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Abstract: Since ancient times, raw earth has been used worldwide as a construction material. Today, it
is well known for its good environmental properties of recyclability and low embodied energy along
the production process. Earthen walls regulate the interior temperature of the buildings, providing
comfortable temperatures with a very low carbon footprint. As a result of those advantages, earthen
building techniques have been revived and used for contemporary architecture. The aim of this
paper is to review the state of the art about the thermal behaviour of earthen building, including all
the monitoring and simulation analysis of real earthen constructions up to now. The paper presents
the different earthen techniques known nowadays, analysing the most important thermal parameters
and the thermal comfort achieved with each technique. Regardless the wide differences among the
analyzed cases, the authors conclude that earth building is a suitable solution in hot and arid climates,
since it preserves the indoor temperature within the thermal comfort limits most part of the time
without any active system.

Keywords: earthen architecture; earthen building technique; monitoring; simulation; thermal com-
fort; thermal inertia

1. Introduction. Earth Architecture in the World

The power of each civilisation has been represented by its architecture. The pyramids,
the classic shrines, the medieval castles, the large Gothic cathedrals, the Baroque and
Renaissance palaces, or some skyscrapers in the 20th and 21st centuries are examples
of representative architecture which have not paid much attention to the interaction of
form and energy, and to the bioclimatic approach, in general [1]. Nowadays some of this
architecture requires the constant use of conditioned air or heating systems to achieve
thermal comfort.

On the other hand, popular and vernacular architecture is the one connected to the
environment. In this architecture, the aesthetics of the buildings are the less important,
but the use of local materials and techniques guide the constructive design to save the
meteorological conditions of the place in question. It is proven that in extreme climates,
popular architecture has better thermal performance than representative and modern
architecture [1].

Earth constructions have been used worldwide for centuries, often surviving until the
present. There is some archeological evidence of this fact, embodied in the adobe walls of
Jericho, dating to 8300 BC or parts of the Great Wall of China that are over 2000 years old [2].
Despite its ancient origins, approximately 30% of the world’s population is currently living
in earth-based housing [3–6].

Roux [6] states that the big empires in the ancient history like Egypt, Iran, China or
Mesopotamia used adobe to build their dwellings. However, for some people nowadays
these materials are related with poverty and non-developed countries. In some countries
there are entire cities built with this material, which have more than three centuries of
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history, such as Cairo or Jerusalem. Furthermore, nowadays more than 150 UNESCO World
Heritage properties around the globe are totally or partially built with earth [7]. Figure 1
shows the earth construction areas of the world according to [8].
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These examples prove the viability of this type of construction, and certify that the
earth construction technologies are a plausible alternative in the 21st century due to their
long service life and applicability worldwide [3,5].

Although the industrialised countries have replaced traditional earth constructions
by modern and highly technified materials during the last centuries, the interest in earth
materials is also growing in these countries due to its sustainability at economic, social
and environmental level. It seems to be a good solution for the environment, due to its
low carbon footprint, low embodied energy, high thermal inertia and good hygroscopic
features [3–5]. As an example at social and economic level, according to [9], dwelling needs
in the developing countries can only be solved using natural and local materials and auto
constructive techniques, which make the earth an optimal building material candidate.

Currently all the efforts regarding new constructions or refurbishments at any level or
country are focused on reducing the embodied energy, obtaining the best thermal comfort
performance. It is important to focus on the building envelope and to apply passive design
strategies to increase the thermal comfort inside the building without any active HVAC system.

This review has different objectives. First, an updated classification of the different
earth constructive techniques is presented. Second, this paper puts together the findings
regarding the thermal comfort of the different earth construction techniques, in order to
define the current state of research in this topic and propose future research. To accom-
plish with this second objective, thermal monitoring and thermal simulations studies are
considered. Analysis and comparisons of thermal behaviour of earth constructions are
also performed. The scope of the review is to present thermally monitored and simulated
earthen buildings, being those ancient or new constructions, built in any of the earth
construction techniques for both, in-use or experimental purposes.

2. Classification for Earth Constructive Techniques

Two classifications have been found in the literature. The first one, provided by the
Auroville Earth Institute [8] classifies the main earth techniques by the content of water in
the mixture (Figure 2).

The second one, provided by Houben and Guilland [10], bases the classification in the
load bearing system needed, as shown in Figure 3.

The Auroville Earth Institute classification presents four categories according to the
state of the earth (Figure 2):

(1) dry and solid corresponds to the earth in a completely solid state with no water added
into the mixture;

(2) humid stands for those techniques that contain a relatively low percentage of water,
about 5% [11];



Energies 2021, 14, 2080 3 of 47

(3) in the plastic category 15–30% of water is added [11] and
(4) for the liquid category the earth is expected to be in a liquid state.

When looking at Houben and Guilland’s classification (Figure 3) three main groups
(A, B, and C) are presented, according to the use of unbaked earth. This are in monolithic
load-bearing form (A), in load-bearing masonry form (B) or in conjunction with a load-
bearing structure (C).

When considering both classifications, it is seen that there is a direct correlation
between the content of water of the mixture and the load-bearing system used for the earth
construction. For techniques with low water content, the structure is hold by the earth
itself in monolithic load-bearing form; as higher is the water content, a formwork during
the construction or a fixed wooden or other load-bearing structure is needed.

Energies 2021, 14, x FOR PEER REVIEW 3 of 52 
 

 

 
Figure 2. Main earth techniques classification, according to water content [8] 

The second one, provided by Houben and Guilland [10], bases the classification 
in the load bearing system needed, as shown in Figure 3. 

 

 

Figure 3. Main earth techniques classification, according to the load bearing system [10]. 

The Auroville Earth Institute classification presents four categories according to the 
state of the earth (Figure 2):  
1) dry and solid corresponds to the earth in a completely solid state with no water 

added into the mixture;  
2) humid stands for those techniques that contain a relatively low percentage of water, 

about 5% [11];  
3) in the plastic category 15–30% of water is added [11] and  
4) for the liquid category the earth is expected to be in a liquid state. 

When looking at Houben and Guilland’s classification (Figure 3) three main groups 
(A, B, and C) are presented, according to the use of unbaked earth. This are in monolithic 
load-bearing form (A), in load-bearing masonry form (B) or in conjunction with a 
load-bearing structure (C). 

When considering both classifications, it is seen that there is a direct correlation 
between the content of water of the mixture and the load-bearing system used for the 

Figure 2. Main earth techniques classification, according to water content [8].

Energies 2021, 14, x FOR PEER REVIEW 3 of 52 
 

 

 
Figure 2. Main earth techniques classification, according to water content [8] 

The second one, provided by Houben and Guilland [10], bases the classification 
in the load bearing system needed, as shown in Figure 3. 

 

 

Figure 3. Main earth techniques classification, according to the load bearing system [10]. 

The Auroville Earth Institute classification presents four categories according to the 
state of the earth (Figure 2):  
1) dry and solid corresponds to the earth in a completely solid state with no water 

added into the mixture;  
2) humid stands for those techniques that contain a relatively low percentage of water, 

about 5% [11];  
3) in the plastic category 15–30% of water is added [11] and  
4) for the liquid category the earth is expected to be in a liquid state. 

When looking at Houben and Guilland’s classification (Figure 3) three main groups 
(A, B, and C) are presented, according to the use of unbaked earth. This are in monolithic 
load-bearing form (A), in load-bearing masonry form (B) or in conjunction with a 
load-bearing structure (C). 

When considering both classifications, it is seen that there is a direct correlation 
between the content of water of the mixture and the load-bearing system used for the 

Figure 3. Main earth techniques classification, according to the load bearing system [10].

Both earth techniques classifications are key references in literature however, they
were presented decades ago and today new techniques must be incorporated. This is why,
an update and a correlation based on both classifications is presented in this review. The
classification presented in Table 1 considers similar techniques, adds new earth techniques
and avoids the techniques where the earth is just used in the roof as passive design strategy,
instead of the building enclosure.
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Table 1. Main characteristics for earth construction technologies and correspondence with literature classifications.

Technique Soil Characteristics Construction
Technique

Water
Content

Tools for
Construction

Time of
Construction

Houben &
Guilland [10]

Auroville Earth
Institute [8]

Earthen dug out
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Compressed earth blocks (CEB)
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3. Methodology

During the analysis, more than 100 scientific papers and conference articles related
with raw earth construction were analysed. However, only the 57 articles directly re-
lated with monitoring and simulation thermal comfort have been considered. Most of
the techniques presented in Table 1 are present in the Results section, however there are
other techniques that are not included in that section because no literature is found within
the scope and the objective of this study, although some of them are very well known
techniques. For example, earth 3D printing is such a new technique for which some pre-
liminary studies about the earth properties and small structural tests can be found but
nothing related with thermal comfort or hygrothermal behaviour. Other examples are the
direct shaping or the cut blocks. There is some literature [8,10] describing the techniques
or locating some real examples of those construction techniques, but there are not studies
concerning its thermal behavior. In the discussion section, comparison tables can be found.

According to the objective of the review, the literature was divided into two main groups:

(5) MONITORING: Thermal monitoring of experimental buildings and in-use buildings.
(6) SIMULATION: Thermal simulation of existing buildings and buildings designed

exclusively for simulation.

The relevant information extracted from each publication is: paper title, authors,
scientific journal and publication year. The geographical location and climate are also
considered, classifying the climate according to the Köppen and Geiger classification [12].
The building use is also an important parameter, distinguishing between in-use buildings
and buildings only designed for simulation purposes. In the in-use buildings category
prototypes and experimental buildings are also considered. In-use buildings are those
buildings that have been in lawful use for a continuous period of at least six months within
a period of three years or a relevant building; while an experimental building is the one that
has only a research purpose. Monitoring procedure and/or software used have been also
considered. Characteristics of the buildings such as wall thickness or dimensions as well as
thermal parameters such as thermal conductivity of the wall and/or U-value are relevant
for the analysis. Thermal lag, decrement factor and comfort degree in the building are also
of interest for this paper. The thermal lag represents the time that elapses between the
indoor air temperature maximum value and the outdoor maximum value. The decrement
factor is defined as the reduction of the temperature range of both measures [13].

4. Results

Literature analysed is presented dividing monitoring studies from simulation studies.
Inside each category, the technique order presented in Table 1 is followed. Main charac-
teristics of the buildings studied and the technology used for monitoring or simulating
as well as main results and conclusions are exposed. Comparison tables are found in the
discussion section.

4.1. Thermal Monitoring
4.1.1. Earthen Dug Out

All the authors in this section monitored in-use buildings. Some used as wine cellars
and others as residential buildings still in use nowadays.

Porras et al. [14] monitored a warehouse in-use underground building located in San
Esteban de Gormaz (Spain), a location with an oceanic climate (Cfb). The volume of the
construction is around 250 m3 and is excavated to an average depth greater than 10 m. The
construction has a tunnel, a cave and a ventilation chimney. Access to the cave is achieved
through a tunnel vaulted section 1 m wide, 2.2 m height, 8.5 m in length and with an
angle of inclination of 65%. The monitoring has been divided into two periods: cold period
(Text < Tint) and warm period (Text > Tint). No information on thermal lag, decrement
factor or thermal comfort is presented. The authors conclude that thermal stability with
zero energy consumption is reached in the cave despite the extreme outdoor temperatures.
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Sadoughi et al. [15] monitored five traditional Iranian buildings, called shavadan,
located in Dezful (Iran) and corresponding to a hot semi-arid climate (BSh). The buildings
and the corresponding depth from the courtyard’s level are the following: #1 Shah Rokn-
al-Din Mosque (9 m); #2 Shah Rokn-al-Din School (8.8 m); #3 Lab-e-Khandagh Mosque
(7.25 m); #4 Nilsaz House (6.5 m) and #5 Nadali House (8 m). The indoor air temperature,
from June 1st to December 21st, monitored for buildings #1, #2 and #4 ranged between
15.4 and 24.2 ◦C, 22.3 and 26.8 ◦C, and 17.3 and 26.4 ◦C, respectively; whereas the outdoor
temperatures ranged between 13.1 and 47.6 ◦C. The decrement factors for buildings #1, #2
and #4 were 0.38, 0.13, and 0.26, respectively. The indoor air temperature for buildings #3
and #5 was monitored during August 15th to December 21st. The temperature range for
building #3 was 18.5–25.4 ◦C and for #5 was 22.3–24.9 ◦C. The outdoor temperatures during
this period ranged between 11.1 and 49.8 ◦C for #3 and between 9.8 and 48.5 ◦C for #5. The
corresponding decrement factors for buildings #3 and #5 are 0.18 and 0.07, respectively.
The results show that the indoor air temperature of the shavadan is less influenced by the
outdoor temperature. The authors conclude that this stability confirmed the effectiveness
of this type of underground constructions.

Mazarrón et al. [16] monitored different existing and functioning in-use wine-cellars in
Ribera del Duero (Spain), with Mediterranean continental climate (Csb). The buildings are:
#1 a basement below ground level and other facilities; #2 an earth-sheltered construction
on ground level but completely sheltered by earth and #3 an underground construction
that has been dug straight out of the soil. Building #1 has a cask warehouse of 50 × 17 m2

and the height is 6 m. The longest aisle runs north-east to south-west. All the walls are in
contact with earth and there are ventilation openings at two heights on the south-east wall.
Building #2 has vaulted tunnels of 13 m wide at the lowest point, and 10 m high in the
centre of the arch. The beginning of the nave leads to the exterior and the end “runs into”
the earth. The warehouse is 90 × 13 m2. It has several ventilation chimneys distributed
along the length of the nave. Finally, building #3 has a tunnel of 100 m long and over 4 m
high. Because it is dug in a hill, the average depth varies between 10 and 20 m. The walls
leave the bare earth visible as it was excavated. The temperature and relative humidity
of the construction was monitored during four years (2006–2009). The decrement factors
obtained were 0.33, 0.18 and 0.10 for building #1, #2 and #3, respectively; and the thermal
lags were 38, 58 and 51 days for buildings #1 #2 and #3, respectively. The optimal comfort
interval is considered as 8–15 ◦C; >60% RH. During the four years of investigation, the
underground construction (#3) was inside this interval 100% of the time, the earth-sheltered
construction (#2) the 80% and the basement (#1) only 58% of the time. The study concluded
that in areas with large temperature variations, deep underground constructions (>10 m)
present the highest capacity to reduce outdoor climate variations and maintain thermal
stability all year round. The earth-sheltered construction seems to be the best alternative to
the underground construction.

Another article by Mazarrón et al. [17] monitored two underground wine cellars
located in the same Ribera del Duero region of Spain. Cellar #1 was monitored during
4 years (2006–2009) and cellar #2 during 2 years (2008–2009). Cellar #1 has a cave area of
nearly 10 m2 and a height of 2.4 m dug out at a depth of 2.3 m. There is a chimney for
natural ventilation. Cellar #2 has an area eight times larger (84 m2), the ceiling is 9 m deep
and the cellar high is 2.5 m. It has also a ventilation chimney in the middle of the cellar.
The monitoring results were used to validate the numerical model. No information on
the monitoring is presented but comparing the results, a R2 score, of 0.99 and a root mean
square error (RMSE) of 0.3 ◦C is obtained for cellar #1 and a R2 of 0.85 and a RMSE of
0.2 ◦C is obtained for cellar #1.

Mazarron et al. [18,19] monitored three wine cellars located in Morcuera (Spain) with
Mediterranean continental climate (Csb). Cellar #1 has a main cave of 6 m2 and 1.9 m high
coated with bricks and a secondary one to one side. The canyon length is almost 9 m and
has a 22◦ slope. It is reinforced with stonework. The cellar ceiling is 3.1 m deep. Cellar
#2 has the same distribution as cellar #1. The canyon is 6.5 m long reinforced with stone
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and has a 30◦ slope. Cellar #3 is facing north; it has a linear layout with a cave of around
12 m2 and a more than 7 m long canyon and a 31◦ slope. The monitoring was conducted
in 2006 and 2007). The daily, weekly and monthly average values for the air temperature
amplitude obtained were 0.2, 0.7 and 2.3 ◦C for #1; 0.7, 1.6 and 3.4 ◦C for #2, and 0.2, 0.7
and 2.1 for #3, respectively.

Guerrero et al. [20] also monitored traditional and still in use, wine cellars located in
Morcuera (Spain) and exposed to a Mediterranean continental climate (Csb). The authors
monitored two wine cellars of different construction type: a top wine cellar (#1) and a
bottom wine cellar (#2). Cellar #1 is 16.2 m long and it is excavated in the hillside with
no inclination. The façade is made of stones and there is no ventilation chimney. Cellar
#2 is 14.7 m long and it is deep under the ground 3.4 m. To access de cellar there is an
8 m long canyon with a slope of 47%. There is a ventilation chimney in the end of the
cave. The monitoring period was from 1 July to 7 July, at a time step of 5 min. In cellar
#1 the indoor temperature became stable at 11.8 ◦C having a thermal amplitude of 0.8 ◦C.
In the results section, the authors obtained a decrement factor for cellar #1 of 0.04. In cellar
#2, the indoor temperature in the end of the cave remains constant at 9 ◦C during all the
monitoring period although the outdoor temperature varies from 9.8 to 29.4 ◦C with a
thermal amplitude of almost 20 ◦C. In both cellars, the relative humidity registered was
100% during all the monitoring period.

Zhu et al. [21] monitored an underground cave dwelling located in Miaoshang (China).
The area corresponds to a semi-arid climate (BSk). The studied cave dwelling has nine cave
rooms surrounding a dug out courtyard along different directions, with the depth of 7.5 m
and plane size of 12 m2. A yaokang—an adobe stove to keep the air temperature stable— is
installed in the cave rooms. The adobe bricks used in the yaokang are 0.4 × 0.25 × 0.05 m3

and they maintain the heat from cooking to create a comfortable thermal environment
inside. The bottom of the kang body is paved with adobe, about five layers in height. The
stove is located in the middle front wall of the kang, where it is more convenient to add
fuel. During winter analysis the yaokang maintains the indoor air temperature at 10 ◦C or
more, whilst the outdoor temperature ranges from −9.5 to 8.7 ◦C, obtaining a decrement
factor of 0.46. During summer the decrement factor obtained is 0.19. The authors conclude
that the cave dwellings with coupled yaokang heating and the massive building envelope
adapt themselves to the local climate very well.

In another article, Zhu et al. [22] monitored four caves rooms of the underground cave
dwelling located also in Miaoshang (China). The four caves selected are facing north (#1),
south (#2), east (#3) and west (#4). To monitor the external conditions, a weather station
was installed on the ground next to the building. Air temperature and relative humidity
were recorded at different locations of the courtyard (along the depth 0.8, 2.3, 3.8, 5.3 and
6.8 m away from the door; and along the high 0.6, 1.1 and 1.7 m above the floor) and the
four cave rooms. The peak temperature of the ground level is deceased by 3 ◦C in the
courtyard because of the underground design. Inside the caves, the average decrement
factor during summer is 0.21. The authors conclude that indoor temperature stayed within
a comfort range without any active heating or cooling system.

Zhao et al. [23] monitored a four-hole cliff side cave dwelling located in Gongyi (China),
where the climate is considered monsoon-influenced humid subtropical (Cwa). The cave
dwelling is 7.6 × 3 m2 and the south façade is made of red bricks with the inner wall
coated with plaster. The monitoring was conducted during the winter and summer of
2018, in time steps of 10 min. An indoor air temperature and relative humidity sensor was
located at 1.7 m height, in the center of the cave dwelling. During the summer analysis the
decrement factor obtained was 0.25; and during the winter analysis 0.10. The authors also
analysed the influence of air temperature stratification inside the cave dwelling. During
summer, the air temperature was higher next to the south façade due to the solar heat gain,
and decreased with the depth (30.8–26 ◦C, respectively); and during winter the highest
temperature is recorded in the deepest and highest part of the cave and decreased to the
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south façade where the entrance is located (12.6–8.7 ◦C, respectively). The authors conclude
that cliff-side cave dwellings adapt themselves to the local climate very well.

Wang et al. [24] monitored a typical courtyard style cave dwelling located in Jiang Yao
Zu (China), where the climate is considered humid continental influenced by monsoon
(Dwa). The dwelling was built against a south-facing hill slope and has three courtyards on
different levels along the hillside. The top-courtyard was the only one measured and it is
surrounded by five cave rooms, to its north; three to the east and west, and two to the south.
The courtyard is approximately 19.5 × 14.4 m2, and the cave rooms were 3–3.8 m high
and have 1 m of earth covering the ceiling. The monitoring period was during wintertime
of 2000. The authors monitored an occupied cave room and an unoccupied cave room
obtaining decrements factors of 0.057 and 0.4, respectively. It is important to notice that
the occupied cave room has higher average temperature (14 ◦C) than the unoccupied cave
room, although the thermal amplitude is higher for the occupied cave room. For a period
of 24 h, the authors obtained a thermal lag of 0.58 h for the courtyard. The authors conclude
that due to the huge thermal inertia, the indoor air temperature is rather stable. Temperate
heating activities, such as cooking, will be able to keep indoor air temperature above 11 ◦C
during the night and 16 ◦C during daytime.

4.1.2. Earthbag

Rincón et al. [13] present an experimental earthbag building located in Lleida (Spain);
corresponding to a Mediterranean continental climate (BSk). The earthbag prototype has a
dome shape of 3 m of diameter and a high of 3.3 m. The walls consist of different earthbag
thicknesses—70 cm for the buttress, 35 cm for the wall and 28 cm for the roof—and an
exterior lime mortar coating of 0.4 cm. The monitoring has been conducted under different
scenarios: (1) air stratification, (2) free floating temperature with no ventilation, (3) natural
cross ventilation, and (4) winter controlled temperature. The air stratification scenario
shows an increase of 1.4 ◦C and 2.8 ◦C, from the bottom to the top of the dome, in summer
and the equinox, respectively. The authors calculated the thermal lag and the decrement
factor for winter, equinox and summer solstice, during the free floating scenario. Values
between 8–9 h for the thermal lag are obtained, as expected from the theoretical results
(8.1 h). Moreover, the theoretical result for the decrement factor is 0.12, and the values
obtained from the monitoring analysis are 0.12, 0.19 and 0.10, for winter, equinox and
summer solstice, respectively. According to [13], night ventilation, from 8 p.m. to 8 a.m.,
takes advantage of the cooler temperatures at night to decrease the average temperature of
the earthbag building, making it an appropriate passive strategy for cooling. In addition,
a 24 h ventilation in summer was tested. Experimental results showed that this is not a
good cooling strategy since thermal loads provided during midday and afternoon hours
were too high to be compensated during night and first morning hours. The controlled
temperature scenario in winter is obtained by a heater providing a fixed indoor temperature
of 21 ◦C inside the dome. Within this scenario the experimental thermal transmittance of
the wall was calculated, obtaining 2.7 W/(m2·K). In addition, Ref. [13] assesses comfort
conditions in the earthbag dwelling applying the ASHRAE Standard 55 Adaptive [25]
comfort model during summer. The analysis resulted that most of the points are either
within the comfort adaptive range or only a bit above the upper limit (0.5–3 ◦C) or slightly
below the lower one (0.5 ◦C). Concluding that the earthbag dwelling has a good thermal
performance during summertime in hot semi-arid climates. However, the authors observed
that in Mediterranean continental climates, despite the passive design strategies it requires
a heating system during wintertime to achieve the desired thermal comfort levels.

4.1.3. Rammed Earth
In-Use Buildings

Soudani et al. [26] monitored a real house occupied by five persons, located in Saint-
Antoine l’Abbaye, in Isère (France) with a temperate oceanic climate (Cfb). It has a living
area of 150 m2, over two floors, a cold attic and its envelope is composed of four non-
insulated load bearing walls of rammed earth, exposed to the south, east and west, and
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a north-oriented timber-frame wall. The non-insulated rammed earth walls are 50 cm
thick and 3 m high. 2.5% of lime was added to the soil before compaction to improve
its resistance against water. The thermal conductivity was measured in the laboratory
obtaining 2.4 W/(m·K) just after manufacturing and 0.6 W/(m·K) when the rammed earth
was completely dried. The authors covered the monitoring from March 2013 to June 2015.
According to the results the authors concluded that for all seasons the thermal lag varies
from 6 to 9 h and the decrement factor from 0.09 to 0.2.

Allinson et al. [27], monitored a stabilized rammed earth building located in Leicester-
shire (UK), with a temperate oceanic climate (Cfb). The wall has an inner and outer layer
made of 175 mm of stabilized rammed earth (crushed ironstone quarry waste and grit
sand) and a 50 mm layer of extruded polystyrene insulation. The monitoring period was
during one full year. Weather conditions were taken from a personal weather station 7 km
south of the rammed earth building. The authors do not provide information on thermal
comfort but the experimental thermal conductivity (for a dried sample) of the rammed
earth wall is 0.643 W/m·K.

Taylor et al. [28] monitored a curved office building oriented to the south, with load
bearing 300 mm thick rammed earth walls. It has two floors with a long corridor in the
middle and offices in both sides (typically 10.5 m2). The building is located in Thurgoona
Campus of Charles Sturt University in Albury-Wodonga (Australia), corresponding to a
humid subtropical (Cfa) climate. The authors do not provide thermal parameters but they
present a wide study on the thermal comfort of the offices. Thermal comfort under summer
conditions was analysed by monitoring three offices. The ground floor office (Office A) was
within the ASHRAE [25] thermal comfort range with 73% of the time having an average
temperature of 23.7 ◦C; the other two offices located in the first floor, had an average
temperature of 1–2 ◦C higher, but the one located in the northwest corner (Office C) had a
median temperature 1.3 ◦C higher than Office B, which had the window opened 22% of
the time. The authors stated that Offices B and C are between comfort zones longer than
Office A, 76% and 81%, respectively, although they recorded temperatures upper and lower
the limits of comfort zone. The authors conclude that just 13% of the time, Office A reached
the comfort limits indicating that the heating system failed often. For Offices B and C, the
average temperatures were approximately 1.8 ◦C higher than Office A, being within the
limits of the comfort zone 69% of the occupied hours for Office B and 70% for Office C.

Another author that monitored rammed earth buildings in Australia is Soebarto [29].
In this case the houses are located in Willunga, about 50 km south of Adelaide correspond-
ing to a cold dry-summer (Csb) climate. Soebarto presents three constructions: House A
(occupied by two people mainly on weekends and at night time) corresponds to a 104 m2

of 220 mm of external rammed earth blocks and 110 mm internal rammed earth bricks;
House B (occupied by one person) corresponds to a 96 m2 construction using rammed earth
blocks of 330 mm and 220 mm for external and internal walls, respectively; and House C
(occupied by five people) has 175 m2, the external walls are 110 mm rammed earth bricks
exposed internally and clad externally with a fibre cement sheet, an R2 insulation and a 25
mm air gap in between. In any case there is a mechanical cooling system and a portable
heater (House A and B) and a gas heater (House B) was used occasionally during monitored
time. In addition, in House C there is a solar heat storage system in the roof and ducted to
the rooms. The purpose of monitoring the building was to calibrate the simulated model; it
does not provide thermal information. The author confirms the results from other studies
on the performance of similar wall material. She concludes that using insulated rammed
earth walls a reduction of 29% is obtained in terms discomfort degree hours annually
compared to uninsulated rammed earth walls.

Palme et al. [30,31] monitored a real rammed earth house located in San Pedro de
Atacama (Chile), corresponding to a cold desert climate (BWk). The monitored house has
50 cm thick rammed earth walls and an earth roof of 15 cm thick. It has single glazed win-
dows and wood doors. The theoretical thermal transmittance of the wall is 1.3 W/(m2·K)
and 2.3 W/(m2·K) is considered for the earth roof. Temperature and relative humidity
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were measured inside and outside the building. Results show that in summertime the
rammed earth assures a high decrement factor: 0.14 with only 1.5 ◦C oscillation, whereas
in wintertime the decrement factor obtained is 0.13, almost the same as for summer. The
authors conclude that results confirm the suitability of earth as a construction material in
terms of thermal decrement, thermal lag, insulation properties, and solar radiation gain.

Balaguer et al. [32] monitored a real rammed earth house located in La Serranía, a
region in the northwest of the province of Valencia (Spain) from 24 June to 23 August 2017.
The climate in this region corresponds to a cold semi-arid climate (Bsk). It is a 345.5 m2

dwelling, distributed in three floors with low proportion of openings on the façades,
consisting of a rammed earth wall with gypsum and cement mortar with a total thickness
of 50 cm and a U-value of 1.58 W/(m2·K). The thermal lag observed is 5–8 h when exterior
temperature surface is increasing and 1–2 h when it is decreasing. The maximum oscillation
of the indoor surface temperature is a twelfth of the oscillation of the exterior temperature,
which provides a decrement factor of 0.08. The authors also emphasize the correlation
between the tendency of the exterior temperature and the interior temperature, when a
sudden temperature change happens. The earth buildings have a high thermal inertia so
the influence of the external weather trends inside the building is noticed after 2–6 days.

Experimental Buildings

In Spain, Serrano et al. [33] studied two prototype buildings located in Barcelona
(#1, Mediterranean central coast climate, Csa) and #2 in Puigverd de Lleida (Mediterranean
continental climate, Csa/Cfa). Prototype #1 has 2.48 × 2.15 × 2.50 m3 inner dimensions
and #2 has 2.40 × 2.40 × 2.40 m3 inner dimensions. The wall thickness is 50 cm and 29 cm,
respectively. The prototypes were analyzed under free floating conditions in two repre-
sentative days (summer and winter). The inner south wall surface temperature in #1 is
very constant along the day; 2 ◦C of thermal amplitude during summer and 0.5 ◦C for
winter period. However the external surface temperature changed by 5 ◦C in summer and
1 ◦C in winter for the days studied. On the other hand, the inner surface wall of prototype
#2 has 3.5 ◦C of thermal amplitude in summer and 5 ◦C in winter periods, whilst the thermal
amplitude in the outer surface walls is 15 ◦C in summer and 17 ◦C in winter. It denotes
a high thermal inertia, having decrement factors of 0.2 and 0.25 for summer and winter
periods in #1, and 0.23 and 0.3 for #2. The authors conclude that in spite of the thermal
amplitude of the outer surface temperature along the day, the temperature of the inner
southern surface wall tends to be constant in both cubicles.

In another study, Serrano et al. [34] monitored seven cubicles of 2.40 × 2.40 × 2.40 m3

located in Puigverd de Lleida (Spain) with a Mediterranean continental climate, Csa/Cfa.
Two of them were built with sustainable construction systems based on the use of raw earth
and wood. Cubicle #1 (rammed earth, RE) has a load-bearing rammed earth walls of 29 cm
and cubicle #2 (insulated rammed earth, IRE) has the same construction as RE, but the walls
are insulated with natural wood fibers panels of 6 cm and 1 cm of natural coating based
on clay and straw. The cubicles were monitored under free floating condition and using
a set point of 21 ◦C in summer and winter periods. Free floating results during summer
period show high indoor thermal amplitude between day-night for #1 and amplitude less
than 1 ◦C for #2. Controlled indoor temperature results show a higher consumption for
the non-insulated cubicles (#1) than for the insulated (#2). According to the winter period
analysis, the inner thermal amplitude is highly influenced by the outdoor conditions. For
#1 the inner thermal amplitude is about 1–2 ◦C with a decrement factor of 0.17; cubicle
#2 has an inner thermal amplitude lower than 1 ◦C with a decrement factor of 0.11. The
authors conclude that the electrical energy consumption during this period was very
high in all the cases, but it is important to highlight that the lowest energy consumption
was registered in #2 (IRE) cubicle. They also state that traditional materials as earth and
wood, which are sustainable and environmentally friendly materials, can be adapted
to the current constructive requirements, because as it is proved in this study the IRE
cubicle has similar thermal behavior as a conventional construction system insulated with
extruded polystyrene.
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Beckett et al. [35] studied two houses with identical floor plans and orientation located
in Kalgoorlie-Boulder in Western Australia with an arid climate (Bwh). The houses were
constructed to promote beneficial passive solar behavior and high thermal mass walls.
#1 has a 30 cm thick monolithic rammed earth wall and #2 has a 30 cm thick insulated
rammed earth walls in the kitchen and bathrooms. Temperatures and relative humidity are
collected from the walls, surfaces and inner spaces within a time step of 5–10 min. Results
show a decrement factor between 0.103–0.191 for #1 and 0.108–0.147 for #2. According to
the thermal lag, values within the range 0.364–1.5 h for the #1 and 0.480–0.949 h for #2
were found. The authors noticed that those values are below the literature ones but they
suggest it might be caused by the spatial structure of the house, because in the literature a
single space is monitored or simulated and in this case it was a real house distribution.

4.1.4. Compressed Earth Blocks

Miño et al. [36] analysed a residential unit from Zumbahua (Ecuador) where the
climate in this region is considered to be tundra climate (ET). The residential unit is built
with compressed stabilised earth blocks (CSEB), but no information of the type of stabilizer
used is provided. The CSEB walls have a theoretical thermal transmittance (U-value)
of 2.24 W/(m2·K), composed by 14 cm thick and a plaster coating with an unspecified
thickness. In the results section Miño et al. obtained a decrement factor of 0.6 and a thermal
lag of 2.5 h when it is considered the maximum indoor temperature, but the minimum
indoor temperature is reached 1 h after the outdoor minimum temperature.

Ouedraogo [37] analysed the thermal phase shift time and the damping factors of
building walls to assess thermal comfort in a building located in Burkina Faso, a country
with a hot semi-arid climate (BSh). In his study, Ouedraogo analysed the combination of
earth with other materials like paper or cement, for constructing the compressed earth
blocks (CEB). The thickness of the CEB analysed is 14 cm, except for those with double sheet
walls (28 cm), and the thermal conductivity varies from 0.588 W/(m2·K) for the earth with
paper, 0.644 W/(m2·K) for only the earth, 0.671 W/(m2·K) for the earth with cement and
paper, and 0.742 W/(m2·K) for the earth with cement. The percentage of the different ma-
terials in the mixture is not provided by the author. Ouedraogo concluded that the best
thermal performance is achieved with double sheet walls with insulation since they have
large thermal phase shift time, low damping factors and the weakest internal thermal
amplitudes. He obtained decrement factors in the range of 33.54–44.3% and thermal lags of
6–7 h, being the optimum solution the mixture of earth with paper.

Brambilla et al. [38] monitored, during summer 2016, a prototype located in Fri-
bourg (Switzerland), with an oceanic climate (Cfb). The dimensions of the prototype are
6.2 × 3.2 × 3.11 m3, and the exterior wall is composed by a 14 cm wooden structure, with
18 cm of insulation and 14 cm of compressed earth blocks (0.79 W/m·K). The prototype
represents an office building, so similar internal gains profiles have been considered us-
ing timed light garlands. The average indoor thermal amplitude is 3.1 ◦C, the decrement
factor is 0.18 and the thermal lag 2 h. Local thermal comfort has been assessed with SIA
180:2014 [39]. The authors conclude that all of the occupied hours are inside the appropriate
comfort domain and the use of CEB walls can reduce internal temperatures up to almost
3 ◦C, maintaining comfortable indoor temperatures.

Zhang et al. [40] studied the hydrothermal characteristics of the compressed earth
blocks and then monitored three rooms of an existing residential building located in Turpan
(China) where the climate is considered as desert (Bwk). The exterior walls are earth blocks
400 mm thick with a 15 mm thick external cement-lime mortar. The locations of the
rooms studied are at ground floor, semi-underground level and first floor. The monitoring
period was from August 1st to August 4th of 2016. Not much information on the thermal
behaviour is provided since the monitoring was only used to validate the numerical model,
but in the results section, the authors state that the obtained thermal amplitudes are about
2.5 ◦C for room 1, 0.5 ◦C for room 2 and 2 ◦C for room 3.
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4.1.5. Adobe

Regarding adobe studies, some authors have monitored in-use buildings and others
experimental prototypes only for research purposes.

In-Use Buildings

Palme et al. [30,31] monitored a real house in San Pedro de Atacama (Chile), with
typical hot dry days and cold nights all year, corresponding to a cold desert climate (BWk).
The house analyzed is a family dwelling composed of a bedroom and a small lavatory. The
enclosure of the building is built with 30 cm thick adobe walls, a rammed earth roof of
15 cm and wooden doors. Indoor and outdoor temperatures and relative humidity were
monitored. During summer time 2012, results show a thermal lag lower than 3–4 h with
an oscillation of just 1.5 ◦C. Regarding the decrement factor, a value of 0.29 is obtained.
During winter time, the internal temperature amplitude is 6 ◦C, oscillating from 12–18 ◦C.
The decrement factor obtained is 0.27, almost the same as summer time, but in this case the
thermal lag is closed to zero because as reported in [41], for colder external temperatures
the solar heat gain through a glazed surface is the responsible of increasing the indoor
temperature. As a principal conclusion, the authors confirm the goodness of earth as a
construction material in terms of thermal decrement, thermal lag, insulation properties,
and solar radiation gain-use.

Another study that monitored an adobe in-use building is Desogus et al. [42,43]. The
authors monitored a private residential building in Serramanna (Italy) corresponding to
hot-summer Mediterranean climate (Csa). The experimental data were recorded during
summer 2010 at 10 min intervals. They collected the indoor temperature of the living room
(floor area of 24.5 m2) and the bedroom (floor area 14.7 m2). Applying the standard ISO
13,786 [44], the authors present the dynamic thermal characteristics of 40 cm thick adobe
walls (theoretical values), as the following: thermal transmittance equal to 0.127 W/ (m2·K);
decrement factor of 0.098 and a thermal lag of 14.5 h. However the results obtained from the
monitoring are: 0.11 for the decrement factor and no value is specified for the thermal lag.
The authors also analyzed deeply the thermal comfort using the Fanger method [45] and
the results show that in the living room 99% of the time the indoor conditions are within the
comfort limits and for the bedroom 87% of the time. They conclude that the adobe-made
building has proven to be able to maintain satisfactory levels of thermal comfort and
internal temperatures close to the design set points of air conditioning systems.

Zhang et al. [46] monitored a quadrangle adobe dwelling in the province of Gansu
(China) with a semi-arid to continental climate, BSk or BWk. The thickness of the wall is not
specified and the monitoring period goes from December 8th–30th. The decrement factor
of the building is 0.265. The authors emphasised the high relation between the indoor and
the outdoor temperature. The thermal lag is 1 h for the west wall. The Predicted Mean Vote
(PMV) method to assess thermal comfort indicates it to be very poor, since, according to
this method the thermal comfort falls into the -2 category (cool). The authors conclude that
the adobe dwelling holds poor indoor thermal comfort and that heat transfer coefficients
of walls and roof go out of limits, significantly.

Martín et al. [47] monitored a traditional adobe building located in Navapalos (Spain),
with a warm-summer Mediterranean climate, Csb. The south façade, except one stone
part, is made of a juniper wall columns filled with adobe blocks (U = 1.35 W/(m2·K)) of
40 × 20 × 15 cm3 and 1 cm plaster. The openings are wooden framed with single glazed
and most of them are oriented to the south. The monitoring was conducted for both, the
summer period and the winter period. The average decrement factor during wintertime is
0.12 and during summertime is 0.13. Regarding the relative humidity, most of the time it
is monitored between the comfort limits (30–70%), having some spots upper this comfort
during wintertime and some below the limit during summertime. The authors assessed
the thermal comfort by means of cumulative distribution function (CDF). The results show
an indoor CDF almost vertical, which is typical of buildings with high thermal inertia. The
cross point between the indoor and outdoor CDF is 7 ◦C for winter and 21 ◦C in summer,
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it means that there are more registered values above 7 ◦C in winter and above 21 ◦C in
summer inside the adobe building than outside. In the conclusions, the authors state that
the indoor environment in the adobe house is inside comfort zone during summer but
below the comfort limits during winter.

Chel et al. [48] monitored a passive house located in New Delhi (India) with a semi-
arid climate, Bsh. It consists of six rooms (three inverted U-shaped rooms and three dome
shaped rooms) constructed with adobe and stabilized mud block bricks with a total thick-
ness of 36 cm, and U-value of 1.39 W/(m2·K). Two representative days were selected to
assess the thermal behaviour during winter and summer. Because of their sun-exposed
areas the dome shaped rooms have higher indoor temperatures (by 1–2 ◦C) than the
U-shaped rooms. The experimental results show that the average decrement factor is 0.33
and 0.28 for winter and summer, respectively. However, peak values of 0.28 for harsh
winter and 0.18 in summer were reached.

Algifri et al. [49] monitored two traditional Yemeni adobe houses (55 cm adobe + 0.5 cm
of mud plaster) of the same plinth area and cubic volume, located in two Yemeni cities:
Sieyoung (Case #1) and Lahaj (Case #2), BWh in both cities. The results are presented
for 24 h analysis in summer and winter. The thermal lags in the south façade for #1 are
12–15 h and 12–14 h and for #2 are 12–16 h and 17 h for both summer and winter periods,
respectively. Regarding the decrement factor, following the same order, the results obtained
are 0.01 for both summer and winter for case #1, and 0.02 and 0.05 in case #2. The authors
conclude that the thermal amplitude of the inner surface in any case is higher than 0.5 ◦C,
except from the roof which is 3.8 ◦C.

Experimental Buildings

Heathcote [41] monitored a one space prototype building of 4 m2, with 250 mm thick
adobe walls stabilized with bitumen. The roof was insulated with R3. The author presented
a theoretical thermal conductivity for the 250 mm adobe wall of 0.82 W/(m·K). The building
is located in Australia, but the exact location and the climate are not specified. According to
the solar irradiance of the adobe building, the author assumes a thermal lag of 8 h having
the maximum internal temperature at 5 pm. The internal temperature analysis is presented
for both, summer performance and winter performance. In summer the thermal amplitude
of the internal temperature is 4 ◦C. The thermal lag obtained is about 5–6 h between the
maximum external temperature (2 pm) to the maximum internal temperature (7–8 pm),
whilst the decrement factor is 0.27 having a maximum indoor temperature of 26.9 ◦C. The
winter analysis shows that when the outside temperature is relatively low there is a very
little heat gain through the earth walls and the indoor temperature is driven by the solar
heat gain through the glazing, as the thermal lag is reduced to 3–4 h. The amplitude of the
indoor temperature is about 4 ◦C and the decrement factor in this case is 0.33. The author
concludes that thermal resistance of the wall increases exponentially with thickness but
he recommends not increasing the wall thickness more than 450 mm. Another option is
considering adding a polystyrene layer (50 mm) in the center of the wall, having a thermal
resistance equivalent to a brick veneer wall with R1.5 insulation.

Meneses et al. [50] analyze three prototypes of one space area of 1 × 1.35 × 0.75 m3,
with adobe bricks of 11.25 × 7.5 × 3.75 cm3. Different adobes are tested in each prototype:
#1 adobes produced in the lab, #2 adobes taken from a demolished construction in Aveiro
(Portugal) and repaired in the lab and #3 adobes produced in the lab adding 2% cork. The
experimentation was conducted during May (warm-summer Mediterranean climate Csb).
The results presented correspond to the experimental days: 1, 5, 10, 13, 21. After three weeks
of experiments, the thermal lag of the prototypes are 3 h 16 min, 2 h 17 m and 2 h 05 min,
corresponding to prototypes #1, #2, #3, respectively. Following the same order the decrement
factor is 0.71, 0.66 and 0.6. In the result section the authors calculate the U-value of the
prototypes using the RCCTE [51] and the DIN EN ISO 6946 [52], obtaining the following
values: 2.06 W/(m2·◦C) and 2.22 W/(m2·◦C) for #1; 1.83 W/(m2·◦C) and 1.95 W/(m2·◦C)
for #2 and 1.47 W/(m2·◦C) and 1.65 W/(m2·◦C) for #3.



Energies 2021, 14, 2080 17 of 47

Michael et al. [53], presented the monitoring results of a 50 cm thick adobe wall located
in Cyprus with a hot semi-arid (BSh) climate. They obtained a thermal lag of approximately
5 h within a period of 24 h, having the maximum internal surface temperatures around
8 pm, while maximum external surface temperatures around 3 pm. The decrement factor is
below 0.05 both for summer (0.03) and winter (0.008). The authors conclude that the high
thermal lag and the low decrement factor confirm the stability in the interior environment
of adobe structures.

4.1.6. Extruded Earth

Fgaier et al. [54] monitored a 20 m2 one space prototype using unfired clay bricks of
22.2 × 10.4 × 6 cm3, with a density of 1788 kg/m3, and a thermal conductivity of 0.9 W/m·K
in the Lille (France) area, corresponding to an oceanic climate, Cfb. The thickness of the walls
varied from 46 cm to 60 cm. Measurements were taken from 26 July 2012 to 12 July 2013 in
the northeast wall (46 cm) and the southeast façade (60 cm). A decrement factor of about 0.2
and a thermal lag of 10 h are obtained. The authors noticed changes in the thermal behaviour
in the beginning and at the end of the measurement period. They highlight the influence of
the drying masonry decreasing approximately 3 ◦C the indoor temperature, increasing the
feeling of comfort. In addition, the prototype reached −5 ◦C in the indoor wall during cold
periods which shows that unfired clay bricks are not a good insulating material.

4.1.7. Poured Earth

Aranda-Jiménez et al. [55] are the only authors who monitored a poured earth in-use
building. The building monitored is a prototype of sustainable housing designed for the
city of Tampico, Tamaulipas at Mexico, with a tropical savanna climate (Aw). Surface
interior and exterior temperatures were registered during 9 months. In their work the
monitoring of the month of August is presented. The poured earth walls are 0.25 m thick
and have not presented neither structural problems, nor deterioration or disintegration, and
they have endured by the inclement winter and two weeks of continuous rain. The results
show a thermal lag of 1 h and a difference between internal and external temperatures
of approximately 8 ◦C, but with some peaks up to 12 ◦C. The authors also present an
experimental value for the thermal transmittance equal to 0.71 W/(m2·K) for the wall.

4.1.8. Earthship

Freney et al. [56] monitored an Earthship building in Taos, New Mexico, with a
warm-summer humid continental climate (Dfb). The authors recorded the indoor air
temperature at an interval of 1 h during 2012. The Earthship has 160 cm thick and a thermal
transmittance of 0.613 W/(m2·K). In the results section the authors obtained a decrement
factor of 0.13 during summertime and 0.33 for wintertime.

Ip et al. [57] monitored The Brighton Earthship, located in Brighton (UK) with a temperate
oceanic climate (Cfb). The authors recorded the indoor air temperature at an interval of 1 h
during 2004–2005. The exterior wall construction is made from tyres filled with rammed
earth with a thickness of 100 cm. The authors obtained a decrement factor of 0.37 during
summertime and 0.625 for winter period. Ip et al. studied the thermal comfort of the building
according to the ASHRAE 55 adaptive comfort model [25]. The authors conclude that the
monitored results show that for 80% of the time the bedroom air temperature was very
comfortable, between 20 and 24 ◦C. Only briefly early in the morning, for less than an hour,
were the coldest temperatures experienced, followed by a steady rise in temperature until
comfort level was attained. This indicates that active heating is unnecessary as the temperature
naturally rises to the comfort range.

4.2. Simulations
4.2.1. Earthen Dug Out

Porras et al. [14] simulated the same building located in San Esteban de Gormaz
(Spain) presented in the previous section. The CFD software used for the simulation
was STAR-CCM + and the natural ventilation was estimated to be 0.37 ACH for cold
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periods and 0.3 ACH for warm periods. The simulation shows for the cold period, an
intense natural ventilation coming from the bottom of the tunnel that conditions the space.
The average air velocity inside the underground construction is 0.035 m/s while in the
cave is 70% less. In the warm period, the average air velocity inside the underground
construction is 0.012 m/s while in the cave is 83% less. The authors conclude that due to
the thermal inertia of the surrounding terrain, the underground building tends to maintain
the temperature fairly homogeneous at 10.5 ◦C throughout the year.

Mazarrón et al. [17] simulated with EnergyPlus the two underground wine cellars
located in Ribera del Duero described in the previous monitoring section. The geometry
of the constructions is simplified as the following: cellar #1 is 5 × 2 × 2.4 m3 and cellar
#2 is 20 × 4.2 × 2.5 m3. Both models have four openings for the chimney and openings in
the door with the same size as the real ones. They also have an entrance gallery with an adi-
abatic envelope. The weather data is taken from the EnergyPlus data base and the exterior
air temperature was modified with a nearby weather station located in Soria. In addition,
the models were tested in 20 different locations to cover as many climates as possible.
The selected regions are the following: Bordeaux, Burgundy, Loire Valley (France); Torino,
Foggia, Sardinia (Italy); Rioja, Cádiz (Spain); Northern California, Southern California,
Pacific Northwest (United States of America); Porto, Lisbon (Portugal); Melbourne, New
South Wales (Australia); Cape Town (South Africa); Frankfurt, Wuttemberg (Germany);
Santiago de Chile (Chile) and Vienna (Austria). The decrement factor oscillates between
0.19 and 0.35 (average 0.28) for cellar #1 (mean depth 3.5 m) and between 0.05 and 0.11
(average 0.08) for cellar #2 (mean depth >10 m). The thermal lag varies between 39 and
63 days (average 49) for cellar #1 and between 63 and 92 (average 78) for cellar #2. The
authors conclude that for any location a desired annual variation of temperature can be
obtained by adjusting the depth of the cellar according to the thermal properties of the
ground. Amongst the studied cases, the annual range of interior temperature in less deep
cellars only surpasses 10 ◦C in 2 out of 20 locations, and remains lower than 5 ◦C in all
deeper cellars.

Zhu et al. [22] simulated the underground cave dwelling located in Miaoshang (China)
previously discussed in the monitoring section. The model was developed with Sketchup
software and only cave #1 (facing north) was modelled. The weather data were taken
from Lushi country (about 90 km away from Miaoshan) and EnergyPlus was used for the
simulation. To validate the model, the results predicted were compared to the experimental
data from summer 2016, srping 2016 and winter 2017. The authors evaluate the annual
dynamic behaviour obtaining that the outdoor temperature ranges from −14.9 to 36.9 ◦C
whilst the indoor cave temperatures range from 5.6 to 31.2 ◦C. They also evaluate the
annual thermal performance of the cave dwelling obtaining a 42.8% of the whole year in
comfort zone II according to the Chinese standards [58]. The average deviations between
monitored and simulated results were 0.54%, 3.08% and 3.1% for summer, winter and
spring, respectively. The authors conclude that climate responsive strategies used in ancient
underground cave dwellings are still applicable and they can certainly be used in modern
building designs.

Zhao et al. [23] simulated with EnergyPlus the four-hole cliff side cave dwelling
located in Gongyi (China) previously defined in the monitoring section. The weather
data were taken from an “.epw” weather file of Zhengzhou city (Gongyi city belongs to
Zhengzhou city). To validate the model, the normalized mean bias error (NMBE) and the
coefficient of variation (CV) of the root mean square bias error (RMSE) were assessed. The
values obtained for the NMBE were 0.6% (summer) and 2.6% (winter) and the CV (RMSE)
values were 4.1% (summer) and 6.1% (winter). All those values are below the maximum
requisite specified of 25% by ASHRAE [25]. The authors used the simulation to calculate
the thermal transmittance and the thermal lag of the cave roof, the south façade and the
interior wall obtaining the following values: 0.067, 1.72 and 0.2 W/(m2·K) for the thermal
transmittance, respectively and 360.15, 10.06 and 109.04 h for the thermal lag, respectively.
The authors conclude that according to the thermal comfort the cave dwelling is in comfort
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zone II for 52.5% of the year according to Chinese standards [58], mainly between May
and November.

Wang et al. [24] predicted the indoor air temperature of the cave dwelling monitored
in Jiang Yao Zu (China) and previously defined in the above section. The U-value used for
modelling the cave rooms were 5, 2.33 and 1.56 W/(m2·K) for the window, door and earth
wall, respectively and the ventilation ratio was defined as 0.43 ACH. The deviation between
predicted and monitoring data was 1.7% for the courtyard mean daily temperature; 16
and 8.5% for the south and west cave dwelling daily mean temperature, respectively. The
air temperature amplitude for the courtyard was less than 10 ◦C for both monitoring and
predicted studies, in particular 9.98 and 9.21 respectively with a deviation of 8.4%. The
thermal lag for the courtyard predicted was 0.5 h. In the conclusions, the authors encourage
architects, designers, developers and local governments to re-evaluate courtyard style cave
dwelling and many other traditional dwellings, particularly on their merits of sustainability.

Asadi et al. [59] conducted a simulation of a real house located in Yazd (Iran) corre-
sponding to a tropical and subtropical desert climate (Bwk). The simulation was conducted
under free floating conditions with natural ventilation without any heating or cooling
equipment as the real situation of the studied house. The geometry was modelled with
ECOTEC and imported to EnergyPlus v8.0. The energy performance was conducted for
the hottest day and the coldest day. During summer the underground spaces obtained
indoor air temperatures of about 19–25 ◦C, closed to comfort range and decrements factors
of 0.03–0.08. For winter, indoor air temperatures of the underground spaces are almost
constant around 14 and 17 ◦C, so the decrement factor is not calculated. But it is important
to notice that although the indoor air temperature does not change during the day, the
outdoor air temperature has a range of 9.5 ◦C from −7.5 to 2 ◦C. The monitoring to validate
the model was during July. The root mean square errors (RMSE) obtained are 0.26, 0.19,
0.84 and 0.97 for the wind catcher room, cellar, coastal and Panjdari, respectively. The au-
thors conclude that the RMSE is not significant, which indicates there is a good agreement
between predicted and observed data.

4.2.2. Earthbag

Rincón et al. [13] used the EnergyPlus v.8.8 software to simulate the earthbag proto-
type monitored in Spain, mentioned in the previous section, in order to first validate the
model and also to test different passive strategies to improve the thermal performance.
The monitoring and simulation results showed a good match, discrepancies of 1 ◦C, in
the temperature behaviour. The base infiltration considered is 0.5 ACH and the night
natural ventilation 10 ACH. The authors also present a comparison between the mon-
itored prototype and the same construction without glazed surfaces. The influence of
the direct solar radiation is reflected in the thermal lag and the decrement factor. Those
parameters are presented for three different periods of the year: winter solstice, equinox
and summer solstice. For the simulated prototype, the thermal lags are 8 h, 7 h and 6 h
and the decrement factor 0.17, 0.16 and 0.14, respectively for the three periods. Another
comparison presented in this paper is the increase in the peak interior temperature due to
the glazed surface of 1.31, 1.37 and 0.52 ◦C corresponding to the winter solstice, equinox
and summer solstice, respectively; and the decrease of the heating energy consumption of
−2.3% and −8.9% for the winter solstice and the equinox, respectively. Moreover, a thermal
comfort assessment is presented according to the ASHRAE Standard 55 adaptive comfort
model [25]. Simulation results confirm the good performance of the Earthbag building to
achieve thermal comfort in hot climates since all the internal operative temperatures are
between the limits of thermal comfort.

Another article by Rincón et al. [60] simulates and compares an earthbag dwelling in
Burkina Faso (Bsh climate) adding different passive design strategies as roof shading and
night cross ventilation, using the EnergyPlus software. This study presents a decrement
factor of 0.15 around the equinox. For the simulated prototype without glazed surfaces,
the thermal lags are 7 h, 8 h and 7 h and the decrement factors 0.13, 0.14 and 0.16 for winter
solstice, equinox and summer solstice, respectively. Referring to the thermal lag and the
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decrement factor, the results are similar to the theoretical values calculated. Results also
show that with the passive design strategies, the earthbag dwelling obtained an increase of
94% the hours the prototype meets the comfort zone according to ASHRAE Standard 55
Adaptive Comfort model [25]; and a 99% better performance in discomfort degree-days
compared to the traditional adobe Burkinabe building.

Desideri et al. [61] simulate a modified earthbag residential unit, located in Sagarmatha
National Park (Nepal) with a monsoon-influenced humid subtropical climate (Cwa). This
modified earthbag is proposed by Geiger [62] and it consists of dividing the bag into two
compartments, of which the exterior part is filled in with insulation, and the interior part
with soil for a total thickness of approximately 33 cm and a transmittance of 0.220 W/(m2·K).
Although this study does not add valuable information of thermal comfort, the primary
energy demand for heating and the supply via solar system is calculated. Results showed
that it has a higher demand than the straw-earth solution tested, but using 13 commercial
solar panels can supply the total amount of 15,878 MJ needed for heating the low-energy
residential unit.

Fivos [63] simulates an earthbag building to analyse ventilation, lighting and in-
sulation, and conducts environmental evaluations. The simulation consists of one space
earthbag construction with the ECOTEC software concluding that the earthbag construction
consumes 23% less heating and cooling energy than a conventional insulated construc-
tion [64]. Moreover, the study shows that the materials recycling, the construction cost, the
embodied energy and energy used are lower in this type of construction than in conven-
tional ones, which gives the opportunity to the people to build their homes in an ecological
and economical way.

After simulations with PHOENICS, Zhao et al. [65] state that dome roofs have a better
ventilation effect than flat ones when they share the same inner wall length. This study
does not provide information on thermal comfort, but in the results section the authors
state that dome shape increases the heat radiating area and decreases the artificial lighting
because of a major surface for windows and skylight.

4.2.3. Rammed Earth

Palme et al. [31] simulate the rammed earth dwelling previously monitored consid-
ering 0.4 ACH in the ECOTEC software. The simulation considers one year hourly data
and obtains 6475 h of overheating and 539 h of undercooling having almost 70% in total
discomfort degree hours according to ASHRAE standards. Palme obtained an extreme
thermal decrement of about 80% and a thermal lag of more than 14 h, for the rammed earth
dwelling. As a principal conclusion, the authors state that real houses’ performance studies
confirm the heuristic goodness of earth as a construction material in terms of thermal
decrement, thermal lag, insulation properties, and solar radiation gain use.

Stevanovic [66] simulated with EnergyPlus different thickness of stabilised rammed
earth (SRE) wall combined with external insulation to meet the law 2010/31/EU, for a
single-family house in Belgrade, Serbia. The climate for Belgrade is humid subtropical
(Cfa), and the simulated house has a gross area of 83 m2. The author presents three
cases without insulation varying the rammed earth wall thickness from 30, 40, 50 cm, and
maintaining the ventilation in 0.7 ACH. The U-Value considered for each case is 2.07, 1.76
and 1.54 W/(m2·K), respectively. In the three cases the monthly average temperature is
almost the same, slightly higher for the 50 cm wall, and the three cases are about 5 ◦C
constantly above the external temperature throughout the year considering the simulation
in free floating conditions. There is no information about the decrement factor or thermal
lag during the day.

Another study that combines monitoring and simulation of a stabilised rammed earth
(SRE) building is Allinson et al. [27]. The building consists of one space room of 8 m2 of floor
area, with 2.5 m walls made of two layers (inner and outer) of 175 mm of SRE and 50 mm
of extruded polystyrene insulation between. The building is located in Leicestershire (UK),
corresponding to temperate oceanic climate (Cfb). The software used for the simulation
was WUFI Plus v1.2. The simulated period last one full year (2009) and the historical
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weather data were obtained from a personal weather station, located approximately 7 km
south of the building. The ventilation rate considered is 1.5 ACH because the building had
some leaks by design. Monitored and simulated results present a good match, with little
discrepancies of about 1 ◦C for high temperatures. The authors conclude that simulated
results showed that the SRE walls significantly reduced the amplitude of relative humidity
fluctuations during both the summer and winter. They suggest that future work should
focus on how SRE materials might be intelligently optimised for moisture buffering.

Dong et al. [67,68] simulate with AccuRate a single space room of rammed earth house
with a total floor area of 96 m2. Elsewhere, Dong et al. [69] propose a parametric study
considering the following four parameters that can affect the heat exchange in the house
for different climates: window size, window shading, ventilation and thermal mass (wall
thickness). Dong et al. basic model has 200 mm thick rammed earth walls, with a 10%
of window/wall area ratio (WWR), no shading and 25% of the total wall surface with
windows, for rate ventilation. The material properties considered are taken from AccuRate
library: thermal conductivity of 1.25 W/m·K, heat capacity of 1940 kJ/m3·K, overall heat
transfer coefficient of 5.75 W/(m2·K), and solar heat gain coefficient of 0.69. In this paper,
the authors simulate the indoor temperatures of the basic model house in different climates
over a whole year period. The climates chosen are: Hot semi-arid (Bsh), warm-summer
Mediterranean (Csb) and temperate oceanic (Cfb).

In addition Dong et al. propose a fully optimised model to be compared with the
basic one. Thermal lags and decrement factors of both models and for three locations and
climates in Australia (Longreach (Bsh), Adelaide (Csb) and Ballarat (Cfb) are presented.

Decrement factors and thermal lags values are better for the basic model than for the
parametric study. However, it is important to mention that for the basic model only one
week in winter and another week in summer were considered while in the parametric
study optimum values for one complete year were calculated. According to the ASHRAE
Standard 55 adaptive [25] the results obtained for each climate are: 37% over the upper
limit for Bsh; almost half of the time beyond both of the upper and lower acceptability
limits for Csb and more than 70% under the lower limit for Cfb.

Taylor et al. [28] used TRNSYS in a rammed earth building to validate the model with
the monitored results (explained in previous sections). This study tests also three strategies
to reduce the temperature in summer: (1) increasing the night ventilation rate; (2) adding
insulation; and (3) using a hydronic cooling system. Applying all three strategies combined,
an average reduction of 3 ◦C was obtained, being below the limit of the ASHRAE comfort
zone for 75% of the time. The authors also investigate two strategies to decrease the heating
consumption and improve thermal comfort during winter: (1) installing wall and glass
insulation; (2) reducing infiltration. Results show a reduction of the total heat energy equal
to 84%. The authors conclude that a key aspect in the design of this type of buildings
remains in heat exchange between the building and its surroundings so it receives the heat
needed during winter and does not overheat during summer.

Soebarto [29] studied three real rammed earth houses simulating them with ENERWIN-
EC [70] and using the monitored data of the real constructions (presented before in the
monitoring section) to calibrate the models. In the simulations, the author studied the ther-
mal behaviour adding wall insulation in House A and B, and removing it from House C, to
compare the three constructions with the same wall characteristics. The thermal properties
of the walls were calculated based on literature, obtaining decrement factors for House A,
B and C of 0.714, 0.374, 0.189 and thermal lags of 2.81, 6.16 and 9.30 h, respectively. The
natural ventilation was estimated to be 0.8 ACH in all three houses. The simulations were
conducted in free-run mode, but in reality some portable heaters were used occasionally
and there was no way to reflect this on the simulation. Thus, the correlation coefficient (R2)
in winter was only calculated for House B as no heater was ever used. The R2 obtained
were 0.828 for winter in House B and 0.987, 0.897 and 0.984 during summer for Houses A,
B and C, respectively. In the results section, the authors state that changing the external
walls composition showed an average increase of the indoor temperature of 4.9 ◦C for



Energies 2021, 14, 2080 22 of 47

winter when the insulation is added; but in the case of summer by removing the insulation
1 ◦C is decreased for houses A and B, and up to 2.5 ◦C for house C.

Beckett et al. [35], also simulated the monitored houses explained in the above sections.
In the simulated results, they obtained average decrement factors of 0.145–0.427, depending
on the house space for the insulated rammed earth house and 0.119–0.425 for the rammed
earth. Regarding the thermal lag, values within the range of 0.357–5.75 h for the #1
and 0.69–3.4 h for #2 were found. These low results are similar to those obtained in the
monitored analysis. The authors suggest the complexity of the house, since it is not
a single space room but a complete house with different spaces, as the reason for the
differences with other publications.

4.2.4. Compressed Earth Blocks

The same authors that monitored the compressed earth blocks dwellings in Ecuador
and Burkina Faso, Miño et al. [36] and Ouedraogo [37] respectively, also simulated the
behaviour of the construction in order to assess the thermal comfort and validate the model
with the experimentation.

In the case of Miño et al. [36], the authors used EneryPlus for the simulation, obtaining
an R2 between the monitored and the simulated data of 0.89, with an error (RMSE) of 1.1 ◦C.
Moreover, Miño et al. present two additional cases with the same envelope, but testing
different passive solutions to improve the thermal behaviour. In the first one, the internal
heat gains and schedules are changed to reflect the common usage conditions of rural
housing in the region; and the second, is adding a ceiling of timber infill with earth, and the
improvement of the dwelling airtightness to a medium level. Through the implementation
of these strategies during the cold months in the Equatorial Andes, the average indoor
temperature rises up to 2 ◦C and the amplitude is decreased by 4.2 ◦C. Those results agree
with previous studies by the same author that show earthen constructions having a higher
thermal stability among un-insulated lightweight systems. The author finally concludes
that although 75% of the total hours were under the range of adaptive thermal comfort [71],
any change in users attitude was noticed.

Ouedraogo [37] validates the model and presents the errors MBD and RMSD cal-
culated for the decrement factor and the thermal lag. He obtained a correlation for the
decrement factor of less than 2.5% for the MBD and less than 10% for the RMSD, for all
the prototypes tested (earth, earth with paper and earth with paper and cement), and a
correlation of about 5.6% and 9.3% for the MBD and RMSD respectively, for the thermal
lag. Concluding that the theoretical and experimental values are concordant and similar to
the bibliography [72–74] and therefore the model used for simulation is well-suited.

In addition, there is a study conducted by Hema et al. [75], that simulates the behaviour
of a CEB wall, located in Ouagadougou, Burkina Faso, and compares it to the behaviour of
a concrete wall. This study is focused on the heat passing through the inner surface of the
CEBs wall and the evolution of humidity flow through the inner side of each component.
The CEBs wall lets in more moisture, which helps regulate the radiant temperature of the
walls. The purpose of this work is to study the use of this surface moisture flow to improve
the radiant temperature of the walls and to consider adiabatic cooling of the indoor hot
air through its contact with the wetter wall. The authors conclude that compressed earth
blocks are more permeable to mass transfer than walls made of hollow concrete blocks.

Wati et al. [76] simulate a compressed stabilised earth block (CSEB) wall with Energy-
Plus under the Garoua (Cameroon) climate conditions (Am climate) and compare it with a
CSEB with 8% of sawdust (ES) and the CSEB with 45% of pozzolan (EP). The decrement
factor and the thermal lag are presented for wall thickness of 5 to 45 cm. For a thickness of
30 cm, thermal lags obtained for ES and EP walls are 4.21% and 16.14% in exceed compared
to the EB wall, respectively, and the decrement factor is 0.6 (EB), 0.3 (ES) and 0.2 (EP).

In another article by Wati et al. [77], the authors simulate an office building in three
different locations in Cameroon: Garoua (Am climate), Douala and Yaoundé (Aw climate).
The wall characteristics are obtained from a Simulink model, a library of validated building
model [78]. The building consists of four offices and a corridor. Each office has 25.2 m2
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with a high of 2.85 m. The infiltrations considered are 0.35 ACH, the window wall ratio
(WWR) is fixed at 30% and human and electrical heat gains are considered. As [76] the
simulation was made for CSEB, CSEB-ES and CSEB-EP. The analysis was made fixing the
indoor temperature at 24.5 ◦C. The authors conclude that the annual cooling required for
a 14 cm thick CSEB-EP wall is smaller than that of the CSEB wall by 3.10%, 3.58% and
5.41% in the cities of Yaoundé, Douala and Garoua, respectively. Running in free floating
condition and increasing ventilation rate during night-time from 0.35 to 4.35 ACH reduces
the cooling energy requirement by 12.6%, 13.6%, and 13.9% for CSEB, CSEB-ES, CSEB-EP
walls, respectively.

Zhang et al. [40] simulated the same residential building described in previous sections
located in Turpan (China). The simulation was conducted using the EnergyPlus software.
The authors compare the behaviour of the earth blocks (400 mm thick) and the fired brick
(300 mm thick) using the data provided by manufacturers. The minimum air infiltration
considered was 0.5 ACH, but during summer the windows were opened from 10 pm to
7 am, in this case the ventilation considered was 2.5 ACH. The simulation model was
run from August 1st to August 4th in order to validate the model against the monitored
data. The results from the simulation were consistent with the corresponding measured
results, and the authors state that the minor discrepancies were due to the residents’ activity
because it was not considered in the simulation. With the validated model, the authors
compared the behaviour of the earth brick and the fired brick during the coldest week
in the year. During wintertime, the highest difference obtained is regarding the relative
humidity; in the earth brick the maximum is lower than 40% whilst in the fired bricks
goes above 50%. Also the amplitude of the relative humidity is 1.5 higher in the fired
bricks (20%) than the earth bricks. According to the temperature, the air temperature of
the earth brick room is usually about 2 ◦C higher than the fired brick room, so the thermal
amplitude of the earth brick is lower than the one for the fired brick room (15 ◦C). During
summertime the fired earth brick is always about 3.5 ◦C higher than the earth brick but
in both cases the room air temperature is above 30 ◦C. In addition the authors calculate
the energy heating consumption during the heating period (Oct-Apr). For the earth brick
building the consumption obtained was 16.789 kW·h, which is significantly lower than the
21.222 kW·h obtained for the fired brick building.

4.2.5. Cob

Collet et al. [79] simulated a modern building with TRNSYS, with the climatic con-
ditions of Rennes (France) where the climate is considered oceanic (Cfb). The building
consists of 32 dwellings of 65.7 m2 each, where the north front and the east and west gables
are made up of 20-cm-thick concrete blocks, 10-cm-thick insulation and 1-cm-thick plaster.
The south façade is tested with cob and insulated cob walls. There are also two efficient
buildings, based on the conventional construction, where the windows, the ventilation,
and the north-, east- and west-facing walls have been improved. Also 1.4 m deep balconies
are added in the south-facing façade in one of them. The flow rate of the natural ventilation
of each dwelling is 60 m3/h. The results show that the thermal balance of the wall and
the annual heating loads decrease as the cob thickness wall increases, reducing a 64% and
9% respectively, with an increase of 30 to 80 cm the cob wall thick. Regarding the efficient
building with the balconies, it is proved that cob walls should not be shaded since the
heating loads of the efficient building without balconies are higher than those with the
balconies. However the simulated temperatures without balconies reached up to 28–29 ◦C,
so the use of solar protection on glazing is necessary during summer. The main conclusion
of the authors is that a 50 cm thick cob wall facing south has the same thermal behaviour
as an insulated concrete block wall with 7–9 cm of insulation, even though the European
Standard aims at banning the use of those types of walls whereas their thermal behaviour
is satisfactory. Moreover adding insulation to those cob walls it can face any direction and
still comply with the standards.

Zeghari et al. [80] simulate a single residential house with two floors within different
climatic zones including France and UK, places with an oceanic climate (Cfb). The house
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consists of two floors and the wall heat losses are investigated using building heat losses
simulation software, which is not specified. The envelope is made by two cob types and
an external lime coating. The cob types used are insulation cob made with bio-based
materials (λ = 0.1 W/m·◦C) and construction cob (λ = 0.494 W/m·◦C). All the study is
based on EN 12831 and NF P52612 standards included in the software. To accomplish with
the French thermal regulations RT2012 the thickness of the building must be 350 mm of
insulation cob and 300 mm of construction cob. The results are compared to a conventional
concrete building. When considering both as un-insulated buildings, cob has less wall heat
loses than the conventional building (a reduction of 40%), whereas when considering the
insulated building, the thermal losses are nearly close, which means cob can be a natural
alternative to conventional construction materials.

4.2.6. Adobe

Rincón et al. [60] simulate a residential building located in Ouagadougou (Burkina
Faso) corresponding to Hot semi-arid climate (Bsh). The simulation consists of a tradi-
tional adobe dwelling using the EnergyPlus software and testing several passive design
strategies of bioclimatic architecture used in hot semi-arid climate. Those strategies are:
night ventilation (4 ACH, and 0.5 ACH for free floating due to air infiltration), roof shading
and night ventilation with the roof shading. The traditional dwelling has a net floor area
of 15.9 m2 and adobe walls of 2.7 m high and 15 cm thick with a thermal conductivity of
0.95 W/m·K. The roof is built with a 3 mm iron sheet. The decrement factor resulted higher
than 1. In this paper, Rincón et al. propose a parameter to assess the thermal comfort using
the ASHRAE 55 Adaptive comfort model, called discomfort degree days (DDD) to capture
the level of discomfort. A comparison of the different scenarios simulated for the adobe
dwelling is presented, showing the difference between the hours of discomfort and the
discomfort degree days. The best thermal performance is obtained for the dwelling with
both passive design strategies (roof shading and night ventilation) applied. However, the
strategy that contributes the most to the thermal comfort is the roof shading, since the
results do not change much applying the night ventilation (+1%), probably due to the hot
climate. In terms of the hours of discomfort and the discomfort degree days, a reduction of
37% and 77% is observed, respectively.

Palme et al. [31] simulate a residential building located in San Pedro de Atacama
(Chile), where the climate corresponds to a cold desert (BWk). The authors used the
ECOTEC software to simulate the dwelling presented in previous sections. It is considered
0.4 ACH and they calculate the total number of hours of discomfort (5500 h, following the
adaptive discomfort model) in overheating and undercooling conditions. In this study
results show three times more hours of discomfort for overheating. They also present
a decrement factor of 55% and a thermal lag of 8 h, concluding that adobe is a proper
technique for desert climates.

Chel et al. [48] also simulate the monitored passive house presented in previous
sections to determine the annual energy saving potential of the passive house in different
Indian locations (New Delhi, Bangalore, Jodhpur, Mumbai and Srinagar). The simulations
results were found in good agreement with the experimental observed data of indoor
temperature. It is observed a correlation coefficient and root mean square percentage error
in the range of 0.97–0.98 and 0.2–3%, respectively. The heating and cooling energy saving
potential of the passive house were estimated as 1481 and 1813 kW·h/year, respectively.
And saving potentials for the different locations simulated were determined as 3294,
1082, 3318, 2798 and 7435 kW·h/year for New Delhi, Bangalore, Jodhpur, Mumbai and
Srinagar, respectively.

In previous section Zhang et al. [46] proved that quadrangle adobe dwelling comfort
is poor in the province of Gansu (China) with a semi-arid climate (Bs). Therefore a sim-
ulation of three schemes is proposed to improve the thermal comfort and energy saving.
Those schemes are: #1 changing the layout to decrease the external wall; #2 changing
the envelope adding 50 mm of colloid powder polyphenylene granule mortar plastered
on the outside surface and 35 mm on the inside; #3 is a combination of #1 and #2. The
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authors used the FLUENT software for the simulation and the results show an average
increase of the indoor temperature of 1.46 ◦C, 1.26 ◦C and 0.22 ◦C for schemes #3, #2 and #1
respectively, and energy savings of 42.17% for #3, 38.6% for #2 and 15.11% for #1. However,
the authors conclude that taking both the economical and the energy saving solutions into
consideration, scheme #1 is the best option whilst scheme #3 is the worst one.

4.2.7. Extruded Earth

Azhary et al. [81] studied experimentally the thermal characterisation of three different
types of unfired clay bricks. Those sample analysis were used as the envelope of a tertiary
building simulated using the DesignBuilder software. The building consists of a 288 m2

area with a natural ventilation of 36 m3/h located in Marrakech (Morocco), where the
climate is subtropical semi-desert (Bsh). The results are presented for a week in January and
a week in July. The three types of unfired clay behave quite similar. The average decrement
factor is 0.33 during wintertime and up to 0.58 during summertime. The authors state
that decrement factor reached 0.2, concluding that unfired clay is a good insulation in
summer since the indoor temperature did not exceed 34 ◦C whilst the external temperature
exceeded 46 ◦C.

4.2.8. Straw Clay

Toguyeni et al. [82] present a standard house located in Ouagadougou (Burkina Faso),
with a hot semi-arid climate (Bsh). The authors use TRNSYS 16.1 to compare the monthly
thermal load of two standard houses for residential use (50.02 m2 of floor area). Both units
have a non-insulated roof, but one counts with 20 cm clay wall and the other with 20 cm
wall made with a clay–straw (3%) composite. The thermal conductivity of the walls is
taken as 2.12 and 0.53 W/m·K, respectively. The simulation indicates that the clay straw
wall, consumes 8% less energy than the standard clay wall in annual basis. There is no
information about the thermal lag or the decrement factor of the walls.

4.2.9. Earthship

Freney et al. [56], simulate the building monitored exposed in previous sections in
order to validate the model and test the construction in different climates. EnergyPlus
and Design Builder are the software used for the simulations. The locations selected to
test the validated model are: Paris (Cfb), Albacete (BSk), Seville (Csa), Valladolid (Csb),
and London (Cfa). Freney et al. observed that during the coldest months, the simulated
temperature was often 2 ◦C higher than the monitored, which leads to think of an incorrect
assumption of the ground temperature. However, the RMSE obtained of 6.3% is within
the values suggested by [83]. The second part of the study was to test the Earthship in
different European locations and climates, and evaluate the thermal comfort according to
the ASHRAE 55 model. In London and Paris the results are similar. The simulation shows
indoor air temperature below the acceptable limits during winter and a perfect performance
during summertime. This behaviour is consistent with the performance of the Brighton
Earthship [57], monitored and explained in previous sections. For the three Spanish
locations, Seville, Valladolid and Albacete, the simulation indicates a thermal comfort
condition through the whole year; just some few spots indicate an average maximum
indoor temperature higher than the limits during summertime. According to the results,
those climates are suitable to build with this type of building technique.

5. Discussion

In this section a summary of the most important thermal parameters are presented
and discussed, according to the earth construction technique and the type of analysis:
monitoring or simulation. All earth constructive techniques are discussed except for the
poured earth (reference #13), for which only one reference was found.
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5.1. Earth Dug Out

A total of twelve papers have been considered, all of them for in-use buildings. Five of
them compare monitored and simulated results, six of them present results for monitoring,
and one of them focuses exclusively on simulation. Several papers are located in Spain,
where the cave buildings are mostly used as wine cellars. Four papers are located in China,
where the buildings have a residential use, and two papers are located in Iran. The wine
cellars are dug out at a deep of about 8–9 m, accessible with a tunnel. In the case of residential
buildings, the cave rooms are located surrounding a courtyard in all cardinal orientations.
The climate of those locations varies between Arid, Temperate and Continental.

The articles related with monitoring of earth dug out technique (Table 2) presented a
varied compendium of analyzed issues -such as the monitoring period, the depth of the
cave, the volume of the space, or the number of occupants- but with some common results.
Most of the articles presented results on the decrement factor and the thermal amplitude. It
is seen that the decrement factor ranges from 0.04 to 0.38, depending on the year season
and the occupation. The thermal amplitude ranges 2.6 to 9.1 ◦C in the wine cellars [15], and
7–8 ◦C for the occupied cave dwelling, whilst in the unoccupied cave construction is 0.65 ◦C.
Only one article, wine cellar case, presents results about the thermal lag and the thermal
comfort [16], obtaining 28 to 58 days and having values between 58–100%, respectively.

When analysing simulation studies parameters such as simulation software, ventila-
tion, U-value, thermal transmittance, and thermal comfort standards play a key role. As
presented in Table 3, all the case studies are in-use buildings located in arid climates (China,
Iran), temperate climates (China, Spain) and continental climates (China). Three of them
are wine cellars and the others, cave dwellings with a courtyard. The common software
used for the simulation is EnergyPlus with the support of Sketchup or ECOTEC. Just
one author [24] considered the ventilation ratio in simulations with a value of 0.43 ACH.
There is no average U-value observed because each earth building studied has very differ-
ent configurations and characteristics. As it happens in the monitoring section, the results
on the decrement factor vary depending on the studied period, obtaining values between
0.03 for summer period or 0.42 corresponding to an annual behaviour. It is not possible to
compare the results on thermal lag because some authors indicate it for an annual base (in
days) and others for a daily base (in hours).

In four out of six studies, a monitoring analysis has been used to validate the model. In
all the cases the model has been validated obtaining a maximum average deviation, R2 value,
of 16%. Two articles [22,23] asses the thermal comfort, according to the Chinese Standard
GBT50785-2012, and obtaining 42.8% and 52.3% of the time in comfort Zone II, respectively.

Finally, when comparing thermal parameters for monitoring and simulation it is seen
that no common pattern is observed. For example, in [17] neither the decrement factor nor
the thermal lag are provided in the monitoring part of the paper while this information is
presented in the simulation section. Decrement factor varies from 0.21 in the monitoring to
0.42 in the simulation in [22]. No comparison is possible because no monitoring period is
provided while in the simulation authors state that the decrement factor takes into account
the annual behaviour. Thermal comfort is provided only in four papers (one monitoring
and three simulation). Results show that thermal comfort interval is large going from 28%
to 100%. Three papers show comfort values between 42.8% and 58%.

5.2. Earthbag

A total of five articles about earthbag building are presented in this section. All of them
present results about energy simulation but only one is in addition presenting monitoring
results (Table 4).

Three of the articles, the ones located in Spain and Burkina Faso for semi-arid climate
and Nepal for humid subtropical climate, provide complete information about the energy
simulation (Table 5). However, for the other two studies [63,65] neither location and climate
nor building use and thermal parameters are presented. EnergyPlus, Ecotec and Phoenics
were the used to conduct the simulations.
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In all the cases the building has a dome shape. There is no common pattern for
the wall thickness, ranging from 33 cm to 70 cm. In consequence, the U-value is very
different for each building. In terms of decrement factor and thermal lag, the simulated and
monitored results presented in [13] are quite similar and have a good match with the results
presented in [60], obtaining decrement factor values between 0.14–0.19 for winter, equinox
and summer, and thermal lags around 8 h. The three authors presenting thermal comfort
results used the ASHRAE 55 Adaptive Comfort. All of them obtained a good performance
for the earthbag building in hot climates, in addition according to [60] earthbag is 94%
better in terms of hours not meeting comfort, and 99% better in discomfort degree-days,
than the traditional adobe Burkinabe dwelling.

5.3. Rammed Earth

There is a total of seventeen rammed earth building articles, eight of them are both
thermally monitored and simulated. Most of the rammed earth buildings analysed are
located in Spain or Australia, where the main climates are temperate and arid. From all the
buildings analysed, nine are in-use buildings and the others experimental prototypes.

The building characteristics and the monitoring results of rammed earth constructions
are presented in Table 6. The monitoring was conducted under free floating conditions in
the articles [33,34,66]. The articles [33,34] test experimental prototypes also under indoor
air controlled temperature.

It is very difficult to compare the thermal performance because authors used different
thickness of the walls and U-values. Moreover, there are some cases where there is also
insulation on the walls. The most commonly analyzed wall thickness for rammed earth
was found to be 30–50 cm, which can be reduced to 11–30 cm when thermal insulation
is applied. The wall thermal transmittance is specified in two articles [30–32], presenting
similar values of 1.58 and 1.3 W/(m2·K). The conductivity is presented in [26,27] with very
similar values of 0.6 and 0.643 W/(m·K) when it is completely dried.

There is a general consensus in dividing the thermal performance between summer
and winter, and obtaining values for the decrement factor of 0.14–0.23 and 0.1–0.25, respec-
tively. The thermal amplitude varies between cases from < 1 ◦C to 2 ◦C during winter. The
thermal comfort is only analysed by one author [28] according to the ASHRAE Standard
55 adaptive comfort, obtaining values between 73–81% in summer.

Analysing the simulation results, different parameters such as simulation software
and ventilation ratio are presented (Table 7). No common software is used to simulate the
rammed earth buildings and there is no consensus for the ventilation ratio, ranging from
0.4 [30,31] to 1.5 ACH [27]. The building structures vary from simple structures of one space
building to complete houses of many rooms and occupants, so it is very difficult to obtain
thermal patterns. The thickness of the raw rammed earth walls varies from 22 cm [29]
to 50 cm [30,31,66]. There are other authors who suggest adding insulation [27,35] or air
gap between layers [29]. All the authors took the U-values and the thermal properties
of the rammed earth walls from the literature and [29] used those values to calculate the
decrement factor and the thermal lag. Another author used the validated model to simulate
the same building for different climates [67]. The results are divided for summer and winter.
The thermal comfort is assessed by the ASHRAE Standard 55 adaptive comfort model,
except from [66] who used 2010/31/EU. For Arid climates the discomfort is reduced about
70% compared to concrete blocks according to [30] and just 37% of overheating is obtained
by [67]. Similar values of 75% of comfort are presented by [28]. For temperate climates the
results are lower and the rammed earth building shows 50–70% of discomfort according
to [67].

5.4. Compressed Earth Blocks

Seven articles have thermally analyzed the compressed earth blocks (CEB) building
technique, three of them with both monitored and simulated analyzes. Three of the
analysed constructions (one simulated and the other two both simulated and monitored)
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are in-use buildings, the rest are experimental buildings. The locations of the cases are very
different, with Tundra, Temperate, and Arid climates.

The building characteristics and the thermal parameters of the monitored CEB cases
are presented in Table 8. The monitoring period is only specified by two authors [38,40]
and it was conducted in summer 2016 in both studies. However, comparisons are difficult
since climates and wall characteristics are different. Just one author [38], described the
building dimensions and specified the thermal comfort standard SIA 180:2014 used to
assess the thermal comfort. The thickness of the CEB walls is 14 cm for three out of the
four cases, but insulation or coatings are added in some case. There is no common pattern
observed related to the decrement factors or the thermal amplitudes values, because they
depend on the monitoring period, the building structure and as suggested by [40], on the
building floor as well.

The thermal performance and the building characteristics of the CEB simulated studies
are presented in Table 9. The authors who specified the software coincide using Energy-
Plus [36,40,76]. Three authors propose wall thickness of 14 cm. The base ventilation ratio
set up goes from 0.35 to 0.5 ACH and the monitoring results have been used to validate
the simulated model in two studies [36,37]. Decrement factor and thermal lag parameters
are only presented by [76]. Thermal comfort for simulated CEB is only provided by [36],
assuring that a CEB simulated building located in Tundra climate would be under the
limits of thermal comfort zone 75% of the time.



Energies 2021, 14, 2080 29 of 47

Table 2. Building characteristics and thermal performance of the dug out earth monitored studies.

Reference
Number Monitoring Period Location Climate Use Building Description Decrement

Factor Thermal Lag Thermal
Amplitude

Thermal
Comfort

[14]

cold period
(Text < Tint) and

warm period
(Text > Tint)

San Esteban de
Gormaz (Spain) Cfb In-use building

(warehouse) Deep: 10 m; Volume: 250 m3 - - - -

[15]

#1, #2, #4: 1 June to
21 December #3, #5:

15 August to
21 December

Dezful (Iran) BSh In-use buildings
(dwelling)

Depth from the courtyard level: #1: 9 m; #2:
8.8 m; #3: 7.25 m; #4: 6.5 m; #5: 8 m

#1: 0.38; #2: 0.13;
#3: 0.18; #4: 0.26;

#5: 0.07
-

#1: 8.8 ◦C; #2:
4.5 ◦C; #3:

6.9 ◦C; #4: 9.1
◦C; #5: 2.6 ◦C

-

[16] 2006–2009 Ribera del
Duero (Spain) Csb In-use building

(wine cellar)

#1 (basement) 50 × 17 × 6 m3; #2
(earth-sheltered construction) 50 × 17 m2;

#3 underground construction) tunnel of 100 m
long and 4 m high

#1: 0.33; #2: 0.18;
#3: 0.10

#1: 28 days;
#2: 58 days;
#3: 51 days

- #1: 58%; #2: 80%
#3: 100%

[17]
#1: 2006–2009; #2:
January 2008 to
December 2009

Ribera del
Duero (Spain) Csb In-use building

(wine cellar)

#1: cave of 10 m2, 2.4 m high, depth of 2.3 m +
ventilation chimney; #2 cave of 84 m2, 2.5 m

high, depth of 9 m + ventilation chimney.
- - - -

[18,19] 2006–2007 Morcuera
(Soria, Spain) Csb In-use building

(wine cellar)

#1: cave of 6 m2 and 1.9 m high, 3.1 m deep +
9 m canyon; #2 same as #1 with 6.5 m canyon;

#3 linear layout cave of 12 m2, 7 m canyon.
- -

Daily, weekly,
montly

average:#1: 0.2,
0.7, 2.3 ◦C; #2:
0.7, 1.6, 3.4 ◦C;

#3: 0.2, 0.7,
2.1 ◦C

-

[20] 1 July to 7 July Morcuera
(Soria, Spain) Csb In-use building

(wine cellar)
#1: 16.2 m long hillside with no ventilation;

#2: 14.7 m long 3.4 m deep with 8 m canyon. #1: 0.04; #2: 0 - #1: 0.8 ◦C #2:
0 ◦C -

[21] - Miaoshang
(China) BSk In-use building

(dwelling)
9 cave rooms with the depth of 7.5 m and plane

size of 12 m2 + Yaokang (Adobe stove)
Summer: 0.19;
Winter: 0.46 - - -

[22] - Miaoshang
(China) BSk In-use building

(dwelling)
Four cave rooms located in north, south, east

and west around a courtyard. 0.21 - - -

[23]

Winter: 6 January to
28 February 2018;

summer: 26 August
to 26 September 2018

Gongyi (China) Cwa In-use building
(dwelling) 7.6 × 3 m2 facing south

Summer: 0.25;
Winter: 0.1 - - -

[24] 15 January to 18
January 2000

Jiang Yao Zu
(China) Dwa In-use building

(dwelling)

Courtyard surrounded by cave rooms (3–3.8 m
high) #1 Occupied cave room; #2 Unoccupied

cave room
#1: 0.057; #2: 0.4 - #1: 7–8 ◦C; #2:

0.65 ◦C -
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Table 3. Building characteristics and thermal performance of the earth dug out simulated studies.

Reference
Number Location Climate Use Building

Description
Simulation
Software Ventilation Thermal

Transmittance
Decrement

Factor Thermal Lag Monitoring vs.
Simulation

Thermal
Comfort

Comfort
Standard

[14]
San Esteban
de Gormaz

(Spain)
Cfb in-use

building
Deep: +10 m;

Volume: 250 m3 STAR-CCM+ - - - - -

average
tempera-
ture of
10.5 ◦C

-

[17]
Ribera del

Duero (Soria,
Spain)

Csb

in-use
building

(wine
cellar)

Cellar #1 is
5 × 2 × 2.4 m3 and

cellar #2 is
20 × 4.2 × 2.5 m3.

Both with a
ventilation chimney

EnergyPlus - -

#1: 0.19–0.35
(average 0.28);
#2: 0.05–0.11

(average 0.08).

#1:
39–63 days

(average 49);
#2: 63–92

(average 78)

- - -

[22] Miaoshang
(China) BSk in-use

building

9 cave rooms with
the depth of 7.5 m
and plane size of
12 m2 + Yaokang

(Adobe stove)

Sketchup +
EnergyPlus - - 0.42 (annual

behaviour) -

Average
deviation in:

Summer: 0.54%;
Winter: 3.08%;
Spring: 3.1%

42.8% in
comfort
Zone II

Chinese
Standard,

GBT50785−2012

[23] Gongyi
(China) Cwa in-use

building
7.6 × 3 m2

facing south
EnergyPlus -

Cave roof:
0.067 W/(m2·K);

South façade:
1.72 W/(m2·K)

and Interior wall:
0.2 W/(m2·K)

-

Cave roof:
360.15 h;

South façade:
10.06 h;

Interior wall:
109.04 h

NMBE: 0.6%
(summer) and
2.6% (winter);
RMSE: 4.1%

(summer) and
6.1% (winter).

52.3% in
comfort
Zone II

Chinese
Standard,

GBT50785–
2012

[24] Jiang Yao Zu
(China) Dwa in-use

building

courtyard
surrounded by

cave rooms
(3–3.8 m high)

0.43
ACH

Earth wall:
1.56 W/(m2·K) - 0.5 h for the

courtyard

1.7% deviation in
the courtyard;

16% for the south
cave room and

8.5% for the west
cave room.

- -

[59] Yazd (Iran) Bwk in-use
building - ECOTEC +

EnergyPLus - - Summer:
0.03–0.08 - RMSE: 0.19–0.97 - -

Table 4. Building characteristics and thermal performance of the earthbag monitored studies.

Reference
Number Monitoring Period Location Climate Use Thickness Thermal

Transmittance Decrement Factor Thermal Lag Thermal Comfort

[13] July 2017–June 2018 Lleida, (Spain) BSk Experimental
building

70 cm (buttress)–
28 cm (roof) 2.7 W/(m2·K)

Theory: 0.12; winter 0.12;
equinox 0.19;
summer 0.10

Theory: 8.1 h;
Experimental: Free

floating (8–9 h)

Good performance in
hot climates
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Table 5. Building characteristics and thermal performance of the earthbag simulated studies.

Reference
Number Location Climate Use Simulation

Software
Building

Description Thickness Ventilation Conductivity/Thermal
Transmittance

Decrement
Factor Thermal Lag Thermal

Comfort
Comfort
Standard

[13] Lleida
(Spain) BSk Experimental

building EnergyPlus Dome Ø3 m,
height 3.3 m

70 cm
(buttress)–

28 cm (roof)

0.5 ACH
(base); 10 ach

(night
ventilation)

2.7 W/(m2· K)

Free floating
winter,

equinox,
summer (0.17;

0.16; 0,14)

Free floating
winter,

equinox,
summer (8, 7,

6 h)

good
performance

in hot
climates

ASHRAE
Standard 55

Adaptive
Comfort

[60]
Ouagadougou

(Burkina
Faso)

Bsh In-use
building EnergyPlus

Dome
Ø4.5 m,

height 4.7 m

64 cm
(buttress)–

32 cm (roof)

0.5 ach (base);
4 ach (night
ventilation)

1.1 W/(m·K) 0.15 (equinox) -
94–99%

better than
adobe

ASHRAE
Standard 55

Adaptive
Comfort

[61]
Sagarmatha

National
Park (Nepal)

Cwa In-use
building -

Modified
earthbag +
insulation

33 cm - 0.22 W/(m2·K) - - - -

[63] - - - ECOTEC
one space
earthbag

construction
- - - - - - -

[65] - - - PHOENICS - - - - - - - -

Table 6. Building characteristics and thermal performance of the rammed earth monitored studies.

Reference
Number

Monitoring
Period Location Climate Use Building Description Thickness Conductivity/Thermal

Transmittance
Decrement

Factor Thermal Lag Thermal
Amplitude

[26] March 2013 to
June 2015

Saint-Antoine
l’Abbaye
(France)

Cfb In-use building two floors, 150 m2,
3 m high

50 cm 0.6 W/(m·K)
completely dried 0.09–0.2 6–9 h -

[27] 4 July 2008 to 1
April 2009

Leicestershire
(UK) Cfb In-use building -

17.5 cm + 5 cm
extruded

polystyrene
insulation +

17.5 cm

0.643 W/(m·K) - - -

[28]
13 February

2001–13 March
2000)

Albury-
Wodonga

(Australia)
Cfa In-use building two floors with offices,

10 m2 30 cm - - - -
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Table 6. Cont.

[29]

-
Willunga,
Adelaide

(Australia)
Csb In-use building

104 m2, occupied by
2 people mainly on

weekends and
night time

22 cm external,
11 cm internal - - - -

Willunga,
Adelaide

(Australia)
Csb In-use building 96 m2 occupied by

1 person
33 cm external,
22 cm internal - - -

-
Willunga,
Adelaide

(Australia)
Csb In-use building 175 m2, occupied by

5 person

11 cm + 2.5 cm
air gap + R2
insulation

externally clad

- - - -

[30,31] - San Pedro de
Atacama (Chile) BWk In-use building - 50 cm wall,

15 cm earth roof

Theoretical: wall
(1.3 W/(m2 K)); roof

(2.3 W/(m2·K))

summer: 0.14;
winter: 0.13 - -

[32] - La Serranía,
Valencia (Spain) Bsk In-use building 345.5 m2 in three floors 50 cm 1.58 W/(m2·K) 0.08

Increasing temp:
5–8; decreasing

Temp: 1–2 h
1.5 ◦C

[33] Summer and
winter 2013

Barcelona
(Spain) Csa Experimental

building
2.48 × 2.15 × 2.50 m3

inner dimensions
50 cm - summer: 0.2;

winter: 0.25 -

Inner surface
summer: 2 ◦C;
winter 0.5 ◦C.

External surface
summer: 5 ◦C;
winter: 1 ◦C

Puigverd de
Lleida (Spain) Csa/Cfa Experimental

building
2.40 × 2.40 × 2.40 m3

of inner dimensions
29 cm - summer: 0.23;

winter: 0.3 -

Inner surface
summer: 3.5 ◦C;

winter 5 ◦C.
External surface
summer: 15◦C;
winter: 17 ◦C

[34] Summer 2015

Puigverd de
Lleida (Spain) Csa/Cfa Experimental

building 2.40 × 2.40 × 2.40 m3 29 cm - Free floating in
winter: 0.17 - Winter: 1–2 ◦C

Puigverd de
Lleida (Spain) Csa/Cfa Experimental

building
3 cubicles of

2.40 × 2.40 × 2.40 m3

29 cm + 6 cm
wood fibers
panel + 1 cm

clay and straw
coating

- Free floating in
winter: 0.11 - winter <1 ◦C
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Table 6. Cont.

[35]

-
Kalgoorlie-

Boulder
(Australia)

Bwh Experimental
building

Complete house.
50.3 m × 20.1 m2 31 cm thick - 0.103–0.191 0.364–1.5 h -

-
Kalgoorlie-

Boulder
(Australia)

Bwh Experimental
building

Complete house.
50.3 × 20.1 m2

31 cm thick;
kitchen and

bathroom 30 cm
+ insulation

- 0.108–0.147 0.48–0.949 h -

Table 7. Building characteristics and thermal performance of the rammed earth simulated studies.

Reference
Number

Simulation
Software Location Climate Use Building

Description Thickness Monitoring vs.
Simulation Ventilation Conductivity/Thermal

Transmittance
Decrement

Factor
Thermal

Lag
Thermal
Comfort

Comfort
Standard

[27] WUFI
Plus v1.2

Leicestershire
(UK) Cfb experimental

building
One space room

8 m2

17.5 cm +
5 cm

extruded
polystyrene
insulation +

17.5 cm

1 ◦C
discrepancy 1.5 ACH - - - - -

[28] TRNSYS
Albury-

Wodonga
(Australia)

Cfa In-use
building

two floors with
offices, 10 m2 30 cm - - - - - 75%

ASHRAE
Standard
55 Adap-

tive

[29]

-
Willunga,
Adelaide

(Australia)
Csb In-use

building

104 m2,
occupied by 2
people mainly
on weekends

and night time

22 cm

correlation
coefficient (R2)

in summer:
0.987

0.8 ACH Theory:
4.26 W/(m2·K)

Theory:
0.714

Theory:
2.81 h - -

-
Willunga,
Adelaide

(Australia)
Csb In-use

building
96 m2 occupied

by 1 person
33 cm

correlation
coefficient (R2)

in winter: 0.828;
summer: 0.987

0.8 ACH Theory:
3.089 W/(m2·K)

Theory:
0.374

Theory:
6.16 h - -

-
Willunga,
Adelaide

(Australia)
Csb In-use

building

175 m2,
occupied by

5 person

11 cm +
2.5 cm
air gap

correlation
coefficient (R2)

in summer:
0.984

0.8 ACH Theory:
2.411 W/(m2·K)

Theory:
0.189

Theory:
9.3 h - -

[30,31] ECOTEC
San Pedro

de Atacama
(Chile)

BWk In-use
building -

50 cm wall,
15 cm

earth roof
- 0.4 ACH - 80% 14 h

Reduction
70% dis-
comfort

ASHRAE
standards
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Table 7. Cont.

[35] -
Kalgoorlie-

Boulder
(Australia)

Bwh Experimental
building

Complete house.
50.3 m × 20.1 m 31 cm thick - - - 0.119–0.425 0.357–5.75 h - -

-
Kalgoorlie-

Boulder
(Australia)

Bwh Experimental
building

Complete house.
50.3 m × 20.1 m

31 cm thick;
kitchen and
bathroom

30 cm +
insulation

- - - 0.145–0.427 0.69–3.4 h - -

[66] EnergyPlus Belgrade
(Serbia) Cfa in-use

building 83 m2 30–40−
50 cm - 0.7 ACH 2.07, 1.76 and

1.54 W/(m2·K) - - - 2010/31/EU

[67]

AccuRate Longreach
(Australia) Bsh experimental

building
One space room

8 × 12 m - - - 1.25 W/(m·K)
(AccuRate library)

Winter: 0.32;
Summer:

0.37

Winter: 7.5;
Summer: 9

37% over-
heating

ASHRAE
Standard

55
Adaptive

AccuRate Adelaide
(Australia) Csb experimental

building
One space room

8 × 12 m - - - 1.25 W/(m·K)
(AccuRate library)

Winter: 0.38;
Summer:

0.45

Winter: 8;
Summer:

10.5

50% out
of the
limits

ASHRAE
Standard

55
Adaptive

AccuRate Ballarat
(Australia) Cfb experimental

building
One space room

8 × 12 m - - - 1.25 W/(m·K)
(AccuRate library)

Winter: 0.41;
Summer:

0.31

Winter: 7;
Summer:

8.5

70%
Under-
cooling

ASHRAE
Standard

55
Adaptive

Table 8. Building characteristics and thermal performance of the compressed earth blocks monitored studies.

Reference
Number

Monitoring
Period Location Climate Use Thickness Conductivity/Thermal

Transmittance
Decrement

Factor Thermal Lag Thermal
Amplitude

Comfort
Standard

[36] - Zumbahua
(Equator) ET In-use building

14 cm thick +
plaster coating

(unspecified
thickness)

2.24 W/(m2 K) 0.6
2.5 h for

increase. 1 h for
decrease

- -

[37] - Burkina Faso BSh Experimental
building 14 cm or 28 cm

Earth with paper
(0.588 W/(m2·K)), Only
earth (0.644 W/(m2·K)),
earth with cement and

paper (0.671 W/(m2·K)),
earth with cement
(0.742 W/(m2·K)).

33.54–44% 6–7 h - -
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Table 8. Cont.

[38] summer 2016 Fribourg
(Switzerland) Cfb Experimental

building
14 + 18 cm
insulation 0.79 W/m·K 0.18 2 h 3.1 ◦C SIA 180:2014

[40] 1 August to 4
August 2016 Turpan (China) Bwk In-use building

40 cm + 1.5 cm
cement-lime

mortar
- - -

Ground floor:
2.5 ◦C; Semi-
underground
floor: 0.5 ◦C;

first floor: 2 ◦C

-

Table 9. Building characteristics and thermal performance of the compressed earth blocks simulated studies.

Reference
Number

Simulation
Software Location Climate Use Thickness Monitoring vs.

Simulation Ventilation Decrement
Factor Thermal Lag Thermal

Comfort

[36] EnergyPlus Zumbahua
(Equator) ET In-use

building

14 cm thick +
plaster coating

(unspecified
thickness)

R2: 0.89; RMSE:
1.1 ◦C

- - - 75% under
comfort

[37] - Burkina Faso BSh Experimental
building 14 cm or 28 cm MBD < 5.6%;

RMSD < 10% - -

[40] EnergyPlus Turpan (China) Bwk In-use
building 30 cm -

0.5 ACH
(base); night
ventilation
2.5 ACH

- - -

[75] - Ouagadougou
(Burkina Faso) Bsh Experimental

building - - - - - -

[76] EnergyPlus Garoua (Cameroon) Am Experimental
building 30 cm - -

CSEB 0,6;
Sawdust 0.3;
Pozzolan 0.2

sawdust +4.21%;
Pozzolan
+ 16.14%

-

[77] -
Garoua, Youndé

and Douala
(Cameroon)

Am, Aw In-use
building 14 cm - 0.35 ACH - - -
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5.5. Cob

Thermal monitoring studies with cob construction technique have not been found.
Two authors simulate in-use cob buildings located in different places but both with Oceanic
climate (Table 10). The thickness of the cob wall is between 30 and 80 cm in the thirty-
three analyzed buildings. Basic air infiltration is only provided by [79] and the thermal
transmittance by [80]. No thermal comfort analyses have been performed with this con-
struction technique.

5.6. Adobe

From the authors that conducted a thermal analysis of an adobe building, there are a
total of thirteen monitoring studies (five of them correspond to experimental buildings).
There are also four simulated studies and all of them are in-use buildings. There is only
one simulated study that does no conduct a monitoring analysis to validate the results. The
locations of the adobe buildings are very different but they correspond to Temperate and
Arid climates.

The building characteristics and the thermal parameters of the monitored adobe cases
are presented in Table 11. Most of the authors monitored the building during summer period
and three other authors monitored during winter time. The most used adobe wall thickness
for in-use buildings is 40–56 cm without insulation, and the thermal transmittance ranges
from 1.35 W/(m2·K) for 40 cm to 1.39 W/(m2·K) for 36 cm of adobe wall. There is one
author [50] who analysed the U-value according to the RCCTE and the DIN EN ISO 6946,
for an experimental prototype. The decrement factor, thermal lag and the thermal amplitude
vary according to the year season and the wall thickness; there is no clear pattern since each
study characteristics are very different. Only three authors have assessed the thermal comfort
with three different methods: Fanger’s method, the predicted mean vote (PMV) method, and
the cumulative distribution function (CDF) [43,46,47]. Two of them conclude that thermal
comfort is achieved, in the case of [42] between 87–99% of the time; but [46] obtained values
of thermal comfort under the thermal limit, being too cold to get comfortable.

The thermal performance and the building characteristics of the adobe simulated
studies are presented in Table 12. The software used for the simulation is specified in
three out of four studies, and there is no common consensus, since each author uses different
software. The wall thickness varies from 15 to 30 cm and the base ventilation rate used by
the authors is similar (0.4–0.5 ACH). There is only one author who provide an statistical
analysis between monitored and simulated results [48], obtaining a good match. Decrement
factor and thermal lag are presented just by one author as well [30]. The thermal comfort
has been assessed by the ASHRAE 55 adaptive comfort model, and in addition, [60] also
analysed the Discomfort Degree Days (DDD).

5.7. Extruded Earth

There are only two authors that conduct a thermal analysis of an extruded earth
building, one monitored (Table 13) and the other simulated (Table 14). Both locations and
climates are different and there is only information on the building use for the monitoring
study. The monitoring study was performed during one year and the thermal lag obtained
is 10 h. It is important to highlight that a good match is obtained for the decrement factor,
with a value of 0.2 for both the simulation in summer and the monitored. In addition, the
simulation presents a decrement factor of 0.33 for the winter period.

5.8. Straw Clay

There is only one simulated study of a straw clay in use building, done with TRNSYS
(Table 15). It is located in Burkina Faso, which corresponds to hot semi-arid climate climate.
The thickness of the building and the U-Value are presented. No specific value for the
thermal lag or the decrement factor is provided.
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Table 10. Building characteristics and thermal performance of the Cob simulated studies.

Reference
Number

Simulation
Software Location Climate Use Building Description Thickness Ventilation Conductivity Decrement Factor

[79] TRNSYS Rennes (France) Cfb in-use building 32 dwellings of 65.7 m2 30 to 80 cm 60 m3/h - -

[80] - France and UK Cfb in-use building two floors
35 cm insulation

Cob + 30 cm
construction cob

-

insulation Cob
(0.1 W/m·K);

construction cob
(0.494 W/m·K)

-

Table 11. Building characteristics and thermal performance of the adobe monitored studies.

Reference
Number

Monitoring
Period Location Climate Use Building

Description Thickness Conductivity/Thermal
Transmittance

Decrement
Factor Thermal Lag Thermal

Amplitude
Thermal
Comfort

Comfort
Standard

[30,31] Summer 2012

San Pedro
de

Atacama
(Chile)

BWk In-use
building

Bedroom and
small lavatory

30 cm +
rammed

earth roof
15 cm

- Summer 0.29;
Winter 0.27

Summer:
3–4 h; Winter:
close to zero

Summer:
1.5 ◦C;

Winter: 6 ◦C
- -

[41]

March 2007
(summer)
and May

2007 (winter)

Australia - Experimental
building 4 m2

25 cm
stabilized

with bitumen

Theoretical:
0.82 W/m·K

Winter: 0.33;
Summer:

0,27

Theoretical: 8
h; Summer

5–6 h; Winter:
3–4 h

Winter: 4 ◦C;
Summer:
1.75 ◦C

- -

[42] Summer 2010 Serramanna
(Italy) Csa In-use

building

Living room
(24.5 m2) and

bedroom
(14.7 m2)

40 cm Experimental in the lab:
0.127 W/(m2·K)

Experimental
in the lab:

0.098;
monitored:

0.11

Experimental
in the lab:

14.5 h
- - -

[43] Summer 2011 Serramanna
(Italy) Csa In-use

building

Living room
(24.5 m2) and

bedroom
(14.7 m2)

- - - - -

Living room
99%

bedroom
87%

Fanger’s
method

[46]

8 December
2012 to 30
December

2012

Gansu
(China)

BSk or
BWk

In-use
building - - - 0.265 1 h - −2 (Cool) PMV
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Table 11. Cont.

[47]

Summer: 20
June to 1 July;

Winter: 1
January to

8 March

Navapalos
(Spain) Csb In-use

building -
Adobe (40 ×
20 × 15 cm) +
1 cm plaster

1.35 W/(m2·K)
Winter: 0.12;

Summer:
0.13

- -

cross point:
7 ◦C (Winter)

and 21◦C
(summer)

cumulative
distribu-

tion
function
(CDF)

[48] - New Delhi
(India) Bsh In-use

building

6 rooms (3
inverted

U-shaped
rooms and

3 dome shaped
rooms)

36 cm 1.39 W/(m2·K)

Winter:
0.28–0.33;
Summer:
0.18–0.28

- - - -

[49]

- Sieyoung
(China) BWh In-use

building -
55 cm adobe
+ 0.5 cm of
mud plaster

- Winter: 0.1

Summer:
14–15 h,
Winter
12–14 h

<5 ◦C - -

- Lahij
(Yemen) BWh In-use

building -
56 cm adobe
+ 0.5 cm of
mud plaster

-
Summer:

0.02; Winter:
0.05

Summer:
12–16 h,

Winter 17 h
<5 ◦C - -

[50]

May
Universdade
de Aveiro
(Portugal)

Csb Experimental
building

One space area
of 1 × 1.35 ×
0.75 m, with

adobe bricks of
11.25 × 7.5 ×

3.75 cm

Adobes
produced in

the lab

2.06 W/(m2·◦C)
(RCCTE) and 2.22

W/m2· K (DIN EN ISO
6946)

0.71 3 h 16 min - - -

May
Universdade
de Aveiro
(Portugal)

Csb Experimental
building

One space area
of 1 × 1.35 ×
0.75 m, with

adobe bricks of
11.25 × 7.5 ×

3.75 cm

adobes taken
from a

demolished
construction

in Aveiro

1.83 W/(m2· K)
(RCCTE) and 1.95

W/(m2·◦C) (DIN EN
ISO 6946)

0.66 2 h 17 m - - -

May
Universdade
de Aveiro
(Portugal)

Csb Experimental
building

One space area
of 1 × 1.35 ×
0.75 m, with

adobe bricks of
11.25 × 7.5 ×

3.75 cm

Adobes
produced in

the lab
adding

2% cork.

1.47 W/(m2· K)
(RCCTE) and 1.65

W/m2·◦C (DIN EN ISO
6946)

0.6 2 h 05 min - - -

[53] - Cyprus BSh Experimental
building - 50 cm -

Summer:
0.03; winter:

0.008
5 - - -
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Table 12. Building characteristics and thermal performance of the adobe simulated studies.

Reference
Number

Simulation
Software Location Climate Use Building

Description Thickness
Monitoring

vs.
Simulation

Ventilation Thermal
Transmittance

Decrement
Factor

Thermal
Lag

Thermal
Comfort

Comfort
Standard

[30,31] ECOTEC San Pedro de
Atacama (Chile) BWk In-use

building

Bedroom
and small
lavatory

30 cm,
15 cm
(roof)

- 0.4 ACH - 55% 8 h 5500 h
discomfort

ASHRAE 55
Adaptive

comfort model

[46] FLUENT Gansu (China) Bs In-use
building - - - - - - - - -

[48] -

New Delhi,
Bangalore, Jodhpur,

Mumbai and
Srinagar (India)

Bsh In-use
building - -

R2 097–0.98;
RMSE
0.2–3%

- - - - - -

[60] EnergyPlus Ouagadougou
(Burkina Faso) Bsh In-use

building

one space
area,

15.9 m2
15 cm -

0.5 ACH;
night

ventilation
(4 ACH)

0.95 W/(m2·K) - -

+3000 h
discomfort; +

200 discomfort
degree days

ASHRAE 55
Adaptive

comfort model,
Discomfort
degree days

(DDD)

Table 13. Building characteristics and thermal performance of the extruded earth monitored studies.

Reference Number Monitoring Period Location Climate Use Thickness Conductivity Decrement Factor Thermal Lag

[54] 26 July 2012 to 12
July 2013 Lille (France) Cfb Experimental

building 46–60 cm 0.9 W/m·K 0.2 10 h

Table 14. Building characteristics and thermal performance of the extruded earth simulated studies.

Reference Number Simulation
Software Location Climate Use Building

Description Ventilation Decrement Factor Thermal Lag

[81] Design Building Marrakech Bsh - 288 m2 36 m3/h
winter: 0.33;
summer 0.2 -

Table 15. Building characteristics and thermal performance of the straw clay simulated studies.

Reference
Number

Simulation
Software Location Climate Use Building

Description Thickness Ventilation Thermal Transmittance Decrement Factor

[82] TRNSYS 16.1 Ouagadougou
(Burkina Faso) Bsh In-use building 50.02 m2 20 cm clay and 20

cm clay-straw 3% - clay: 2.12 W/(m2·K);
clay-straw 3%: 0.53 W/m2·K -
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5.9. Earthship

Two in-use earthship buildings were thermally monitored (Table 16). One study also
simulates the building in different climates and locations, and verifies the model with
the monitored analysis (Table 17). The decrement factors obtained by the two monitoring
cases are very different for both summer and winter: in the case of [57] values obtained
are almost twice the ones in [56]. From the information presented by the authors it is not
possible to explain such a difference. The thermal comfort is achieved 80% of the time in
summer and winter, according to the ASHRAE 55 Adaptive comfort, as mentioned by [57].

Considering all the earth techniques and studies included in this review, it is observed that
the thermal transmittance ranges between 1.3–2.1 W/(m2·K) in the majority of the cases, but
as presented in the following Figure 4, there are not enough case studies to draw conclusions
about the relation of the thermal transmittance with the earth wall thickness and the climate.

Another key observation is the relation between the decrement factor and the thickness
of the earth wall presented in Figure 5. There is a significant reduction of the decrement
factor for earth wall between 10–20 cm thick. From 20 to 50 cm the decrement factor is
stabilized in a range of 0.13–0.21.
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Table 16. Building characteristics and thermal performance of the earthship monitored studies.

Reference
Number

Monitoring
Period Location Climate Use Thickness Thermal

Transmittance
Decrement

Factor
Thermal

Lag
Thermal
Comfort

Comfort
Standard

[56] 2012 Taos (New
Mexico, USA) Dfb In-use

building 160 cm 0.613
W/(m2·K)

Summer: 0.13;
Winter: 0.33 - - -

[57] 2004–2005 Brighton (United
Kingdom) Cfb In-use

building
100 cm (tyres +

earth) - Summer: 0.37;
Winter: 0.625 - 80% ASHRAE 55

Adaptive comfort

Table 17. Building characteristics and thermal performance of the earthship simulated studies.

Reference
Number Simulation Software Location Climate Use Monitoring VS

Simulation Ventilation Thermal
Transmittance

Decrement
Factor

[56] EnergyPlus + Design
Builder

Taos (USA), Paris (France)
Albacete, Seville and Valladolid

(Spain), and London (UK)

Dfb, Cfb BSk Csa
Csb Cfa In-use building RMSE: 6.3% - - -



Energies 2021, 14, 2080 42 of 47

The following Figure 6 presents the decrement factor according to the Köppen and
Geiger climate classification. The thermal monitoring cases took place mainly in arid and
semi-arid climate (group B), and Mediterranean climate (group Cs). Within these climate
locations, the earth construction techniques that achieved the lowest decrement factor were
adobe, dug out earth, and rammed earth (all below 0.3).
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6. Conclusions

A literature review on thermal monitoring and simulation analyses for earth buildings
has been presented. The literature review includes a complete list of the earth building
techniques, including both traditional and modern. The review presents mainly scientific
articles and some conference papers related with thermal comfort in earth buildings. From
the 59 presented papers, in 71.2% the earth building is monitored, while in 59.3% it is
simulated. Just over a third (36%) of the papers present simultaneously thermal monitoring
and simulation. From all the techniques considered in this paper, rammed earth is the most
studied for both monitoring (14 studies) and simulation (12 studies). Adobe has 17 studies,
13 of them monitoring, and earthen dug out has 17 studies, six of them simulations.

The information found in the literature review has been firstly explained per building
technique and secondly divided in thermal monitoring analyses and thermal simulations.
The data are summarized and structured by the building location and climate, the use of the
building, the thickness of the earth wall, the thermal transmittance or conductivity of the
earth wall, the decrement factor, the thermal lag and amplitude, and the achieved period
of thermal comfort in the earth building. In addition, the monitoring analyses compile
information such as the monitoring period. The simulation analyses compile information
such as the software simulation used, the verification of the model by monitored data, and
the considered level of ventilation in the building.

The results of this literature review indicate that:

• Although complete information regarding architectonic characteristics of earth build-
ing techniques is found in the literature, just partial information related to thermal
performance of both monitored and simulated earth buildings exists. It is also con-
clude that for some earth techniques presented in Table 1, thermal performance
information is not found. Thus, there is a gap of information regarding the thermal
comfort in these techniques.
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• Although a large number of studies monitoring or/and simulating earth construction
buildings are published, little uniformity exists when collecting data for making com-
parisons.

• No thermal analyses have been found within the scope of this study for earth tech-
niques such as cut blocks, direct shaping, stacked earth, daubed earth, or the newest
technique, the earth 3D printing. It is necessary to study those technologies in order
to provide knowledge to the scientific community regarding the thermal performance
of these techniques.

• There is a general consensus in literature that a key aspect for using the earth as a
construction material is the thermal inertia provided to the building. This thermal
inertia is not enough for cold climates to achieve the thermal comfort but it is proved
to be enough, combined with other passive design strategies, to meet the thermal
comfort without any active system for hot climates.

• Most of the locations of the earth buildings corresponded to arid and temperate
climates according to Köppen and Geiger classification, which it is proved according
to the literature to be suitable climates for earth constructions. This is due to its high
thermal inertia that decreases the high thermal amplitude of the exterior temperatures,
presenting decrements factors around 0.2 for the major part of the earth techniques.

• To assess the thermal comfort, ASHRAE 55 adaptive comfort model is the common
standard used. For arid and temperate climates, earthbag, rammed earth and dugout
constructions are the ones with higher levels of thermal comfort, obtaining values
above 70% of the time within the limits of thermal comfort.

From the literature review about thermal monitoring, it can be concluded that:

• When monitoring earth buildings indoor and outdoor temperatures are always mea-
sured. A large number of authors also recorded relative humidity, solar radiation and
air velocity.

• Neither common equipment nor common monitoring methodology has been used,
which complicates an objective comparison of the results. It is necessary to establish a
common methodology for monitoring earth buildings.

• There is no consensus about the minimum period for conducting monitoring experiments.
• Rammed earth, adobe and dug out earth buildings are the techniques which there is

more information on the literature regarding the thermal comfort assessment. How-
ever they are just partially studied, other parameters such as the water content or the
building occupation are also involved in the thermal comfort.

• One of the main gaps concerning the monitoring of earth buildings, is the occupation.
There is no information of the effect on the thermal comfort because of the occupation
of the earth building. In the majority of the cases this occupation is not even mentioned.

From the literature review about thermal simulation, it can be concluded that:

• There is no homogeneity in the software used to simulate earth buildings, however
EnergyPlus is the most used software.

• Base values of air infiltration of 0.4–0.8 ACH were considered.
• The numerical models that have been validated, present high coincidences with the

monitoring results.

One of the main limitations of the earth building simulations is the convenience of an
experimental study to validate the numerical model. This is not always possible and there
are many simulated studies without the correspondent experimental study. Not having
proper standards and using unverified models to assess the thermal comfort are the main
limitations Future research would include:

In order to make more precise comparisons on the thermal behaviour and thermal
comfort of the different earth construction techniques, it is necessary that the scientific
community agrees on which are the key parameters. For these reasons, the authors
encourage to create a clear standard on how to monitor an earth building, and which
parameters must be registered and under which conditions.
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