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Abstract: The mapping between open circuit voltage (OCV) and state of charge (SOC) is critical
to the lithium-ion battery management system (BMS) for electric vehicles. In order to solve the
poor accuracy in the local SOC range of most OCV models, an OCV model fusion method for SOC
estimation is proposed. According to the characteristics of the experimental OCV–SOC curve, the
method divides SOC interval (0, 100%) into several sub-intervals, and respectively fits the OCV curve
segments in each sub-interval to obtain a corresponding number of OCV sub-models with local
high precision. After that, the OCV sub-models are fused through the continuous weight function
to obtain fusional OCV model. Regarding the OCV curve obtained from low-current OCV test as
the criterion, the fusional OCV models of LiNiMnCoO2 (NMC) and LiFePO4 (LFP) are compared
separately with the conventional OCV models. The comparison shows great fitting accuracy of the
fusional OCV model. Furthermore, the adaptive cubature Kalman filter (ACKF) is utilized to estimate
SOC and capacity under a dynamic stress test (DST) at different temperatures. The experimental
results show that the fusional OCV model can effectively track the performance of the OCV–SOC
curve model.

Keywords: electric vehicles; lithium-ion batteries; open circuit voltage; state of charge; model fusion;
adaptive cubature Kalman filter

1. Introduction

In response to the various policies of sustainable development, the development of
electric vehicles (EVs) with batteries as the main power source has become the theme
of the automotive industry. Because of numerous appealing characteristics, lithium-ion
batteries (LiBs) have been an indispensable part of EVs [1]. As a significant indicator,
the state of charge (SOC) dominates the range anxiety of drivers. Precise and reliable
SOC estimation allows battery management system (BMS) to protect the battery, prevent
overcharge/over-discharge, extend the battery life, and make reasonable control strategies
to save energy [2,3]. Therefore, SOC estimation always attracts the attention of academia
and the industrial community.

Various approaches of SOC estimation have been developed [4–7]. The classical
approach to estimate SOC is the ampere-hour integral method which directly originates
from the definition of the SOC. The precision of ampere-hour integral method is seriously
limited by the initial SOC error, sensor error and battery aging [8]. Model-based methods
have been extensively used due to their self-correcting merits. The essence of model-
based methods is the mapping between SOC and other battery parameters like impedance
spectroscopy and open circuit voltage (OCV). The Kalman filter is commonly used to
estimate SOC in various model-based methods with the bearable amount of calculation cost
and the supply of state uncertainty. The Kalman filter algorithm family includes the classical
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Kalman filter, extended Kalman filter (EKF) [9,10], unscented Kalman filter (UKF) [11],
cubature Kalman filter (CKF) [12] and all the extensive form of Kalman filter. EKF needs
to solve the Jacobi matrix, which limited its computation speed and remains just 1 order
Taylor expansion precision [13]. UKF needs to set reasonable noise parameter and sigma
point configuration parameter, which is dependent on specific battery working conditions.
CKF generates the cubature points to approximate the state transfer function. With fewer
parameters that need to be adjusted and minimal calculation costs, CKF remains in 3 order
Taylor expansion precision. Therefore, CKF is generally more practical than EKF and UKF.
In order to solve the possible divergence of the filter, the adaptive extended Kalman filter
(AEKF) and adaptive unscented Kalman filter (AUKF) have been studied [14–16]. In this
paper, the adaptive cubature Kalman filter (ACKF) is introduced to estimate SOC.

For the model-based method, the precision of the OCV–SOC function model (OCV
model) which reflects the mapping between SOC and OCV seriously determines the
performance of SOC estimation. The incremental OCV test and the low-current OCV
test are usual experiments to obtain experimental OCV–SOC characteristic curve (OCV
curve) [17,18]. In the same time-consuming condition, the incremental method is slightly
suitable for specific battery material system at a certain temperature [17]. However, the low-
current OCV test provides intact OCV–SOC data points (OCV points), and the measured
voltage can maintain close-to-equilibrium status if the current rate is extremely small [19].
Therefore, the OCV curves obtained by the low-current OCV test are more suitbale used as
reference models (OCV curve models) for various OCV models.

OCV curve presents distinct characteristic with the change of battery material system
it belongs and is influenced by ambient temperature, aging status and current rate [20].
OCV points obtained from OCV test can be sampled reasonably as control points to fit
OCV curve. Lots of OCV function models have been proposed to express OCV curve [8].
The polynomial function, power function, logarithm and exponent are alternative choices
to constitute the OCV model [21–25]. Among these functions, polynomial functions were
commonly used to fit the OCV curve. By comparing five OCV models, Hu et al. [26]
concluded that the sixth-order polynomial function was considered as the most accurate
OCV model among them. In practice, most OCV models were adopted to fit incomplete
OCV curve whose SOC range is between 10% and 90%. By setting cut-off voltage, the
SOC range is commonly regarded as nominal 0–100% to ensure safety. So, the battery
capacity is cut down by the control of the BMS, and not fully utilized. If the accuracy in the
marginal region of the OCV model can be improved as much as possible, it will be helpful
for BMS to further extend the cut-off voltage and increase the available battery capacity.
Furthermore, establishing OCV models which satisfy high fidelity in the full SOC range is
worth studying.

In order to solve the aforementioned problems, this paper attempts to make the
following contributions:

• An OCV model fusion method is proposed to obtain fusional OCV model which may
match the characteristic of OCV curve in complete SOC range. The OCV model fusion
method is applied for a LiNiMnCoO2 (NMC) battery and a LiFePO4 (LFP) battery.
OCV fitting curves with high precision are obtained at temperature of 10 ◦C, 25 ◦C
and 40 ◦C, respectively.

• CKF and ACKF are utilized to estimate SOC and capacity, and the effect of the fusional
OCV model on SOC and capacity estimation is evaluated by comparing with the OCV
curve model. Besides, the adaptability of the ACKF algorithm for OCV model errors
is verified.

Notably, this paper is concerned with how to obtain the OCV model with high fidelity
based on limited but persuasive control points obtained from an experimental test.

The rest of this paper is organized as follows. Section 2 presents the battery model
and OCV model fusion method. Section 3 introduces the ACKF and capacity estimation
algorithm. Section 4 presents the experimental validation. Finally, conclusions are given in
Section 5.
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2. Battery Modeling and Open Circuit Voltage (OCV) Curve Fusion Method
2.1. Battery Modelling

Battery models, the basis of battery algorithms, mainly include electrochemical mech-
anism models [27] and equivalent circuit models (ECMs) [28]. The electrochemical mecha-
nism models are highly accurate but limited by unsustainable computation load. The ECMs
describe dynamic characteristic and operation mechanism of batteries by using circuit
network which comprises traditional resistance, capacitor, and constant voltage source. An
resistor-capacitor (RC) network is commonly used to characterize the dynamic features of
batteries. Among various ECMs, the first-order RC ECM as shown in Figure 1, also called
the Thevenin model, shows the best balance between complexity and accuracy [29,30].
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Figure 1. Thevenin model.

OCV denotes the terminal voltage which has a non-linear relationship with SOC; iL
denotes the current of the battery; Ri denotes the internal resistance, and characterizes the
contact resistance among battery electrode material, electrolyte, diaphragm resistance and
various parts; Rp denotes polarization resistance and Cp denotes polarization capacitance,
the parallel connection of Cp and Rp reveals the dynamic characteristics of the battery; Ut
denotes the terminal voltage; Up denotes the potential difference of the RC network which
is called polarization voltage.

The mathematical expression between Ut and iL is:

Ut = OCV −Up − iLRi (1)

The mathematical expression between Up and iL is:

.
Up = − 1

CpRp
Up +

1
Cp

iL (2)

After discretizing the above equation, following equation is summarized as:{
Up,k = Up,k−1exp

(
− ∆t

RpCp

)
+ iL,k−1Rp

(
1− exp

(
− ∆t

RpCp

))
Ut,k = OCVk −Up,k − R0iL,k−1

(3)

where the subscript k denotes the sampling step, ∆t denotes the step size. OCVk is a
nonlinear function of SOC. By calculating Equation (4), SOC is obtained.

SOCk = SOCk−1 −
ηi∆t
Ca

iL,k (4)

where ηi denotes the coulombic efficiency of cell [31], Ca denotes current maximum avail-
able capacity which is directly relevant to battery aging and ambient temperature et al., so
it is not fixed like nominal capacity. ηi is generally defaulted as 1.

The terminal voltage Ut and the current iL in the Thevenin model can be measured
by the voltage sensor and the current sensor respectively. In the meanwhile, the model
parameters Ri, Rp, Cp and non-linear function OCVk have to be determined so that subse-
quent battery algorithm can be sustained. Because parameters are seriously influenced
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by the variable factors like battery temperature, aging status, charge or discharge current
etc., recursive least squares method with forgetting factor (FFRLS) is utilized to identify
parameters Ri, Rp, Cp in real time [32].

2.2. OCV Model Fusion Method

The mapping between OCV and SOC is a basic part of battery modeling. During the
process of OCV model selection, the non-linearity of OCV curve brings out the toughest
part. Based on the control points obtained from the OCV test, the coefficients of the OCV
model can be solved after carrying out the curve fitting algorithm. The curves presented
by the solved OCV models can be named as OCV fitting curves. Reasonable selection of
the OCV model can maximize experiment effect as much as possible. From the perspective
of structure, the components of OCV models basically include generalized polynomial,
logarithm, exponent and power function. The polynomial functions satisfy the needs
of general condition, but perform poorly in the local SOC range as shown in Figure 2a.
Besides, polynomial functions may cause under fitting or overfitting if the number of
control points do not match the degree of polynomials. The OCV model which consists
of reasonable combination of polynomial, logarithm, exponent or power function may
perform well in the global SOC range. However, it is still inevitable that the precision of
OCV model in the local SOC range declines seriously, as shown in Figure 2b,c.
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Figure 2. Conventional open circuit voltage (OCV) models for LiNiMnCoO2 (NMC) battery (21 control points, s denotes
state of charge (SOC), k0, 1, 2, 3, 4, α, β denote fitting coefficients). (a) Fourth-degree polynomial. (b) Polynomial and logarithm.
(c) Exponent and linear function.

With further thinking about problems above, the reasons why it is difficult to perfectly
fit the complete OCV curves can be summarized:

• From the perspective of battery characteristics, the marginal region of some OCV
curves may be polarized, and the changing trend of the OCV curves may be trans-
formed within a small SOC range. It is difficult for the OCV model to fully take into
account the characteristics of the OCV curve.
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• From the perspective of practical application, some algorithms are sensitive to the
error of OCV fitting curve. For example, the OCV curve of a LFP battery may have
several large flat regions. If SOC is inferred from the OCV based on OCV fitting curve
which is stored in a table, the error of OCV will lead to larger error of the SOC due to
the deviation of flat regions. Therefore, the requirement for the OCV model’s accuracy
is strengthened.

The problems caused by former reason is the focus of this paper. Predictably, if a single
OCV curve segment with stable changing trend is extracted for fitting, then a high-precision
OCV fitting curve segment can be obtained correspondingly. However, it is a question
of combining all these OCV fitting curve segments. In order to obtain OCV fitting curve
which can maintain high fidelity in the local SOC range as much as possible, an OCV model
fusion method is proposed. Figure 3 demonstrates the flowchart of the OCV model fusion
method which fits an OCV curve of NMC battery.

For different types of battery, the general steps are as follows:

1. Separate out OCV sub-intervals: according to the characteristics of OCV curve, the
global SOC interval (0, 100%) can be divided into several local sub-intervals. In order
to ensure the smoothness of fusional curve, each sub-interval exists overlap with
neighboring sub-intervals.

2. Assign OCV sub-models: according to the characteristics of the OCV curve in the
local SOC sub-interval, each sub-interval corresponds to a specific OCV sub-model.

3. Curve segment fitting: according to practical conditions, collecting the control points
in each sub-interval. After fitting, the OCV fitting curve segments of all sub-models
are obtained.

4. Assign weight: different global weight functions are assigned to corresponding OCV
sub-models. The function should convert weight from high to low continually when
the SOC gradually away from sub-interval in the overlapped region. Logistic function
is suitable for defining conversion above.

5. Fuse: according to weight functions, all OCV sub-models can fuse into a fusional OCV
model. The final OCV fitting curve can be expressed by using equation as follows:

OCV(s) =
∑n

i=1 Wi(s)OCVi(s)
∑n

i=1 Wi(s)
(5)

where s denotes SOC, OCVi(s) denotes the OCV value of sub-model i at s, Wi(s)
denotes the corresponding weight at s. The final fusional OCV model can be directly
used for subsequent algorithms.

Theoretically, the proposed OCV model fusion method is universal for any type of
battery as long as the OCV model can be used to fit the OCV curve. As representative
commercial lithium-ion batteries, the LFP battery and NMC battery are used to verify
the effectiveness of the proposed fusion method. Detailed application of the OCV fusion
method in the two batteries is presented.
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2.2.1. Method for LiNiMnCoO2 (NMC) Battery Cell

An OCV curve of NMC battery with changing rate of OCV over SOC is presented in
Figure 4. Due to the discrete form of OCV curve, the changing rate of OCV is approximately
calculated through the following equation:

OCV′(s) ≈ OCV(s + 0.1%)−OCV(s− 0.1%)

0.2%
(6)
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By analyzing the OCV curve of NMC battery, the following characteristics can be
summarized:

• The OCV curve is clearly monotonous, and OCV changes dramatically when SOC
drops to 0%.

• By approximately calculating the changing rate of the OCV with SOC, it is obvious
that the changing rate of OCV curve has bumps around 20% SOC and 65% SOC.

The OCV models in Figure 2 are adopted to fit global OCV curve, and the results
show that the accuracy fluctuates when the SOC is around 20% and 65%. Intuitively, it
is easy to obtain an accurate OCV sub-model by fitting an OCV curve segment whose
approximate range of SOC is (20%, 65%). By setting interval (15%, 25%) and interval (60,
70%) as conversion region, the OCV curve is divided into three parts. The corresponding
sub-intervals are (0, 25%), (15%, 70%) and (60%, 100%).

In order to verify the effect of fusion method, the OCV models in Figure 2 are alterna-
tive choice of OCV sub-models. Due to the strongly non-linear variation of the OCV curve
when SOC drops to 0%, the exponent, logarithm and power function are alternative choices
of OCV sub-model for sub-interval (0, 25%). The OCV model in Figure 2c shows the best
accuracy in sub-interval (0, 25%), so it is adopted. The variation of the OCV curve is nearly
linear in sub-intervals (15%, 70%) and (60%, 100%), so corresponding sub-models with
polynomial would be adequate for fitting. OCV sub-models adopted for a NMC battery
are presented in Table 1.

Table 1. Sub-models of NMC battery.

Sub-Interval Sub-Model

(0, 25%) OCVNMC,1(s) = k0 + k1s + k2(1− exp(−αs)) + k3(1−exp(−β/(1− s)))

(15, 70%) OCVNMC,2(s) = k0 + k1s + k2s2 + k3s3 + k4s4

(60, 100%) OCVNMC,3(s) = k0 + k1s + k2s2 + k3s3 + k4s4

After collecting enough control points in three sub-intervals respectively, the fitting
results can be obtained. Weight function of each sub-interval is defined as:

WNMC,1(s) = 1
1+exp(r(s−0.2))

WNMC,2(s) =

{ 1
1+exp(−r(s−0.2)) , s ≤ 0.425

1
1+exp(r(s−0.65)) , s > 0.425

WNMC,3(s) = 1
1+exp(−r(s−0.65))

(7)

where r denotes the shape parameter which determines the degree of weight conversion.
In this paper, r is configured as 150.
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2.2.2. Method for LiFePO4 (LFP) Battery Cell

An OCV curve of a LFP battery with changing rate of OCV over SOC is presented in
Figure 5. Similarly, following the OCV characteristics of LFP battery can be summarized:

• The OCV curve is monotonous, and the OCV changes dramatically when SOC drops
to 0% and rises to 100%. Moreover, the OCV curve has flat regions where the changing
rate of OCV is close to zero.

• By approximately calculating the changing rate of OCV with SOC, it is obvious that
the changing rate of the OCV curve has bumps around 20% SOC and 80% SOC.
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Figure 5. An OCV curve of LiFePO4 (LFP) battery with changing rate of OCV over SOC.

Different OCV models in Figure 6 are adopted to fit OCV curve, and the results shows
that accuracy fluctuates when SOC is around 10%, 20% and 80%. By setting interval (15%,
25%) and interval (75%, 85%) as the conversion region, OCV curve is divided into three
parts. The corresponding sub-intervals are (0, 25%), (15%, 85%) and (75%, 100%). The
OCV model in Figure 6c is adaptable to the strongly non-linearity of the LFP battery, which
makes it become the OCV sub-model of sub-intervals (0%, 25%) and (75%, 100%). The OCV
model in Figure 6b retains great precision in sub-interval (15%, 85%). The OCV sub-models
adopted for the LFP battery are presented in Table 2.

Energies 2021, 14, x FOR PEER REVIEW 8 of 22 
 

 

• The OCV curve is monotonous, and the OCV changes dramatically when SOC drops 
to 0% and rises to 100%. Moreover, the OCV curve has flat regions where the 
changing rate of OCV is close to zero. 

• By approximately calculating the changing rate of OCV with SOC, it is obvious that 
the changing rate of the OCV curve has bumps around 20% SOC and 80% SOC. 

 
Figure 5. An OCV curve of LiFePO4 (LFP) battery with changing rate of OCV over SOC. 

Different OCV models in Figure 6 are adopted to fit OCV curve, and the results 
shows that accuracy fluctuates when SOC is around 10%, 20% and 80%. By setting in-
terval (15%, 25%) and interval (75%, 85%) as the conversion region, OCV curve is divided 
into three parts. The corresponding sub-intervals are (0, 25%), (15%, 85%) and (75%, 
100%). The OCV model in Figure 6c is adaptable to the strongly non-linearity of the LFP 
battery, which makes it become the OCV sub-model of sub-intervals (0%, 25%) and (75%, 
100%). The OCV model in Figure 6b retains great precision in sub-interval (15%, 85%). 
The OCV sub-models adopted for the LFP battery are presented in Table 2. 

  
(a) (b) 

 
(c) 

Figure 6. Conventional OCV models for LFP battery (21 control points, s denotes SOC, k0, 1, 2, 3, 4, α, β denote fit coeffi-
cients). (a) Fourth-degree polynomial. (b) Polynomial and logarithm. (c) Exponent and linear function. 

 

O
C

V(
V)

O
C

V 
Er

ro
r(m

V)

Figure 6. Conventional OCV models for LFP battery (21 control points, s denotes SOC, k0, 1, 2, 3, 4, α, β denote fit coefficients).
(a) Fourth-degree polynomial. (b) Polynomial and logarithm. (c) Exponent and linear function.
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Table 2. Sub-models of LFP battery.

Sub-Interval Sub-Model

(0, 25%) OCVLFP,1(s) = k0 + k1s + k2(1− exp(−αs)) + k3(1−exp(−β/(1− s)))

(15, 85%) OCVLFP,2(s) = k0 + k1s + k2s2 + k3s3 + k4 log(s) + k5(1− s)

(75, 100%) OCVLFP,1(s) = k0 + k1s + k2(1− exp(−αs)) + k3(1−exp(−β/(1− s)))

After collecting enough control points in three sub-intervals respectively, the fitting
results can be obtained. The weight function of each sub-interval is defined as:

W1(s) = 1
1+exp(r(s−0.2))

W2(s) =

{ 1
1+exp(−r(s−0.2)) , s ≤ 0.5

1
1+exp(r(s−0.8)) , s > 0.5

W3(s) = 1
1+exp(−r(s−0.8))

(8)

So far, the fusional OCV models of both batteries can be obtained by Equation (5)
respectively. There are few points that need to be discussed:

• Although the fusional results are deduced from two examples, the steps of fusion
method are generalized.

• According to practical condition, parameters like sub-intervals, sub-models and
weight function can be explored freely.

• It is not suitable to select a sub-interval with too short a length, otherwise the number
of control points need to be increased.

3. State of Charge (SOC) and Capacity Estimation Algorithm
3.1. Adaptive Cubature Kalman Filter

The discrete state space equation of nonlinear system with additive noise is:{
xk = f (xk−1, uk−1) + wk−1
zk = h(xk, uk) + vk

(9)

where xk denotes the state vector at step k; uk is the control input; f (·) and h (·) represent
the process function and measurement function respectively; wk−1 and vk are independent
Gaussian noise with zero mean, corresponding covariance are Qk−1 and Rk respectively.
For the Thevenin model, the parameters and vectors in Equation (9) are defined as:

f (xk, uk) = Axk−1 + Buk−1
h(xk, uk) = OCVk −Up,k − R0iL,k−1

A = diag
(

1, exp(− ∆t
Rp Cp

)
)

B =
[
− η∆t

Ca
Rp(1− exp(− ∆t

Rp Cp
))
]T

xk =
[
SOCkUp,k

]T

zk = Ut,k
uk = iL,k

(10)

In order to cope with the nonlinearity, the distribution of random state vector is
approximated by cubature points with uniform weight. Based on the spherical-radial
cubature rule [33], the cubature points are generated through the following parameters:{

ξi =
√

n[1]i (i = 1, 2, · · · , 2n)
ωi = 1/(2n) (i = 1, 2, · · · , 2n)

(11)
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where n denotes dimension of the state vector, ξi represents the ith cubature point, ωi
denotes the weight of the ith points, [1] denotes the following set of points:

[1] =




1
0
...
0

, . . . ,


0
...
0
1

,


−1
0
...
0

, . . . ,


0
...
0
−1


 (12)

3.2. Process of SOC Estimation

As one component of xk, SOCk can be estimated online by the recurring following process:

3.2.1. Initialization

The mathematical expectation and covariance of state vector x0 need to be initialized
as x̂0|0 and P0|0 respectively, and covariance Q0 and R0 are preset.

3.2.2. Time Update

The complete CKF generates the cubature points at step k − 1, and the cubature points
are propagated to the state vector at step k by the process function. After averaging, the
priori estimation at step k can be obtained. Due to the linearity of the Thevenin model
process equation, the classic Kalman filter algorithm can be applied in the time update
part, so that algorithm can be more concise and efficient. A hat over a letter denotes the
estimation of corresponding parameter.

x̂k|k−1 = f
(

x̂k−1|k−1, uk−1

)
= Ax̂k−1|k−1 + Buk−1 (13)

Pk|k−1 = APk−1|k−1 AT + Qk−1 (14)

3.2.3. Measurement Update

1. Generate cubature points:

xi,k|k−1 = Sk|k−1ξi + x̂k|k−1, (i = 1, 2, · · · , 2n) (15)

Pk|k−1 = Sk|k−1ST
k|k−1 (16)

where Sk|k−1 is the Cholesky decomposition result of Pk|k−1.
2. Calculate propagated cubature points in observation space:

zi,k|k−1 = h
(

xi,k|k−1, uk

)
(17)

3. Calculate the predicted measurement:

ẑk|k−1 = ∑2n
i=1 ωizi,k|k−1 (18)

4. Calculate the measurement innovation covariance:

Pzz,k|k−1 = ∑2n
i=1 ωizi,k|k−1zT

i,k|k−1 − ẑk|k−1ẑT
k|k−1 + Rk−1 (19)

5. Calculate the cross-covariance:

Pzx,k|k−1 = ∑2n
i=1 ωixi,k|k−1zT

i,k|k−1 − x̂k|k−1ẑT
k|k−1 (20)
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6. Calculate the Kalman gain:

Kk = Pzx,k|k−1P−1
zz,k|k−1 (21)

7. Calculate the updated state:

x̂k|k = x̂k|k−1 + Kk

(
zk − ẑk|k−1

)
(22)

8. Calculate the updated covariance:

Pk|k = Pk|k−1 − KkPzz,k|k−1KT
k (23)

3.2.4. Adaptive Update of Noise

According to the innovation sequence of terminal voltage, the process noise and
measurement noise are adjusted adaptively.

1. The innovation covariance matrix:

Hk =
1
M∑k

i=k−M+1 eieT
i (24)

where M denotes the window size which is defaulted as 60, ei denotes residual which
is calculated by:

ek = zk − ẑk|k−1 (25)

2. The process noise covariance Qk is updated as follows:

Qk = Kk HkKT
k (26)

3. The measurement noise covariance Rk is updated as follows:

Rk = Hk + ∑2n
i=1 ωi

(
zi,k|k−1 − zk

)(
zi,k|k−1 − zk

)T
(27)

3.3. Capacity Estimation Based on Estimated SOC

Based on the estimated SOC, the available capacity of battery can be estimated on-line.
The capacity obtained through the capacity test is defaulted as the initial capacity value
when SOC estimation starts to be performed. The change of capacity ∆Ck and the change
of SOC ∆SOCk are calculated as follows:

∆Ck = ∑k
i=Ls ηiiL,i∆t (28)

∆SOCk = SOCk − SOCLs (29)

where Ls denotes the step at which the capacity estimation starts. That is, the capacity
estimation starts only after the SOC estimation has passed Ls step so that fluctuation of
capacity estimation is reduced during the initial period. The capacity is estimated by using
following equation:

Ĉk =
∆Ck

∆SOCk
(30)

In order to obtain a steady value of available capacity estimation, the change rate of
capacity estimation is limited by using the following equation:∣∣∣∣∣ Ĉk − Ĉk−Lc

Ĉk−Lc

∣∣∣∣∣ ≤ ε (31)
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where ε denotes the acceptable change rate of capacity estimation, Lc denotes the step size
of capacity estimation. That is, the capacity is estimated every Lc step. Once Equation (31)
is not satisfied, the change between new estimated capacity and last estimated capacity
will be compulsively set as ε.

Figure 7 illustrates the flowchart of SOC estimation and capacity estimation.
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4. Experiment and Discussion
4.1. Experiment

The battery experimental system consisted of an Arbin BT2000 battery test machine,
a thermal chamber and a computer with Arbin software. Tested NMC batteries and LFP
batteries were manufactured by MGL. The capacity tests, OCV tests and dynamic stress
tests (DST) were performed at the temperature of 10 ◦C, 25 ◦C, and 40 ◦C. Table 3 presents
basic information of both batteries.

Table 3. Basis information of tested batteries.

Material Type Nominal Capacity (Ah)
Available Capacity (Ah)

10 ◦C 25 ◦C 40 ◦C

NMC cylinder 25.00 28.30 28.75 29.02

LFP pouch 20.00 19.72 19.85 19.94

This study adopted a low-current OCV test, which stimulated the battery with 0.05 C,
to obtain SOC–OCV data points with 1 Hz. SOC and capacity were estimated under DST
which can emulate the actual driving cycles of EVs for batteries. The test profile of DST
and low-current OCV test is illustrated in Figure 8.
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Notably, OCV curves are regarded as OCV reference models whose OCV can be
looked up in OCV curve table. In this way, the closeness between fusional OCV model and
OCV curve model can be evaluated from the perspective of SOC estimation and capacity
estimation.

4.2. The Fusional OCV Model
4.2.1. Fusional OCV Model of NMC Battery

The fitting results of fusional OCV models of the NMC battery at 10 ◦C, 25 ◦C and
40 ◦C are shown in Figure 9a,c,e. The fitting results of conventional OCV models in Table 4,
which are same as the adopted sub-models, are shown in Figure 9b,d,e. All the OCV
models fit the OCV curve based on 21 evenly distributed control points.

Table 4. Conventional OCV models.

Label Model

1 OCV1(s) = k0 + k1s + k2s2 + k3s3 + k4s4

2 OCV2(s) = k0 + k1s + k2s2 + k3s3 + k4 log(s) + k5(1− s)

3 OCV3(s) = k0 + k1s + k2(1− exp(−αs)) + k3(1−exp(−β/(1− s)))
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Table 5 shows the root mean squared error (RMSE) of all models. The fourth-degree
polynomial OCV model performs worst, and what make it unbearable is that all the OCV
fitting curves fourth-degree polynomial OCV model are non-monotonic. The OCV models
2, 3 can capture the changing trend of the OCV, but lost the precision in several local regions.
Based on the local high-precision of sub-models, the fusional OCV model highly fits the
experimental curve and corresponding RMSE is reduced dramatically. Compared with
using OCV sub-models to fit the global OCV curve, the average accuracy of fusional OCV
models increases about 2 times. In terms of temperature effect, the performance of fusional
OCV model is not influenced by ambient temperature. Notably, in order to exclude the
large error of OCV model when SOC drops to 0%, the SOC range of RMSE is between 5%
and 100%.

Table 5. RMSE of fusional OCV models and other models for NMC battery (V).

10 ◦C 25 ◦C 40 ◦C

Fusional model 0.0022 0.0027 0.0031

Model 1 0.0473 0.0575 0.0596

Model 2 0.0106 0.0115 0.0117

Model 3 0.0109 0.0105 0.0101

4.2.2. Fusional OCV Model of LFP Battery

Similarly, the fusional OCV models of the LFP battery at 10 ◦C, 25 ◦C, and 40 ◦C are
given in Figure 10a,c,e and the fitting results of OCV models in Table 4 are also given in
Figure 10b,d,e. All the OCV models fit the OCV curve based on 21 evenly distributed
control points. According to the RMSE of OCV models in Table 6, the fusional OCV models
still perform with great precision, especially in the region of middle SOC. The fourth-degree
polynomial OCV model is the most inaccurate and non-monotonic. Compared with using
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OCV sub-models to fit the global OCV curve, the average accuracy of fusional OCV model
increases about 2 times. The OCV models 2, 3 can capture the changing trend of OCV. In
terms of temperature effect, the performance of the fusional OCV model is not influenced
by ambient temperature. Notably, in order to exclude the large error of the OCV model
when SOC drops to 0% and rises to 100%, the SOC range of RMSE is between 5% and 99%.
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Model 3 0.0090 0.0096 0.0106
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4.3. The Result of SOC Estimation with Different OCV Models

The proposed OCV model fusion method is further used to estimate SOC for verifi-
cation of OCV model accuracy. By using CKF and ACKF to estimate SOC under DST at
10 ◦C, 25 ◦C and 40 ◦C, the estimation results of the NMC battery are shown in Figure 11
with corresponding RMSE in Table 7 and the estimation results of the LFP battery are given
in Figure 12 with corresponding RMSE in Table 8. Due to the non-monotonicity and large
error of fourth-degree polynomial OCV models, the corresponding SOC estimation results
are invalid. The SOC estimation results of models 2 and 3 are considered.
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Table 7. RMSE of SOC estimation for NMC battery (%).

10 ◦C 25 ◦C 40 ◦C

CKF ACKF CKF ACKF CKF ACKF

Fusional model 0.3277 0.0725 0.3385 0.1555 0.4465 0.2125

Model 2 1.6378 0.6027 1.5454 0.5056 1.4508 0.9889

Model 3 1.9407 0.1843 1.7782 0.3828 1.6261 0.3358
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Table 8. RMSE of SOC estimation for LFP battery (%).

10 ◦C 25 ◦C 40 ◦C

CKF ACKF CKF ACKF CKF ACKF

Fusional model 0.6462 0.2049 0.3530 0.4179 0.6506 0.2905

Model 2 1.6222 0.7526 0.8740 0.9157 1.4714 0.7377

Model 3 1.2080 0.7656 1.3779 0.8355 2.4103 0.3655

When applying the CKF algorithm, the difference between the OCV models is obvi-
ous. Since the OCV curve of the NMC battery does not have the flat platform effect like
LFP battery, the advantages of the fusion method are more beneficial for NMC battery.
Compared with other models in the NMC battery, the SOC estimation error based on the
fusional OCV model is dramatically reduced. For LFP battery, the SOC estimation error of
fusional OCV models can still retain minimal, but error may fluctuate with temperature
change. Overall, temperature has no significant effect on the fusion method. The addition
of adaptive noise effectively weakens the influence of OCV model errors and stabilizes the
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estimation results. According to experimental result, the effect of the OCV model fusion
method is verified.

4.4. The Result of Capacity Estimation with Different OCV Models

In order to reduce the impact of the fluctuation during the initial period, capacity
estimation starts to be performed after three DST cycles have finished. In consideration
of the time cost of one DST cycle is 480 s in the experiment, start step LS is set as 1440 s.
Cycle step Lc is set as 360 s and acceptable change rate ε is set as 2%. As shown in
Figures 13 and 14, it can be seen that fluctuation of capacity estimation by using the CKF
algorithm is more obvious than capacity estimation by using the ACKF algorithm. What is
more important, as shown in Tables 9 and 10, is that fusional OCV models still perform
best in tracking capacity estimation results of OCV curve models. In terms of temperature
effect, ambient temperature has no significant effect on the OCV fusion method.

Table 9. RMSE of capacity estimation for NMC battery (Ah).

10 ◦C 25 ◦C 40 ◦C

CKF ACKF CKF ACKF CKF ACKF

Fusional model 0.1833 0.0138 0.1718 0.1556 0.2226 0.1427

Model 2 0.9395 0.3558 0.8801 0.4317 0.8161 0.9693

Model 3 0.9877 0.1973 0.9414 0.1940 0.8499 0.1866

Table 10. RMSE of capacity estimation for LFP battery (Ah).

10 ◦C 25 ◦C 40 ◦C

CKF ACKF CKF ACKF CKF ACKF

Fusional model 0.1523 0.1866 0.1073 0.1791 0.2808 0.1240

Model 2 0.6295 0.4062 0.4753 0.2461 0.5442 0.3240

Model 3 0.3775 0.4850 0.4307 0.4102 0.8465 0.1283
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5. Conclusions

At present, the research on battery SOC and SOH estimation mainly focuses on
improving the structure of an equivalent circuit model and proposing new estimation
algorithms, ignoring the influence of the OCV model on the accuracy of state estimation.
Using a single OCV model cannot have a good fitting effect in the entire battery discharge
interval. For this reason, an OCV model fusion method is proposed that can effectively
obtain a high-fidelity OCV model. The method makes it possible to focus on the fitting
accuracy in a certain SOC interval, so as to capture the changing trend of the OCV in a
specific SOC region as much as possible. Furthermore, it has good adaptability for fitting
complex OCV curves, and provides a good solution for OCV curves that are difficult to fit
globally. The generalization fitting performance of the method is verified by the application
on NMC battery and LFP battery. Experimental results at three ambient temperatures
showed that the performance of the fusional OCV model was not sensitive to temperature.
Regarding the influence of the OCV fusion model on the accuracy of state estimation,
this paper used CKF and ACKF to estimate the SOC and capacity under three ambient
temperatures, the results indicating that the fusional OCV model can effectively track the
performance of OCV curve model in terms of supporting algorithm.

The fusion method has an important implication for reconstructing a global OCV
characteristic curve based on curve segments. It is not only suitable for offline low-current
OCV experiments, and we will carry out research work on applying it to offline incremental
OCV experiments and online OCV reconstruction processes.
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