) Draw Trip Distance

!

(6) Draw Trip Activity Duration

Another
Vehicle with
Higher
Range?

yes

|

Vehicle

Select Vehicle with
Higher Range

Draw Vehicle Starting Time Next Day

!

/ Mobility Profile of the Vehicle /

!

L )

Figure 5. General process for creating the mobility profile for one vehicle.
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Depending on the trip’s starting time, the trip’s activity is drawn afterwards (4). For
this purpose, we use discrete distribution functions on an hourly basis, which provide
information about the probability that a certain activity will occur.

In (5), the distance of the trip is drawn depending on the trip’s activity. For the
activities “Working”, “Shopping”, and “Home”, the underlying probability distributions
are depicted in blue in Figure 7a—c for a working day and in Figure 7d—f for a Saturday. It
can be seen that “Working” trips on working days usually cover higher distances compared
to “Shopping” and “Home” trips. The trip distance for 80% of the “Shopping” trips is
below 11 km, while it is below 16 km for “Home” trips and 29 km for “Working” trips. On
Saturdays, the trip distance for 80% of the “Shopping”, “Working”, and “Home” trips is

about 19 km. The distributions in (4) and (5) are generated by analysing the GHTS data set.
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set comparison.

To determine the respective travel times for the trips, we use speed assumptions. We
use [44] to estimate the activity duration in (6). Reference [44] is a survey from German
authorities on the time usage behaviour of German citizens. The statistic provides in-
formation on how much time is spent on different activities such as working, shopping,
education, or leisure activities. The survey was conducted in 2012, the third time after 1992
and 2002. For the survey, a total of 11,000 persons in approximately 5000 households in
Germany were interviewed.

If the vehicle undertakes further trips, the loop is repeated with (4). The starting time
of the next trip is the ending time of the last trip. If the last trip is for the activity “Home”,
the loop is repeated with (3) and a new starting time is drawn.

Finally we check whether the total driven distance between two consecutive charging
events is covered by the range of the reference vehicle. As we only consider “home-
charging”, a charging event can only occur if the activity is “Home”. If the vehicle’s range
is not sufficient, a vehicle with a higher range within the same vehicle class category is
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drawn. If the vehicle’s range is still too small to cover the driven distance, a vehicle with
a sufficient range is searched for in the other vehicle class categories. If the total driven
distance between two consecutive charging events exceeds the maximum range of all
reference vehicles, the vehicle is re-simulated starting with (1). If the total driven distance
can be covered by the reference vehicle, steps (2) and (3) are repeated to determine whether
and when the vehicle drives off again the next day.

2.3. Assumptions to Calculate the Spatial and Temporal Power Demand

Based on the created mobility profiles for all privately owned vehicles in Berlin, we
simulated 24 h of a working day (Monday-Thursday) and a Saturday to derive the spatial
and temporal distribution of the BEV charging energy and power demand. Vehicles that
started within this period are allowed to return later than 24:00. The results are then
projected onto a 24 h interval. We made the following assumptions for the simulation in
this paper:

e The vehicle’s state of charge (SOC) at the start of the day is 100%.

¢ Charging exclusively at the home LOR. Sufficient public charging infrastructure
is available.

¢  Charging starts immediately upon arrival at home and does not end until the vehicle
is fully charged or drives off again.

*  Constant charging power, which is independent of the SOC. To show the effects of dif-
ferent charging powers on the spatial and temporal distribution of the charging power
demand, we run our simulation for charging powers of 3.7 kW and 11 kW, respectively.

*  Power demand can be fully covered by the electrical grid at any time.

3. Results and Discussion

The first part of this section compares the simulation results with the GHTS data set.
The comparison results are shown and discussed for the vehicles’ trip distance distribution,
the vehicles” average daily distances, and the amount of moving vehicles in Section 3.1; for
the vehicle class category distribution in Section 3.2; and for the vehicles’ trip starting time
distribution in Section 3.3.

In the second part of this section, we show and discuss in Section 3.4 the simulated
result of the spatial distribution of the charging energy demand. In Section 3.5, the results
of the temporal distribution of the charging power demand are presented and discussed.

3.1. Trip Distance and Moving Vehicles—Simulation and GHTS Data Comparison

In Figure 7, a comparison of the cumulative distribution function of the trip distance of
the simulation (blue) and the GHTS data set (orange) is shown. Figure 7a—c show the results
for a working day (Monday-Thursday), Figure 7d—f show the results for Saturday. The
figures are depicted for the activities “Working”, “Shopping”, and “Home”. The steps in
the GHTS data graphs result from the self-reported travel times in the survey. Participants
tend to report rounded numbers rather than give exact values. As it can be seen, the general
distribution shape matches for all activities and days. In Figure 8, the modelling errors of
the results in Figure 7 are depicted as a boxplot. The blue square indicates the mean error.
The boxplot’s whiskers are modeled in such way that they represent the 2.5% quantile and
the 97.5% quantile, respectively; 95% of all errors are thus within the whisker limits. The
mean error is between —6.1% and 2.6% for a working day and between —2.0% and 3.3% on
a Saturday. This indicates that the simulation represents the GHTS data with high accuracy.
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Figure 8. Modelling error distance distributions. The blue square depicts the mean error.

Table 3 compares the average daily distance driven by the simulated vehicles with
the GHTS data set. The relative error is —10.4% for working days (Monday-Thursday)
and —5.7% on Saturdays. This error can be easily explained. As we show in Section 2.2,
the daily distances of the simulated vehicles are limited. Vehicles that cover large daily
distances are not represented in our simulation.

For working days (Monday-Thursday) trips with high distances are mostly “Working”
trips, as can be seen in Figure 7a. The GHTS data set indicates that 95% of all “Working”
trips are below 85 km, whereas the remaining 5% can reach values up to 750 km. On
Saturdays, trips with high distances are mostly “Home” trips, as can be seen in Figure 7f.
The GHTS data set shows that 95% of all "Home" trips on Saturdays are below 80 km
whereas the remaining 5% can reach values up to 320 km. “Home” trips on Saturdays
are higher compared to working days, as persons tend to travel higher distances for their
leisure activities on Saturdays, which results in accordingly higher home distances.

This small share of trips with high distances in the GHTS data set lead to a higher
average daily distance compared to our simulation. As time-consuming, inter-trip charging is
necessary to cover high-distance trips, we assume that those trips are not undertaken with
a private BEV but with other vehicles (e.g., shared vehicles) with alternative drives (e.g.,
hydrogen) in the future. Therefore, the reliability of the model is not affected by this error.

In Table 3, the proportion of moving vehicles for the simulation and the GHTS data
set is shown. The relative error is 0.18% on a working day and 1.15% on a Saturday, which
indicates that the simulation represents the GHTS data set with high accuracy.

Table 3. Comparison of the simulation and the GHTS data set—average daily distance and moving vehicles.

Type of Day GHTS Data Set Simulation Relative Error
Average Daily Distance Working Day 32.6 km 29.2 km —10.4%
Saturday 26.1 km 24.6 km —5.7%
Percentage Moving Vehicles Working Day 54.8% 54.9% 0.18%
Saturday 43.3% 43.8% 1.15%

3.2. Vehicle Class Category Distribution—Simulation and GHTS Data Comparison

In Table 4, the simulated vehicle class category distribution is compared to the GHTS
data set. The relative error is 5.9% for the mini compact class, —1.7% for the compact
class, —1.0% for the medium class, and —6.3% for the large class; hence, our simulation
represents the data set well.
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Table 4. Comparison of the simulation and the GHTS data set—vehicle class category distribution.

Vehicle Class Category GHTS Data Set Simulation Relative Error
Mini Compact 25.5% 27.0% 5.9%
Compact 36.2% 35.6% —-1.7%
Medium 28.7% 28.4% —1.0%
Large 9.6% 9.0% —6.3%

3.3. Trip Starting Time—Simulation and GHTS Data Comparison

In Figure 9, a comparison of the simulated cumulative distribution function of the
trip’s starting time (blue) and the cumulative distribution function derived from the GHTS
data set (orange) is shown. Figure 9a—c show the results for a working day (Monday-
Thursday), Figure 9d—f show the results for Saturday. The figures are depicted for the
activities “Working”, “Shopping”, and “Home”. While the general distribution shape for
the activity “Home” matches well, errors exist for the activities “Working” and “Shopping”.
Further improving the fit of those distributions would be a valuable future improvement.
In Figure 10, the modelling errors of the results in Figure 9 are depicted as a boxplot.
The mean error is between —4.3% and 2.6% for a working day (Monday-Thursday) and
between —5.3% and 3.1% on a Saturday.
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Figure 9. Cumulative distribution function for trip starting time—simulation and GHTS data set comparison.
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Figure 10. Modelling error starting time distributions.

3.4. Spatial Distribution of the Charging Energy Demand

By using the mobility model explained in Section 2.2 and the assumptions made in
Section 2.3, we calculate the spatial distribution of the charging energy demand in Berlin.
Figure 11 shows the resulting spatial distribution of the charging energy demand in the
Berlin LORSs for a working day (Monday-Thursday). As we consider “home-charging” only,
the spatial demand of energy is equally distributed over Berlin on Saturdays compared
to working days. The total charging energy demand in Berlin of 4730 MWh on Saturdays
is around 14.9% less compared to a working day with 5435 MWh. This can be explained
as follows. The average distance of all vehicles is 18.7% higher on working days than on
Saturdays. The proportion of moving vehicles is 25.3% higher on working days compared
to Saturdays (see Table 3). This leads to the fact that the daily distances of moving vehicles
are greater on Saturdays compared to working days. According to Section 2.3, a higher
energy consumption is assumed for higher distances. Therefore, the energy consumption
on Saturdays is 14.9% lower compared to working days and not, as may expected 18.7%
lower. As it can be seen in Figure 11, the energy demand in LORs located in the peripheral
areas of the city are higher compared to the ones located in the city center. This is due to
a higher degree of motorisation and a higher household income in the peripheral areas.
LORs with near zero charging energy demand are pure forest, lake, or industrial areas
without inhabitants. It can be seen that LORs with a high energy demand coincide with
LORs of high populations, high degrees of motorisation, and high household incomes.

60

w
o
Energy Demand (MWh)

10

Map tiles by Stamen Design, CC BY 3.0 -- Map data (C contributors'

Figure 11. Spatial distribution of the battery electric vehicle (BEV) charging energy demand in the
Berlin LORs for a working day (Monday-Thursday).

v

The influence of the factors “degree of motorisation”, “population size”, and “house-
hold income” on the LOR’s energy demand is illustrated for five LORs in Table 5. The
energy demand is depicted for a working day (Monday-Thursday). The comparison of the
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LOR “Sttilerstrasse” with the LOR “Huttenkiez” shows the influence of the household in-
come distribution on the energy demand within a LOR. Although more cars are registered
in the LOR “Huttenkiez”, the LOR “Sttilerstrasse” has a higher energy demand (5275 kWh
compared to 4441 kWh). This is due to the fact that there are more high-income households
in the “Stiilerstrasse” LOR, which tend to own larger cars, which require more energy.
The influence of the motorisation degree can be studied, for example, by comparing the
LOR “Griessingerstrasse” with the LOR “Liibarser Strasse”. Both LORs have a similar
distribution of household income, with slightly higher income in “Griessingerstrasse”.
The lower degree of motorisation in “Liibarser Strasse” leads to the lower daily energy
consumption of 3423 kWh compared to “Griessingerstrasse”, with 6151 kWh.

In Figure 12, the spatial distribution of the BEVs’ charging energy demand is depicted
per m? and per inhabitant for the Berlin LORs. It can be seen that the charging energy
demand per m? is higher in the inner city LORs compared to the peripheral areas. The
higher population densities within the inner city LORs compensates the lower degree of
motorisation and lower household income. The charging energy demand per inhabitant is
higher in the peripheral areas of the city, as the degree of motorisation and the household
income are higher in the peripheral LORs.
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Figure 12. Spatial distribution of the BEV charging energy demand for a working day (Monday-Thursday) normalised to
the size and the inhabitants in the Berlin LORs.
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Table 5. Influence of the household income distribution, the amount of inhabitants, and the amount of vehicles in the LORs on the BEV charging energy demand on a working day
(Monday-Thursday).

Household Income Distribution

LOR Inhabitants Vehicles Per 1000 Inhabitants Energy Demand (kWh)
Very Low Low Medium High Very High
Stiilerstrasse 3258 288 0.084 0.134 0.265 0.382 0.135 5275
Huttenkiez 3424 288 0.270 0.330 0.40 0.0 0.0 4441
Griesingerstr 3473 322 0.247 0.279 0.350 0.122 0.002 6151
Alt-Biesdorf 3367 397 0.110 0.220 0.360 0.220 0.09 7177

Lubarser Strasse 3214 228 0.309 0.313 0.285 0.088 0.005 3423
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3.5. Temporal Distribution of the Charging Power Demand

For charging powers of 3.7 kW and 11 kW, respectively, we evaluate the temporal
distribution of the charging power demand for the LOR “Heiligensee”. “Heiligensee” is
located in the district “Reinickendorf” in the northwest of Berlin. This LOR was chosen
for evaluation as it has the highest energy demand of all LORs for the simulated working
day. The result is compared to the cumulative power demand of the households within
this district. The cumulative power demand of the households is calculated by scaling
the standard load profile for Berlin households, which we received from [45]. Standard
load profiles are forecasts of the electrical energy consumption at quarter-hourly intervals,
provided by the energy supplier. In Germany, they are usually normalised to 1000 kWh per
year, which makes scaling necessary [46]. This scaling at the LOR level requires knowledge
concerning the distribution of different household sizes as well as annual household
electricity consumption. The relevant data is shown in Table 6. We derive the yearly energy
demand per household size from [47]. The authors specify the yearly energy demand of
different German household sizes as a normal distribution. For our calculations, we use the
mean values. The cumulative LOR household power demand is calculated for a working
day and a Saturday in May 2018.

In Figure 13a,b, temporal distribution of the charging power demand for a working
day (Monday-Thursday) is depicted in blue for 11 kW charging power and 3.7 kW charging
power, respectively. In orange, the temporal distribution of the cumulative household
power demand within the LOR can be seen. In grey, the superposition with the simulated
charging power demand of the BEVs is shown. The results for a Saturday are depicted in
Figure 13c for 11 kW charging power and in Figure 13d for 3.7 kW charging power. As it
can be seen, the cumulative household power demand between 06:00 and 23:00 is higher
on Saturdays, since persons are more likely to be at home, as they do not have to work.

Table 6. Amount of households in the LORs “Heiligensee” and “Invalidenstrasse” and their yearly energy demand.

Household Size Amount of Households Amount of Households Yearly Energy Demand
in the LOR “Heiligensee” in the LOR “Invalidenstrasse” Per Household (kWh)
One Person 4318 6894 2110
Two Persons 3046 2401 3640
Three Persons 947 771 4600
Four or more Persons 1088 911 4850

As depicted in Figure 13, the charging power demand curves of the BEVs for 11 kW
charging power show a more pronounced valley and peak compared to their corresponding
curves for 3.7 kW charging power. Due to the uncontrolled charging strategy, the vehicles
start charging immediately upon arrival at home, which is mainly in the evening hours.
The resulting simultaneity of the charging events leads to a peak in the evening hours
(maximum around 20:00), which is higher for an 11 kW charging power compared to a
3.7 kW charging power. Since vehicles that are charged with 11 kW charging power need
less charging time to fully recharge, the valley of the BEV charging power demand curve is
lower for 11 kW charging power compared to 3.7 kW charging power.

As illustrated, the households’ power demand peak in the evening coincides with the
BEVs’ power demand peak for Saturdays and working days. The maximum total power
demand of the LOR “Heiligensee” is increased by 77.9% for 11 kW charging power and
59.1% for 3.7 kW on working days with additional BEV load. It is increased by 64.2% for
11 kW charging power and 50.4% for 3.7 kW on Saturdays.
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Figure 13. Temporal distribution of the BEV charging power demand for the LOR “Heiligensee”.
(a) Working day (Monday-Thursday), 11 kW, (b) Working day (Monday-Thursday), 3.7 kW,
(c) Saturday, 11 kW, (d) Saturday, 3.7 kW.

In Figure 14, the temporal distribution of the BEV charging power demand is com-
pared to the cumulative power demand of the households for the LOR “Invalidenstrasse”,
which is located in the district “Mitte” in the center of Berlin. The results are shown for a
working day and charging powers of 3.7 kW and 11 kW. The cumulative household power
demand curve is calculated by scaling the standard load profile for Berlin households, as de-
scribed in the previous paragraph. The distribution of the different household sizes needed
for scaling can be found in Table 6. Since more single-person households are located in
the LOR “Invalidenstrasse” compared to “Heiligensee”, the cumulative household power
demand is higher. In comparision to “Heiligensee” the maximum total power demand
of the LOR “Invalidenstrasse” is only increased by 19.0% for 11 kW charging power and
by 15.7% for 3.7 kW with the additional BEV load. Both LORs have a similar population
(18,070 in “Heiligensee” and 17,950 in “Invalidenstrasse”) and similar household incomes.
Since the degree of motorisation in “Heiligensee” (638 vehicles/1000 inhabitants) is almost
four times higher compared to the LOR “Invalidenstrasse” (173 vehicles/1000 inhabitants),
the BEV charging power demand is accordingly higher. The temporal distribution of the
charging power demand on Saturdays is not depicted for the LOR “Invalidenstrasse”,
since it shows the same behaviour compared to a working day as already shown for the
LOR “Heiligensee”.

The computed results of the temporal distribution of the BEV charging power de-
mand can be compared to other studies. The authors of [3] investigated the impact of
uncoordinated BEV charging on a medium voltage distribution network. They assumed
1.5 vehicles per household and a 10% electric vehicle penetration rate, resulting in a total of
1270 electric vehicles in the network area. The charging power of the vehicles is between
1.5 kW and 6 kW. They showed that the peak charging power demand can reach values up
to 2500 kW in the evening hours. This number is 2.7 times higher than the peak demand
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of 900 kW that we determined for the LOR “Invalidenstra8e” (3126 BEVs) and 3.7 kW
charging power on a working day. The difference arises since the authors assume that all
vehicles are used during the simulated day and then are charged almost simultaneously
in the evening hours. In contrast to our results, this simultaneity of the charging events
reduces the charging power demand in the study to near zero in the early morning.
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Figure 14. Temporal distribution of the BEV charging power demand for the LOR “Invalidenstrasse”.

The author of [48] investigated the impact of uncoordinated BEV charging on the
residential power demand of 200 households in the midwest region of the USA. Similar to
our work, the author showed an increased demand in the evening hours. For a motorisation
degree of 347 vehicles per 1000 inhabitants, the author showed that the maximum total
power demand can increase by 44% for 6.6 kW charging power and 31% for 1.92 kW on
working days with the additional BEV load. These findings are comparable to our results.
We showed for a charging power of 3.7 kW that the total power demand can increase
by 59.1% for a motorisation degree of 638 vehicles per 1000 inhabitants and by 15.7% for
a motorisation degree of 173 vehicles per 1000 inhabitants. In contrast to our work, the
author showed a similar power demand on Saturdays and on working days, which is
mainly due to the different driving behaviours in Berlin and the USA.

4. Conclusions and Outlook

In this paper, a methodology was presented to estimate the spatial and temporal
distribution of the charging energy and power demand that derives if urban, privately
owned cars are fully electrified. The results support the electrical grid operators in detecting
and evaluating possible overloads within the electrical grid. The novelty of our approach
lies in the development of an activity-based mobility model by directly combining the 2017
German household travel survey (GHTS) with statistics on the population density, the
degree of motorisation, and the household income in fine spatial resolution. Through this
direct combination, our model provides data-based results with high spatial and temporal
resolution. In contrast to other researchers, we take the vehicle class category distribution,
which has an significant impact on the energy and power demand, in fine spatial resolution
into account. Additionally, unlike most other scientific works, our model is vehicle-based
and not person-based. The multiple use of the same vehicle by several persons is therefore
better portrayed.

We applied our methodology to the urban area of Berlin in Germany. Since the data
sets we used to create our mobility model are available in a similar or identical form to
many rural and urban regions in Germany, an upscaling of our model is feasible. Due to
our open-data approach, it is relatively easy to obtain similar data sets in most places of
the world. Therefore, our methodology is transferable to non-German regions.

The results of our developed mobility model match well with the underlying key data
sources. The mean simulation error is between —5.3% and 3.1% for the trip starting time of
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the vehicles and the activities “Home”, “Working”, and “Shopping”. For those activities
and the trip distance, the mean simulation error is between —6.1% and 3.3%.

The application of our model showed that the spatial distribution of the charging
energy demand in Berlin is highly heterogeneous. In the peripheral areas of the city, the
total energy demand and the energy demand per capita is higher compared to the city
center, mainly because the residents own more cars per capita. Since their household
income is higher, the residents in peripheral areas own larger cars that consume more
energy. The energy demand per m? area is higher in the inner city LORs compared to
the peripheral areas, since the higher population densities compensate the lower degree
of motorisation within the inner city LORs. We additionally showed that the total daily
charging demand in Berlin is about 14.9% less on Saturdays compared to working days,
which is mainly due to the fact that fewer cars travel on Saturdays.

Regarding the temporal distribution of charging power demand, we compared the
cumulative household power demand with the additional BEV charging demand for
two LORs. We showed the variability of the BEV charging power demand in the LORs.
While the total power demand is only increased by 19.0% in the LOR "Invalidenstrafie"
on a working day and a charging power of 11 kW, it is increased by up to 77.9% in the
LOR “Heiligensee”. For a charging power of 3.7 kW, the increase is 59.1% in the LOR
"Heiligensee". These results shows the necessity for and are the basis for intelligent load
shifting methods. Those methods can be used to reduce the charging power demand peaks
and to flatten the load curve, as shown by other studies [4,7,49-51].

In further research, we will investigate load-shifting potentials by combining our
model with a smart charging algorithm. We will investigate if the BEVs’ charging power
demand peaks can be reduced without limiting the vehicle’s range. Furthermore, as we
currently solely consider "home-charging" in our model, we will use geodata to analyse
the building structure in each LOR. The results can be used to evaluate the attractiveness
for vehicles to enter the LORs for specific activities. By using a routing algorithm and
the attractiveness information, the daily routes for all vehicles can be determined. The
resulting knowledge about the location and the duration of stay for the different activities
will be used for the investigation of combined charging strategies.
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Abbreviations

The following abbreviations are used in this paper:
BEV Battery Electric Vehicle

ICEV  Internal Combustion Engine Vehicle
GHTS German Household Travel Survey

LOR Lebensweltlich Orientierter Raum



Energies 2021, 14, 2081 20 of 21

References

1. European Union EU. Energy Roadmap 2050; European Union: Luxembourg 2012. [CrossRef]

2. Ziele der Bundesregierung: Bis 2030 die Treibhausgase Halbieren. 2019. Available online: https://www.bundesregierung.de/
breg-de/themen/klimaschutz/klimaziele-und-sektoren-1669268 (accessed on 2 December 2020).

3. Lopes, J.AP; Soares, EJ.; Almeida, PM.R. Integration of Electric Vehicles in the Electric Power System. Proc. IEEE 2011,
99, 168-183. [CrossRef]

4. Putrus, G.A.; Suwanapingkarl, P.; Johnston, D.; Bentley, E.C.; Narayana, M. Impact of electric vehicles on power distribution
networks. In Proceedings of the 2009 IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, USA, 7-10 September 2009;
pp. 827-831.

5. Yong, ].Y.; Ramachandaramurthy, V.K,; Tan, KM.; Mithulananthan, N. A review on the state-of-the-art technologies of electric
vehicle, its impacts and prospects. Renew. Sustain. Energy Rev. 2015, 49, 365-385. [CrossRef]

6. Green, R.C; Wang, L.; Alam, M. The impact of plug-in hybrid electric vehicles on distribution networks: A review and outlook.
Renew. Sustain. Energy Rev. 2011, 15, 544-553. [CrossRef]

7. Lauth, E,; Mundt, P; Gohlich, D. Simulation-based Planning of Depots for Electric Bus Fleets Considering Operations and
Charging Management. In Proceedings of the the 4th International Conference on Intelligent Transportation Engineering,
Singapore, 5-7 September 2019; pp. 327-333.

8.  Jefferies, D.; Gohlich, D. A Comprehensive TCO Evaluation Method for Electric Bus Systems Based on Discrete-Event Simulation
Including Bus Scheduling and Charging Infrastructure Optimisation. World Electr. Veh. ]. 2020, 11, 56. [CrossRef]

9.  Martins-Turner, K.; Grahle, A.; Nagel, K.; Gohlich, D. Electrification of Urban Freight Transport—A Case Study of the Food
Retailing Industry. Procedia Comput. Sci. 2020, 170, 757-763. [CrossRef]

10. Hidalgo, P,; Trippe, A.E.; Lienkamp, M.; Hamacher, T. Mobility Model for the Estimation of the Spatiotemporal Energy Demand of
Battery Electric Vehicles in Singapore. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation
Systems (ITSC), Gran Canaria, Spain, 15-18 September 2015; pp. 578-583.

11. Knapen, L.; Kochan, B.; Bellemans, T.; Janssens, D.; Wets, G. Activity based models for countrywide electric vehicle power
demand calculation. In Proceedings of the 2011 IEEE First International Workshop on Smart Grid Modeling and Simulation,
Brussels, Belgium, 17 October 2011; pp. 13-18.

12.  Yi, T; Zhang, C.; Lin, T,; Liu, J. Research on the spatial-temporal distribution of electric vehicle charging load demand: A case
study in China. J. Clean. Prod. 2020, 242, 118457. [CrossRef]

13. Heymann, E; Pereira, C.; Miranda, V.; Soares, E]. Spatial load forecasting of electric vehicle charging using GIS and diffusion
theory. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Turin, Italy,
26-29 September 2017; pp. 1-6.

14. Yi, Z.; Bauer, PH. Spatiotemporal Energy Demand Models for Electric Vehicles. IEEE Trans. Veh. Technol. 2016, 65, 1030-1042.
[CrossRef]

15. Daina, N.; Sivakumar, A.; Polak, ].W. Modelling electric vehicles use: A survey on the methods. Renew. Sustain. Energy Rev. 2017,
68, 447-460. [CrossRef]

16. Bellemans, T.; Kochan, B.; Janssens, D.; Wets, G.; Arentze, T.; Timmermans, H. Implementation Framework and Development
Trajectory of FEATHERS Activity-Based Simulation Platform. Transp. Res. Rec. |. Transp. Res. Board 2010, 2175, 111-119. [CrossRef]

17.  Gohlich, D.; Nagel, K.; Syré, A.M.; Grahle, A.; Martins-Turner, K.; Ewert, R.; Miranda Jahn, R ; Jefferies, D. Integrated Approach
for the Assessment of Strategies for the Decarbonization of Urban Traffic. Sustainability 2021, 13, 839. [CrossRef]

18. Horni, A.; Nagel, K.; Axhausen, K. The Multi-Agent Transport Simulation MATSim; Ubiquity Press: London, UK, 2016. [CrossRef]

19. Ziemke, D.; Kaddoura, I.; Nagel, K. The MATSim Open Berlin Scenario: A multimodal agent-based transport simulation scenario
based on synthetic demand modeling and open data. Procedia Comput. Sci. 2019, 151, 870-877. [CrossRef]

20. Infas Institut fiir Angewandte Sozialwissenschaft GmbH. Deutsches Zentrum fiir Luft- und Raumfahrt e.V. Mobilitét in
Deutschland—MIiD. Ergebnisbericht. 2019. Available online: http://www.mobilitaet-in-deutschland.de/pdf/MiD2017_Ergeb
nisbericht.pdf (accessed on 2 December 2020).

21. Mobilitat in Deutschland 2017 / Zeitreihendatensatz: B3: Lokal-Datensatzpaket—Datensédtze mit Angabe von Kleinrdaumigen
Gitterzellen. 2018. Available online: https://daten.clearingstelle-verkehr.de/279/ (accessed on 2 December 2020).

22. Infas Institut fiir Angewandte Sozialwissenschaft GmbH. Deutsches Zentrum fiir Luft- und Raumfahrt e.V. Mobilitét in Tabellen
(MiT 2017). 2019. Available online: https://mobilitaet-in-tabellen.dlr.de/mit/ (accessed on 2 December 2020).

23. Amt fiir Statistik Berlin-Brandenburg. Einwohnerinnen und Einwohner im Land Berlin am 31. Dezember 2018: LOR-
Planungsraume. 2019. Available online: https:/ /www.statistik-berlin-brandenburg.de/Statistiken /statistik_SB.asp?Ptyp=700&
Sageb=12041&creg=BBB (accessed on 9 January 2021).

24. Senatsverwaltung fiir Umwelt, Verkehr und Klimaschutz. Mobilitdt der Stadt: Berliner Verkehr in Zahlen. 2017. Available
online: https:/ /www.berlin.de/sen/uvk/verkehr/verkehrsdaten/zahlen-und-fakten/mobilitaet-der-stadt-berliner-verkehr-
in-zahlen-2017/ (accessed on 2 December 2020).

25.  Amt fiir Statistik Berlin-Brandenburg. Ergebnisse des Mikrozensus im Land Berlin 2018: Haushalte, Familien und Lebensformen.

2019. Available online: https://www.statistik-berlin-brandenburg.de/publikationen/stat_berichte/2019/SB_A01-11-00_2018;0
1_BE.pdf (accessed on 29 May 2020).


http://doi.org/10.2833/10759.
https://www.bundesregierung.de/breg-de/themen/klimaschutz/klimaziele-und-sektoren-1669268
https://www.bundesregierung.de/breg-de/themen/klimaschutz/klimaziele-und-sektoren-1669268
http://dx.doi.org/10.1109/JPROC.2010.2066250
http://dx.doi.org/10.1016/j.rser.2015.04.130
http://dx.doi.org/10.1016/j.rser.2010.08.015
http://dx.doi.org/10.3390/wevj11030056
http://dx.doi.org/10.1016/j.procs.2020.03.159
http://dx.doi.org/10.1016/j.jclepro.2019.118457
http://dx.doi.org/10.1109/TVT.2015.2502249
http://dx.doi.org/10.1016/j.rser.2016.10.005
http://dx.doi.org/10.3141/2175-13
http://dx.doi.org/10.3390/su13020839
http://dx.doi.org/10.5334/baw
http://dx.doi.org/10.1016/j.procs.2019.04.120
http://www.mobilitaet-in-deutschland.de/pdf/MiD2017_Ergebnisbericht.pdf
http://www.mobilitaet-in-deutschland.de/pdf/MiD2017_Ergebnisbericht.pdf
https://daten.clearingstelle-verkehr.de/279/
https://mobilitaet-in-tabellen.dlr.de/mit/
https://www.statistik-berlin-brandenburg.de/Statistiken/statistik_SB.asp?Ptyp=700&Sageb=12041&creg=BBB
https://www.statistik-berlin-brandenburg.de/Statistiken/statistik_SB.asp?Ptyp=700&Sageb=12041&creg=BBB
https://www.berlin.de/sen/uvk/verkehr/verkehrsdaten/zahlen-und-fakten/mobilitaet-der-stadt-berliner-verkehr-in-zahlen-2017/
https://www.berlin.de/sen/uvk/verkehr/verkehrsdaten/zahlen-und-fakten/mobilitaet-der-stadt-berliner-verkehr-in-zahlen-2017/
https://www.statistik-berlin-brandenburg.de/publikationen/stat_berichte/2019/SB_A01-11-00_2018j01_BE.pdf
https://www.statistik-berlin-brandenburg.de/publikationen/stat_berichte/2019/SB_A01-11-00_2018j01_BE.pdf

Energies 2021, 14, 2081 21 of 21

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Senatsverwaltung fiir Wirtschaft, Energie und Betriebe. Wohnlagenkarte nach Adressen zum Berliner Mietspiegel. 2019.
Available online: https://daten.berlin.de/datensaetze /wohnlagenkarte-nach-adressen-zum-berliner-mietspiegel-2019-wms-1
(accessed on 2 December 2020).

BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. Meinungsbild E-Mobilitdt: Meinungsbild der Bevolkerung zur
Elektromobilitdt. 2019. Available online: https:/ /www.bdew.de/media/documents/Awh_20190527_Fakten-und-Argumente-
Meinungsbild-E-Mobilitaet.pdf (accessed on 9 January 2021).

Kraftfahrt Bundesamt. Bestand an Pkw am 1. Januar 2018 Nach Privaten und Gewerblichen Haltern. 2018. Available
online: https:/ /www.kba.de/DE/Statistik /Fahrzeuge /Bestand /Halter /fz_b_halter_archiv/2018/2018_b_halter_duslLhtml?
nn=2596262 (accessed on 2 December 2020).

Bomermann, H. Stadtgebiet und Gliederungen. Z. Amtliche Stat. Berl. Brandenbg. 2012, 1+2, 76-87.

Meinlschmidt, G. Handlungsorientierter Sozialstrukturatlas Berlin; Senatsverwaltung fiir Gesundheit und Soziales: Berlin, Ger-
many, 2014.

ADAC e.V. Ecotest: Test-und Bewertungskriterien(ab 2/2019). 2020. Available online: https://www.adac.de/_mmm/pdf/
Methodik_EcoTest_2020_292234.pdf (accessed on 12 December 2020).

ADAC e.V. Mitsubishi i-MiEV. 2011. Available online: https://www.adac.de/_ext/itr/tests/ Autotest/ AT4517_Mitsubishi_i_
MiEV /Mitsubishi_i_ MiEV.pdf (accessed on 12 December 2020).

ADAC e.V. Renault Zoe R135 Z.E. 50 (52 kWh) Intens. 2020. Available online: https://www.adac.de/_ext/itr/tests/ Autotest/
AT5969_Renault_Zoe_R135_Z_E_50_52_kWh_Intens_mit_Batteriemiete/Renault_Zoe_R135_Z_E_50_52_kWh_Intens_mit_
Batteriemiete.pdf (accessed on 12 December 2020).

ADAC e.V. VW e-up! 2018. Available online: https://www.adac.de/_ext/itr/tests/Autotest/ AT5776_VW_e_up!/VW_e_up!.pdf
(accessed on 12 December 2020).

ADAC e.V. BMW i3 (120 Ah). 2019. Available online: https://www.adac.de/_ext/itr/tests/ Autotest/ AT5861_BMW_i3_120
_Ah/BMW._i3_120_Ah.pdf (accessed on 12 December 2020).

ADAC e.V. Hyundai Kona Elektro (64 kWh) Premium. 2018. Available online: https://www.adac.de/_ext/itr/tests/Au
totest/ AT5773_Hyundai_Kona_Elektro_64_kWh_Premium/Hyundai_Kona_Elektro_64_kWh_Premium.pdf (accessed on 12
December 2020).

ADAC e.V. VW e-Golf. 2018. Available online: https:/ /www.adac.de/_ext/itr/tests/ Autotest/ AT5678_VW_e-Golf/VW_e-Golf.
pdf (accessed on 12 December 2020).

ADAC e.V. KIA e-Niro (64 kWh) Spirit. 2019. Available online: https://www.adac.de/_ext/itr/tests/ Autotest/ AT5866_KIA _e_
Niro_64_kWh_Spirit/KIA_e_Niro_64_kWh_Spirit.pdf (accessed on 12 December 2020).

ADAC e.V. Nissan Leaf (62 kWh) e+ Tekna. 2020. Available online: https://www.adac.de/_ext/itr/tests/Autotest/ AT5962_
Nissan_Leaf 62_kWh_e+_Tekna/Nissan_Leaf 62_kWh_e+_Tekna.pdf (accessed on 12 December 2020).

ADAC e.V. Tesla Model 3 Standard Range Plus. 2019. Available online: https://www.adac.de/_ext/itr/tests/Autotest/ AT5933_
Tesla_Model_3_Standard_Range_Plus/Tesla_Model_3_Standard_Range_Plus.pdf (accessed on 12 December 2020).

ADAC e.V. Audi e-tron 55 quattro. 2019. Available online: https://www.adac.de/_ext/itr/tests/ Autotest/ AT5926_Audi_e_
tron_55_quattro/Audi_e_tron_55_quattro.pdf (accessed on 12 December 2020).

ADAC e.V. Mercedes EQC 400 AMG Line 4MATIC. 2020. Available online: https:/ /www.adac.de/_ext/itr/tests/Autotest/ AT5
973_Mercedes_EQC_400_AMG_Line_4MATIC/Mercedes_EQC_400_AMG_Line_4MATIC.pdf (accessed on 12 December 2020).
ADAC e.V. Tesla Model S P90D. 2017. Available online: https:/ /www.adac.de/_ext/itr/tests/Autotest/ AT5531_Tesla_Model
S_P90D/Tesla_Model _S_P90D.pdf (accessed on 12 December 2020).

Statistisches Bundesamt. Zeitverwendungserhebung: Aktivitdten in Stunden und Minuten fiir ausgewéhlte Personengrup-
pen. 2015. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Einkommen-Konsum-Lebensb
edingungen/Zeitverwendung/Publikationen/Downloads-Zeitverwendung/ zeitverwendung-5639102139004.pdf?__blob=pu
blicationFile (accessed on 2 December 2020).

Stromnetz Berlin GmbH. Netznutzer: Standartlastprofile fiir 2009-2021. 2020. Available online: https://www.stromnetz.berlin/
netz-nutzen/netznutzer (accessed on 4 November 2020).

Fiinfgeld, C.; Tiedemann, R. Anwendung der Reprasentativen VDEW-Lastprofile: Step-by-Step. 2000. Available online:
https:/ /www.bdew.de/media/documents/2000131_Anwendung-repraesentativen_Lastprofile-Step-by-step.pdf (accessed on 4
November 2020).

Frondel, M; Ritter, N.; Sommer, S. Stromverbrauch privater Haushalte in Deutschland—Eine 6konometrische Analyse. Z. Fiir
Energiewirtschaft 2015, 39, 221-232. [CrossRef]

Muratori, M. Impact of uncoordinated plug-in electric vehicle charging on residential power demand. Nat. Energy 2018,
3,193-201. [CrossRef]

Mal, S.; Chattopadhyay, A.; Yang, A.; Gadh, R. Electric vehicle smart charging and vehicle-to-grid operation. Int. |. Parallel,
Emergent Distrib. Syst. 2013, 28, 249-265. [CrossRef]

Veldman, E.; Verzijlbergh, R.A. Distribution Grid Impacts of Smart Electric Vehicle Charging From Different Perspectives. IEEE
Trans. Smart Grid 2015, 6, 333-342. [CrossRef]

Gohlich, D.; Raab, A.F. (Eds.) Mobility2Grid—Sektorentibergreifende Energie- und Verkehrswende; Springer: Berlin, Germany, 2021.


https://daten.berlin.de/datensaetze/wohnlagenkarte-nach-adressen-zum-berliner-mietspiegel-2019-wms-1
https://www.bdew.de/media/documents/Awh_20190527_Fakten-und-Argumente-Meinungsbild-E-Mobilitaet.pdf
https://www.bdew.de/media/documents/Awh_20190527_Fakten-und-Argumente-Meinungsbild-E-Mobilitaet.pdf
https://www.kba.de/DE/Statistik/Fahrzeuge/Bestand/Halter/fz_b_halter_archiv/2018/2018_b_halter_dusl.html?nn=2596262
https://www.kba.de/DE/Statistik/Fahrzeuge/Bestand/Halter/fz_b_halter_archiv/2018/2018_b_halter_dusl.html?nn=2596262
https://www.adac.de/_mmm/pdf/Methodik_EcoTest_2020_292234.pdf
https://www.adac.de/_mmm/pdf/Methodik_EcoTest_2020_292234.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT4517_Mitsubishi_i_MiEV/Mitsubishi_i_MiEV.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT4517_Mitsubishi_i_MiEV/Mitsubishi_i_MiEV.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5969_Renault_Zoe_R135_Z_E_50_52_kWh_Intens_mit_Batteriemiete/Renault_Zoe_R135_Z_E_50_52_kWh_Intens_mit_Batteriemiete.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5969_Renault_Zoe_R135_Z_E_50_52_kWh_Intens_mit_Batteriemiete/Renault_Zoe_R135_Z_E_50_52_kWh_Intens_mit_Batteriemiete.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5969_Renault_Zoe_R135_Z_E_50_52_kWh_Intens_mit_Batteriemiete/Renault_Zoe_R135_Z_E_50_52_kWh_Intens_mit_Batteriemiete.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5776_VW_e_up!/VW_e_up!.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5861_BMW_i3_120_Ah/BMW_i3_120_Ah.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5861_BMW_i3_120_Ah/BMW_i3_120_Ah.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5773_Hyundai_Kona_Elektro_64_kWh_Premium/Hyundai_Kona_Elektro_64_kWh_Premium.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5773_Hyundai_Kona_Elektro_64_kWh_Premium/Hyundai_Kona_Elektro_64_kWh_Premium.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5678_VW_e-Golf/VW_e-Golf.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5678_VW_e-Golf/VW_e-Golf.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5866_KIA_e_Niro_64_kWh_Spirit/KIA_e_Niro_64_kWh_Spirit.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5866_KIA_e_Niro_64_kWh_Spirit/KIA_e_Niro_64_kWh_Spirit.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5962_Nissan_Leaf_62_kWh_e+_Tekna/Nissan_Leaf_62_kWh_e+_Tekna.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5962_Nissan_Leaf_62_kWh_e+_Tekna/Nissan_Leaf_62_kWh_e+_Tekna.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5933_Tesla_Model_3_Standard_Range_Plus/Tesla_Model_3_Standard_Range_Plus.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5933_Tesla_Model_3_Standard_Range_Plus/Tesla_Model_3_Standard_Range_Plus.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5926_Audi_e_tron_55_quattro/Audi_e_tron_55_quattro.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5926_Audi_e_tron_55_quattro/Audi_e_tron_55_quattro.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5973_Mercedes_EQC_400_AMG_Line_4MATIC/Mercedes_EQC_400_AMG_Line_4MATIC.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5973_Mercedes_EQC_400_AMG_Line_4MATIC/Mercedes_EQC_400_AMG_Line_4MATIC.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5531_Tesla_Model_S_P90D/Tesla_Model_S_P90D.pdf
https://www.adac.de/_ext/itr/tests/Autotest/AT5531_Tesla_Model_S_P90D/Tesla_Model_S_P90D.pdf
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Einkommen-Konsum-Lebensbedingungen/Zeitverwendung/Publikationen/Downloads-Zeitverwendung/zeitverwendung-5639102139004.pdf?__blob=publicationFile
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Einkommen-Konsum-Lebensbedingungen/Zeitverwendung/Publikationen/Downloads-Zeitverwendung/zeitverwendung-5639102139004.pdf?__blob=publicationFile
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Einkommen-Konsum-Lebensbedingungen/Zeitverwendung/Publikationen/Downloads-Zeitverwendung/zeitverwendung-5639102139004.pdf?__blob=publicationFile
https://www.stromnetz.berlin/netz-nutzen/netznutzer
https://www.stromnetz.berlin/netz-nutzen/netznutzer
https://www.bdew.de/media/documents/2000131_Anwendung-repraesentativen_Lastprofile-Step-by-step.pdf
http://dx.doi.org/10.1007/s12398-015-0157-0
http://dx.doi.org/10.1038/s41560-017-0074-z
http://dx.doi.org/10.1080/17445760.2012.663757
http://dx.doi.org/10.1109/TSG.2014.2355494

	Introduction
	Methodology
	District Classification and Vehicle Population
	Mobility Profiles
	Assumptions to Calculate the Spatial and Temporal Power Demand

	Results and Discussion
	Trip Distance and Moving Vehicles—Simulation and GHTS Data Comparison
	Vehicle Class Category Distribution—Simulation and GHTS Data Comparison
	Trip Starting Time—Simulation and GHTS Data Comparison
	Spatial Distribution of the Charging Energy Demand
	Temporal Distribution of the Charging Power Demand

	Conclusions and Outlook
	References

