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Abstract: The coordinate transformation method of asymmetric dual three phase synchronous motor
(ADTP-SM) is a Double dq transform using two dq-axes and a vector space decomposition (VSD)
model method using the orthogonality of ADTP-SM. There are several studies comparing the two
methods in a healthy state, but few in a single-phase open fault state. In the healthy, when the VSD
model is applied, different harmonic orders of the phase current are projected onto the dq and xy-axes
(the axis for controlling harmonics of the phase current), and the two-axes are orthogonal, so it can be
controlled stably. In the single-phase open fault state, the same current control logic as in the healthy
situation is applied. When applying the Double dq transform, the dq-axis of the fault set fluctuates,
and it affects the healthy set, so it cannot be controlled stably. When applying the VSD model, if both
the dq-axis and the xy-axis are controlled, the two coordinate systems do not have orthogonality and
cannot be stably controlled, due to mutual interference. However, if only the dq-axis is controlled, it
can be controlled stably because there is no Cartesian coordinate system other than the dq-axis. In
the healthy state and single-phase open fault state, the equation is verified through experiments and
simulations, and the control stability according to the coordinate transformation is compared.

Keywords: asymmetric dual three phase synchronous motor; vector space decomposition; double
dq transform; magneto motive force

1. Introduction

An asymmetric dual three phase synchronous motor (ADTP-SM) is a motor with
high torque density and high reliability. It is primarily used for hybrid starter generator
(HSG) motors for automobiles and traction motors for elevators and ships [1–3]. The motor
has two sets of three-phase windings that are out of phase by 120 degrees. This paper
describes a motor in which two sets are phase-shifted by 30 degrees of an electrical angle
with isolated neutral points, as shown in Figure 1 [2]. This can improve the electrical
performance by increasing the winding-coefficient and increasing the torque ripple order
compared to the conventional three-phase motor [1–4]. It is regarded as two independent
three-phase motors having a phase difference of 30 degrees from each other, and many
studies have been conducted for control using two sets of voltage source inverters [5,6].
However, it is not mechanically separated but electrically coupled. This means that the
larger the mutual inductance between each set, the stronger the magnetic coupling and
the control characteristics may be adversely affected. Much research is being conducted to
improve this, and it is possible to reduce magnetic coupling between sets by adjusting the
skew angle when designing a motor. In the healthy state, the coordinate transform method
of ADTP-SM uses the Double dq transform and VSD model [7–12].
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Figure 1. ADTP-SM drive system model [3,5]. 

Double dq transform performs the current control by selecting the dq-axis coordinate 
system for each set. The VSD model uses the dq axis for energy conversion and the xy axis 
for harmonic current control. The current projected on the xy-axis is controlled to zero [8–
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In a single-phase open fault state, it can be controlled in the same way as a healthy 
situation. ADTP-SM can create a positive torque, due to the forward magneto motive force 
(MMF) component [15]. However, since both coordinate transformation methods do not 
have orthogonality between Cartesian coordinate systems, control stability is degraded. 
Double dq transform must control two dq-axes to generate a torque. On the other hand, 
the VSD model can control only the dq-axis to generate a torque, so it can be controlled 
stably even in the case of a single-phase open fault state [16–22]. 

This paper compares the current control characteristics of the Double dq transform 
and VSD model in healthy and single-phase open fault states. The harmonics projected on 
each reference frame are mathematically analyzed, and the current control characteristics 
are validated through simulations and experiments. Section 2 is a healthy state, and Sec-
tion 3 is a single-phase open fault state. Section 4 summarizes the content as a conclusion. 
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control ADTP-SM, coordinate transformation is applied to transform the time-varying 
term of the voltage equation into the time-invariant terms. Equation (1) is the phase volt-
age equation of ADTP-SM. The v, i, R, L, ψ, and t in the equation mean the voltage, current, 
resistance, inductance, field-linkage flux of each phase, and time. Subscripts a, b, c are 
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Figure 1. ADTP-SM drive system model [3,5].

Double dq transform performs the current control by selecting the dq-axis coordinate
system for each set. The VSD model uses the dq axis for energy conversion and the xy
axis for harmonic current control. The current projected on the xy-axis is controlled to
zero [8–10,13,14].

In a single-phase open fault state, it can be controlled in the same way as a healthy
situation. ADTP-SM can create a positive torque, due to the forward magneto motive force
(MMF) component [15]. However, since both coordinate transformation methods do not
have orthogonality between Cartesian coordinate systems, control stability is degraded.
Double dq transform must control two dq-axes to generate a torque. On the other hand, the
VSD model can control only the dq-axis to generate a torque, so it can be controlled stably
even in the case of a single-phase open fault state [16–22].

This paper compares the current control characteristics of the Double dq transform
and VSD model in healthy and single-phase open fault states. The harmonics projected on
each reference frame are mathematically analyzed, and the current control characteristics
are validated through simulations and experiments. Section 2 is a healthy state, and Section
3 is a single-phase open fault state. Section 4 summarizes the content as a conclusion.

2. Comparison of the Coordinate Transformation of ADTP-SM under Healthy
Operation

The assumption of the following equation ignores the nonlinearity of the inverter, the
saturation of the inductance, and the harmonic components of the inductance and flux
linkage. The armature inductance is a 6 × 6 matrix. It is composed of a self-inductance
of each phase, mutual inductance within the set, and mutual inductance between sets. To
control ADTP-SM, coordinate transformation is applied to transform the time-varying
term of the voltage equation into the time-invariant terms. Equation (1) is the phase
voltage equation of ADTP-SM. The v, i, R, L, ψ, and t in the equation mean the voltage,
current, resistance, inductance, field-linkage flux of each phase, and time. Subscripts
a, b, c are phases and 1 and 2 are the number of sets. The diagonal components of the
6 × 6 inductance matrix are the self-inductance component, and the rest are the mutual-
inductance component.
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2.1. Double dq Transformation under Healthy Operation

Double dq transform is a control method using the dq-axis coordinate systems of sets 1
and 2, respectively. Equation (1) can be converted by applying Equations (2)–(5). The f is an
arbitrary variable of ADTP-SM, and s, e in the superscript mean the stationary coordinate
system and the rotational coordinate system, respectively. Equations (4) and (5) are the
rotational and the stationary coordinate transformation matrix of the Double dq transform.

fDouble
e = TDouble

e × TDouble
s × fabc (2)[

fd1
e fq1

e fd2
e fq2

e ]T
=

TDouble
e × TDouble

s ×
[
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]T (3)
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Equation (6) is the voltage equation to which the Double dq transform is applied. The
θ is the electrical angle, ω is the electrical angular velocity, and the subscripts d and q are
the dq-axes. Equation (7) is a torque equation consisting of the magnetic torque of sets 1 and
2, the reluctance torque of each set, and the reluctance torque due to mutual inductance
between the sets. The Ld1d1 and Lq1q1 are the self-inductances of the d-axis and q-axis of set
1. The Ld1d2 and Lq1q2 are the mutual-inductances of the d-axis and q-axis of set 1 and 2. The
Ld2d2 and Lq2q2 are the self-inductances of the d-axis and q-axis of set 2. The ψf1

e and ψf2
e

are the field-linkage flux of sets 1 and 2. The pp is the number of pole pairs of the motor.
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The harmonic order projected on the dq-axis because of the Double dq transform can
be obtained by Equation (8). The d-axis and the q-axis are orthogonal, and since set 1 and
set 2 differ only in phase difference, the same harmonic order is projected. Assuming that
the phase difference of fa1, fb1, and fc1 is 120 degrees and is an odd and cosine function,
n is the odd harmonic order. If the θ is zero, it is the harmonic order projected onto the
stationary coordinate system.
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)}  (8)

In Equation (8), if orthogonality is established, fd1
s becomes zero, otherwise, it has a

value. When n becomes the 6k ± 1th (1st, 5th, 7th, 11th, 13th, . . . ) order component, the
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fd1
s has a value other than zero. At this time, the harmonic components are projected onto

the dq-axis of set 1 and 2. The block diagram of the Double dq transform current control
is shown in Figure 2. The superscript * is the command value for the control. The same
dq-axis reference currents are input to sets 1 and 2 and are controlled using a proportional
and integral (PI) controller.
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Figure 2. Current control block diagram applying Double dq transform of ADTP-SM.

2.2. VSD Model under Healthy Operation

The VSD model is applicable for ADTP-SM with a phase difference of 30 degrees
between sets. This coordinate transformation method constitutes two coordinate systems.
It consists of a dq-axis for energy conversion and a xy-axis for controlling current har-
monics. Equation (1) can be converted into a VSD model by applying Equations (9) to
(12). Equations (11) and (12) are the rotational coordinate transformation matrix and the
stationary coordinate transformation matrix of the VSD model. There are two methods to
converts the xeye-axis. One method uses five times the electric angle and the other method
uses the same electric angle as the dq-axis. In the former case, the 5th harmonics of the
phase current are projected as DC components, and the remaining harmonics are projected
as AC components.
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 (12)

This has a disadvantage that the gain value of the PI controller should increase as the
fundamental frequency increases. However, applying the latter case is an AC component
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with no DC offset, so there is no need to increase the gain value of the PI controller [10]. In
this paper, the latter case was applied. Equation (13) is the voltage equation of the VSD
model. Compared with Equation (6), there is no mutual interference between the two
coordinate systems. Equation (14) is a torque equation consisting of a magnetic torque and
reluctance torque.

vd
e
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e
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As a result of the VSD model, the harmonic orders projected on the dsqs and xsys-axes
can be obtained from Equations (15) and (16). The ds-axis does not have orthogonality
when n is 12k ± 1th order (1st, 11th, 13th, . . . ) and the xs-axis does not have orthogonality
when n is 12k ± 5th order (5th, 7th, 17th, 19th, . . . ).
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Since the harmonic orders projected on the ds-axis and the xs-axis are different, the two
Cartesian coordinate systems are independent of each other and no mutual interference
occurs. The current control block diagram of the VSD model is shown in Figure 3. The
deqe-axis is composed of a PI controller in the same way as the Double dq transform.
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The xeye-axis is composed of a proportional, integral and resonance (PIR) controller
by adding a resonance controller to control the projected AC component [13,14]. The
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resonance frequency of the resonance controller is six times the fundamental frequency to
control the 5th and 7th harmonics of the phase current.

2.3. Analysis of Simulation Results under Healthy Operation

The Matlab/Simulink was used to compare the control stability according to the coordi-
nate transformation in a healthy operation [11,12]. The simulation conditions are as follows:
the number of pole pairs = 8, the average value of the field-linkage flux = 14.33 mWb,
R = 12.57 mΩ, the average value of the self-inductance is 0.05 mH, the rotating speed
is 1000 rpm. The current command of the Double dq transform and VSD model is id
e* = −50 A, iq e* = 34.2 A.

As shown in Figure 4a,d, the oscillation of the feedback current in the deqe-axis of
the VSD model is small and the tracking performance for the command current is better.
Therefore, stable current control is possible. When Double dq transform is applied, the
current in the dsqs-axis contains the 5th and 7th harmonics, so the current trajectory is not
circular. On the other hand, in the case of the VSD model, the 11th and 13th harmonics are
projected on the dsqs-axis, and the size of the harmonic current is small, and it is circular.
And since the xeye-axis controls the projection current to 0, the size of the circle is very
small. As shown in Figure 5, compared to the VSD model, when the Double dq transform
is applied, many 5th and 7th harmonics are projected onto the phase current. On the other
hand, the VSD model reduces harmonics by controlling the xy-axis. The total harmonic
distortion (THD) of the a1 phase current is 9.90% when Double dq transform is applied
and 2.46% when VSD model is applied.

Figure 6 is the torque profile. The black line is applied with Double dq transform and
the red line is applied with a VSD model. The average torque is the same for both the
black line and the red line, but the torque ripple is 2.81% when the Double dq transform
is applied and 0.73% when the VSD model is applied. As a result of the simulation, the
VSD model is a more stable control method when considering the stability of the feedback
current for the command current, the THD of the phase current, and the torque profile.
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Figure 4. Simulation results of rotational coordinate command, feedback currents (a,d) and stational coordinate current
trajectory (b,c,e,f) when applying to the Double dq transform and VSD model.
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Figure 5. Simulation results of phase current waveform (a,b), and FFT analysis (c) when applying to the Double dq
transform and VSD model.
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Figure 6. Torque profile of simulation results according to coordinate transformation method in
healthy operation.

2.4. Analysis of Experiment Results under Healthy Operation

The experimental environment is shown in Figure 7. The input power of ADTP-SM
uses a two-level voltage source inverter. The digital signal processor (DSP) uses MPC5744P
of NXP Semiconductors and controls ADTP-SM using 12 pulse width modulation (PWM)
signals. The experimental conditions are as follows: the number of pole pairs = 8, the
average value of the field-linkage flux = 14.33 mWb, R = 12.57 mΩ, the average value of
the self-inductance is 0.05 mH, the rotating speed is 1000 rpm. The current command is
the same as the simulation condition. The sampling of the torque sensor is very low at 10
samples per second and the torque sensor is measured by the combined torque ripple of
the dynamometer and ADTP-SM. Therefore, the torque ripple of only ADTP-SM cannot be
measured, but the average torque can be measured. The experimental results are consistent
with the simulation results, and the details are as follows.
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Figure 7. Picture of the experimental setup.

As shown in Figure 8, the stability of the feedback current for the command current is
better in the VSD model. The current trajectory of the stationary coordinate system, and
the Double dq transform, contains many harmonics compared to the VSD model. Since
many harmonics are included in the stationary coordinate system current trajectory of the
Double dq transform, the trajectory is not circular, whereas the current trajectory of the
VSD model is circular. Furthermore, the current trajectory of the xsys-axis of the VSD model
and the projected harmonic current is controlled to zero.
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Figure 8. Experiment results of rotational coordinate command, feedback currents (a,d), and stational coordinate current
trajectory (b,c,e,f) when applying to the Double dq transform and VSD model.

Figure 9a,b is the phase current waveforms, and Figure 9c shows the FFT analysis
results of the a1 and a2 phases currents. When the VSD model is applied, the xeye-axis
controls the harmonic current to zero, so it is a more sinusoidal phase current waveform.
The THD of the a1 phase current is 12.12% when the Double dq transform is applied and
6.66% when the VSD model is applied.
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Figure 9. (a–c) Experiment results of phase current profile, and FFT analysis when applying to the Double dq transform
and VSD model.

Figure 10 is the torque profile, and the average torque is the same. The torque ripple
is 0.71% for VSD model and 1.75% for double dq transform.
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Figure 10. Torque profile of experimental results according to coordinate transformation method in
healthy operation.

As with the simulation results, the experimental results have better control character-
istics and stability when applying the VSD model. Furthermore, since it has a low THD
and low torque ripple, it is reasonable to apply the VSD model in a healthy operation.

3. Comparison of the Coordinate Transformation of ADTP-SM under Single-Phase
Open Fault

This Section compares the control stability according to the transform method when
the c2 phase is in a single-phase open fault. As in Section 2, when applying the Double dq
transform and VSD model, the experimental results are analyzed.

3.1. Double dq Transform under Single-Phase Open Fault

In a postfault operation, the current of the two-phases of the fault set has the same mag-
nitude and opposite sign. The current of the fault phase (c2) is zero. When Equations (2)–(5)
are applied, the same magnitude as the phase current of the fault set cannot be generated.
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Furthermore, it is not possible to maintain a phase difference of 30 degrees between sets.
Equation (17) is the stationary and rotational coordinate system current for the fault set.

fd2
s = 2

3 ×
{√

3
2 fa2 −

√
3

2 fb2

}
= 2√

3
× fa2

fq2
s = 2

3 ×
{

1
2 fa2 +

1
2 fb2

}
= 0

fd2
e = 2√

3
fa2 cos θ

fq2
e = − 2√

3
fa2 sin θ

(17)

As shown in Equation (18), if the phase current on a2 is a cosine function, the current
projected on the rotational coordinate system fluctuates at twice in one periodic of electrical
angle. Due to mutual inductance, the d1q1 and d2q2-axes interfere with each other.

fd2
e = 1√

3
(cos 2θ + 1)

fq2
e = − 1√

3
sin 2θ

(18)

3.2. VSD Model under Single-Phase Open Fault

Equation (19) is the stationary coordinate system variable of the dq and xy-axes in
a fault situation [17,18,22]. The variable of qs and ys-axis is the same magnitude and
opposite sign. Therefore, the dsqs and xsys-axes are no longer orthogonal and cause mutual
interference. Furthermore, the xeye-axis does not reduce the harmonics of the phase current
and deteriorates the control stability of ADTP-SM. When controlling using only the deqe-
axis, control stability can be improved because there is no Cartesian coordinate system other
than the deqe-axis. Equation (20) is a transformation from a rotational coordinate system
to a phase variable when only the dq-axis is considered. Equation (21) is an expansion
of Equation (20), and the value of the specific phase is

√
13
2 times greater than the value

of the rotational coordinate system variable [18]. The phases in the healthy set are also
unbalanced and the phase difference is not 120◦.
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3.3. Analysis of Experiment Results under Single-Phase Open Fault

The experimental environment and conditions are as in Section 2.4. Figure 11a–c
shows the results of when the Double dq transform is applied. When applying the VSD
model, the results of controlling both the deqe and xeye-axes are seen in Figure 11d–f, and
the result of controlling only the deqe-axis is Figure 11g,h. Figure 11a is the feedback current
for the command current, and as shown in Equation (18), the feedback current of the fault
set fluctuates.
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Figure 11. (a–h) Experiment results of rotational coordinate command, feedback currents, and stational coordinate current
trajectory when applying to the Double dq transform and VSD model (current waveform when xy-axis is controlled and
when not controlled).

It is difficult to control stably, due to mutual interference between the d1q1 and d2q2-
axes. As a result, the current trajectory of the stationary coordinate system of set 1, as
shown in Figure 11b, is not circular. Figure 11c is the current trajectory of the stationary
coordinate system of set 2, and the iq2

s current is 0, as shown in Equation (17). Figure 11d
is the feedback current for the current command when both the deqe and xeye-axes are
controlled. As can be seen from Equation (19), it is difficult to control stably because
orthogonality between the qs and ys-axes is not established. Figure 11e,f are the current
trajectories dsqs and xsys-axes of the VSD model. The current trajectory on the dsqs-axis
is not circular. Figure 11g is the feedback current for the command current when only
deqe-axis is controlled, and (h) is the dsqs-axis current trajectory. As mentioned in Section 3.2,
since only the deqe-axis is controlled, it can be controlled stably, and the current trajectory is
also circular.

Figure 12a is the phase current waveform when the Double dq transform is applied.
When applying the VSD model, the current waveform controlled by both the deqe and xeye-
axes is shown in Figure 12b, and the current waveform that controlled only the deqe-axis
is shown in Figure 12c. Figure 12a,b is the current waveforms when mutual interference
occurs between different Cartesian coordinate systems (d1q1 and d2q2-axes, dq and xy-axes)
during current control. These are currents determined by the influence of a specific speed
and PI controller gain, so it is difficult to analyze mathematically (FFT analysis). The
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current waveform in Figure 12c can be analyzed by Equation (21), and the experimental
current error is about 7.95% for ia1 and 2.94% for ia2 based on the fundamental frequency.
THD is 12.88% for ia1 and higher than during the healthy operation with ia2 = 11.74%.
Figure 13 is a torque profile, and it has the lowest torque ripple value when the xeye-axis
is not controlled when the VSD model is applied. All three coordinate transformation
methods output a similar average torque, but this may vary depending on the conditions
and magnitude of the command.
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Figure 12. (a–d) Experiment results of phase current waveform according to the coordinate transformation methods in a
single-phase open fault.
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Figure 13. Torque profile of experimental results according to the coordinate transformation method
in a single-phase open fault.

4. Conclusions

Coordinate transformation methods for controlling the current of ADTP-SM are the
Double dq transform and VSD model. The control characteristics of the two methods are
compared in healthy and single-phase open fault states. In the healthy state, current control
is possible in both methods. However, when the VSD model is applied compared to the
Double dq transform, the control stability of the feedback current for the command current
is excellent, and the THD of the phase current can be improved. In the single-phase open
fault state, if the Double dq transform and the xeye-axis of the VSD model are controlled
to 0, stable control is impossible. However, when only the deqe-axis of the VSD model is
controlled, there is no mutual interference between other Cartesian coordinate systems,
so it can be controlled stably. This result was verified through mathematical methods,
simulations, and experiments.
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