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Abstract: We present a novel indicator for the effectiveness of longitudinal, convecting-radiating
fins to dissipate heat. Starting from an analysis of the properties of the entropy rate of the steady
state, we show how it is possible to assess the efficiency of such devices by looking at the amount
of entropy produced in the heat transfer process. Our study concerns both purely convective fins
and convection-radiant fins and takes advantage of explicit expressions for the distribution of heat
along the fin. It is shown that, in a suitable limit, the standard definition of efficiency and the entropic
definition coincide. The role of the fluid temperature is explicit in the new definition and in the
purely convective case. An application to an aluminium fin is given. Analytical and numerical results
are discussed.

Keywords: entropy rate; efficiency; longitudinal fin; convection; radiation; nonlinear ODEs

1. Introduction

Longitudinal fins are widely adopted devices used to enhance heat dissipation from
a given surface (see e.g., [1,2] and the references therein). The mechanisms of exchange
of the thermal energy in heat sink devices can be conduction, convection, or radiation [1].
The description of these three mechanisms depends on the physical hypothesis assumed,
and the mathematical models reflect the corresponding assumptions. For conduction
and convection, by assuming that Fourier’s and Newton’s laws hold, the corresponding
models of temperature distribution along the fin are linear. For particular applications or
materials, these basic models can be dressed with further assumptions, usually giving some
drawbacks: for example, if the dependence of thermal conductivity on temperature cannot
be neglected, Fourier’s law changes from linear to nonlinear and it becomes challenging
to obtain analytical results [3]. Furthermore, if the effects of radiation are considered,
an additional term appears in the equations and the corresponding thermodynamic model
becomes intrinsically nonlinear [1,2]. By intrinsically, we mean that, even assuming that
all the thermal coefficients are independent of temperature, the underlying equations are
nonlinear. The geometry of the fins is another key factor to take into account at the design
level: rectangular, triangular, or cylindrical fins are only some of the most common shapes
considered in the literature, and different shapes may be suitable for specific applications.

The problem of evaluation of the efficiency of a convecting-radiating longitudinal fin
with an arbitrary profile has been considered in [4], where it has been shown how it is
possible to obtain explicitly the temperature of the steady state in convecting-radiating fins.
The value of the efficiency, i.e., the ratio of actual heat transfer to ideal heat transfer for a fin
of infinite thermal conductivity, was determined by many variables that include boundary
conditions, specific values of thermal coefficients, the specific function profile of the fin, and
the temperatures of the environment and of the base of the fin. The simplest configuration
is that of a rectangular fin without radiation losses, with fixed temperature at the base, and
with an insulated tip. The corresponding efficiency η in this case is given by the well-known
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Gardner’s formula η = tanh(m)
m , where m is a dimensionless parameter depending on the

square root of the ratio between the fin heat transfer coefficient and the thermal conductivity.
We observe that Gardner’s result is independent of the temperature gradient between the
base and the fluid adjacent to the fin: this fact is a consequence of the linearity of the
equations for the temperature when the only mechanism of dissipation is the convection.
In our opinion, the independence of the efficiency from the temperature of the base of the
fin and from the temperature of the fluid is a weak point of the classical formulation of the
efficiency, and this idealization is expected to give accurate results only for small values
of the difference between the base temperature and the fluid temperature: as the gradient
increases, both the values of actual and ideal heat transferred to the environment increase,
but their ratio may not result in a constant [5].

In this work, we introduce a novel indicator for the efficiency of the fin by looking
at the entropy produced by the fin in its steady state. We consider the entropy produced
by the fin in the process of dissipation of heat both by convection and radiation mecha-
nisms. The profile of the fin is not given and, indeed, is another unknown variable in our
equations, making our result adaptable to different applications. The nonlinear analysis of
the temperature distribution along the fin is based on the results obtained in [4], where a
methodology to obtain explicit solutions has been given. The model is one-dimensional,
and the fin considered has a plane of symmetry perpendicular to the plane base support.
This model is widely adopted in literature (see, e.g., [1,2]) and simple enough to be ma-
nipulated analytically. This gives the possibility to obtain, at least in simple cases, explicit
fromulae for the efficiency and to make comparisons with the classical results. The pure
convective case is analyzed first by showing how the entropy-based efficiency represents
a concrete extension of the classical efficiency: indeed, if on the one hand it is possible
within the limit of a small temperature gradient to obtain the classic results from our
formulas, on the other hand, the temperature difference plays an explicit role and its effect
can be evaluated directly. We emphasize that practical issues, such as cost, adequate design
considerations, or materials may be specific to a given application and, as such, cannot
enter into this study. For these aspects, the interested reader can look for examples in [1,2]
and the references therein.

The work is organized as follows: in Section 2, the main equations describing the evo-
lution of the temperature along the fin and the relative boundary conditions are presented.
The expression of the entropy rate produced by the convection and radiation by the fin
is also introduced. In Section 3, an entropy-based indicator is defined and discussed to
measure the effectiveness of the fin in dissipating heat. For definiteness, the application
of the method to some relevant cases is illustrated. In Section 4, the formulas previously
introduced are applied to the case of a purely convective fin. In particular, the efficiency of
a rectangular fin is calculated and a comparison is made with the classical results from the
literature. Furthermore, it is shown that, if the difference between the base temperature
and the fluid temperature is small, the classical definition and the new definition coincide
for an arbitrary profile of the fin. In Section 5, the case of a fin dissipating by convection
and radiation is presented. In Section 6, we present a specific application of the formulae
obtained to an aluminum fin, with a base at T = 800 K and a fluid at T = 400 K. A com-
parison between the entropic efficiency and the classical efficiency is given. Finally, in the
conclusions, we discuss our results and some potential generalizations.

2. The Entropy Rate Due to Heat Exchange

Let us consider a longitudinal fin with an arbitrary profile attached to a base, which is
at a temperature Tb. The fin length (alongside the base) is L, whereas the fin thickness at a
distance x from the base is 2 f0(x) ≥ 0. We consider a symmetric fin for which the profile
is confined by the curves f0(x) and − f0(x), where x is the coordinate in the direction
perpendicular to the fin base (see Figure 1). The half thickness at the base is fb = f0(x = 0),
whereas at the fin tip, located at x = `, the half thickness is ft = f0(`). We assume that
Fourier’s law holds within the fin and that the temperature varies only along the x direction.
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Furthermore, the variation in internal energy is assumed to be equal to energy gains (or
losses) by conduction, radiation, and convection.

Figure 1. The longitudinal fin: a given profile is shown, described by a suitable f0(x) together with the coordinate system,
the cross-sectional area, and the geometrical properties.

Let κ be the thermal conductivity of the homogeneous material, ρ be its density, κ be
its thermal conductivity, c be its specific heat, h be the convective heat transfer coefficient,
and σ be the Stefan–Boltzmann constant. Then, the evolution of the temperature T(x, t) is
governed by the following equation [4]:

ρc f0(x)
∂T
∂t

= κ
∂

∂x

(
f0(x)

∂T
∂x

)
− 2h

(
1 + 2

f0

L

)
(T − T0)− 2σε

(
1 + 2

f0

L

)
(T4 − T4

1 ), (1)

where T1 is the temperature of the effective irradiation environment. Accordingly, εσT4
1

represents the radiant energy absorbed by the fin per unit of time and surface. Additionally,
T0 is the temperature of the fluid and ε is the emissivity of the fin.
When the thickness of the fin is small compared with respect to its length, the term f0/L
can be ignored, giving

ρc f0(x)
∂T
∂t

= κ
∂

∂x

(
f0(x)

∂T
∂x

)
− 2h(T − T0)− 2σε(T4 − T4

1 ). (2)

The above equation describes the transient evolution of the temperature in time
along the fin: in the rest of the paper, we look at the steady state, described by the same
Equation (2), with the left-hand side equal to zero. Additionally, we assume the fin to be in
general non-gray, with T4

1 = φT4
0 , where φ is the ratio between the absorptivity and the

emissivity of the fin [2]. In the case of a gray fin, one has to set φ = 1 [2].
Equation (2) must be supplied with the initial and boundary conditions: according

to [4], we assume that the boundary conditions are given by

f0(x)
dT
dx

∣∣∣∣
x=0
− η0(T − Tb)|x=0 − ξ0 (T4 − φT4

b )
∣∣∣
x=0

= 0. (3)

and

f0(x)
dT
dx

∣∣∣∣
x=`

+ η1(T − T0)|x=` + ξ1 (T4 − φT4
0 )
∣∣∣
x=`

= 0. (4)

where ηi and ξi, i = 0, 1 denote positive constants proportional to the Biot and radiation-
conduction numbers of the ends of the fin, respectively. The initial condition is given by
T|t=0 = T(x, 0) = Tin(x).
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The dimensionless variables z = x/` and τ = κt/ρc`2 are introduced for further conve-
nience. Moreover, we define θ = T/Tb, θin = Tin/Tb, α = 2h`2/( fbκ), β = 2σε`2T3

b /( fbκ),
and f (z) = f0(z`)/ fb. Equation (2) becomes

f (z)
∂θ

∂τ
=

∂

∂z

(
f (z)

∂θ

∂z

)
− α(θ − θ0)− β(θ4 − φθ4

0) (5)

with initial conditions θ(z, τ)|τ=0 = θ(z, 0) = θin(z) and boundary conditions

f (z)
dθ

dz

∣∣∣∣
z=0
− Bi0(θ − 1)|z=0 − N0(θ

4 − φ)
∣∣∣
z=0

= 0,

f (z)
dθ

dz

∣∣∣∣
z=1

+ Bi1(θ − θ0)|z=1 + N1(θ
4 − φθ4

0)
∣∣∣
z=1

= 0,
(6)

where the Biot numbers Bij = ηj`/ fb, j = 0, 1 and the radiation-conduction numbers
Nj = ξ j`/ fb, j = 0, 1 were introduced.

Our system is given by the fin and its base, with the base being a thermal reservoir
at temperature Tb. The external environment is represented by the fluid at a constant
temperature T0. Our aim is to define an entropy-based efficiency by taking into account
the irreversibilities of the system alone. For this reason, we consider the entropy rate due
to heat exchange, in particular, to the contributions coming from convection and radiation.
The entropy produced by the viscosity of the fluid is not in our definition (From another
point of view, by considering both the entropy generation rate accounting for the heat
transfer irreversibilities and those corresponding to the entropy generation rate for the fluid
friction irreversibilities, our results are consistent in the limit of the small Bejan number
(see, e.g., [6] for the fluid irreversibilities and definition of the Bejan number)).

For the convection, we consider a process starting from Tin(x), the temperature
distribution at t = 0, up to the temperature T(x, t) at some time t > 0. Under the
hypothesis of local equilibrium, at a point x, the contribution to the entropy rate due to the
convection is then given by 2h(L + 2 f0) ln(T/Tin). For the entire fin, we obtain [7]

ṡh|Tin→T =
∫ `

0
2h(L + 2 f0) ln

(
T

Tin

)
dx. (7)

For consistency, we adopt here the same approximation as in Equation (2), giving

ṡh|Tin→T =
∫ `

0
2hL ln

(
T

Tin

)
dx. (8)

The contributions due to radiative irreversibilities can be explicitly calculated under
suitable assumptions. In the case where the surface of the fin is diffuse gray [2] (namely,
a fixed fraction of the incident radiation is absorbed for any direction and the frequency
emits a fixed fraction of the black body radiation), then this contribution is a fraction of
the entropy of the blackbody radiation. For completeness and clearness, we report here
the classical derivation of the entropy of blackbody radiation and, then, we generalize the
result to diffuse gray surfaces. For more details, we refer the reader to [2,8–14]. The reader
not interested in the mathematical details can skip to the end of this section and go directly
to Section 3.

We recall that the mean occupation number n for blackbody radiation of a photon gas
is given by [10,13]

n =
1

e
hν

KBT − 1
(9)
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where h is the Planck constant and KB the Boltzmann constant. Moreover, the density ρ̂ of
states per unit volume and per unit solid angle is given by [10]

ρ̂(ν) =
gν2

c3 , (10)

where g, called the degeneracy factor, accounts for the two possible polarizations of photons:
it is equal to 2 for non-polarized photons (as in our case) or equal to 1 for polarized photons;
c is the speed of light. For any given frequency ν, the contribution to the entropy can be
written as

s(v) = KB((1 + n) ln(1 + n)− n ln(n)). (11)

From Equations (9)–(11), we obtain the total entropy of blackbody radiation as

S =
8πVK4

BT3

h3c3

∫ ∞

0
x2
[(

1 +
1

ex − 1

)
ln
(

1 +
1

ex − 1

)
−
(

1
ex − 1

)
ln
(

1
ex − 1

)]
dx (12)

The previous integral can be evaluated explicitly. Integrating by parts, we obtain∫ ∞

0
x2
[(

1 +
1

ex − 1

)
ln
(

1 +
1

ex − 1

)
−
(

1
ex − 1

)
ln
(

1
ex − 1

)]
dx =

1
3

∫ ∞

0
x4 ex

(ex − 1)2 dx. (13)

To evaluate the integral on the right, we consider the following identity (see, e.g., [10]):

Iα(y)
.
=
∫ ∞

0

xα

ex−y − 1
dx = α! ∑

k=1

eky

kα+1 . (14)

Let us assume α ∈ R+ and y ∈ R−. If we take the derivative of I4(y) with respect to y
and then evaluate it to 0, we get

∫ ∞

0
x4 ex

(ex − 1)2 dx = 4!
∞

∑
k=1

1
k4 =

4
15

π4 (15)

and therefore

S =
32πVK4

BT3π5

45h3c3 =
16σ

3c
VT3. (16)

This is a well-known result (see, e.g., [13]), and it accounts for the entropy of the
blackbody radiation when the number of photons is in equilibrium. In the case where there
is an interaction between the radiation and matter, then it is expected that the number
of photons is no longer conserved. The processes of absorption, emission, and reflection
reduce the mean occupation number (see, e.g., [9]). It follows that the spectral energy
irradiance is reduced too. The emissivity ε of the material is the term accounting for this
reduction, so we can write

nε =
ε

e
hν

KBT − 1
. (17)

It is possible to repeat the steps linking Equation (9) for n to Equation (16) for S for
blackbody radiation. For a diffuse gray material with emissivity ε, we get

Sε =
16σ

3c
I(ε)VT3. (18)

In this formula, the dimensionless term I(ε) gives the dependence of the radiation
entropy by emissivity. It is explicitly given by

I(ε) =
∫ ∞

0
x2
[(

1 +
ε

ex − 1

)
ln
(

1 +
ε

ex − 1

)
−
(

ε

ex − 1

)
ln
(

ε

ex − 1

)]
dx. (19)
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Differently from the case ε = 1, for arbitrary ε ∈ (0, 1), the previous integral cannot be
calculated explicitly, giving the result in a closed formula. Some compact approximations
can be found in [9,14]. If the value of ε is given, is homogeneous across all materials,
and is independent of the wavelength, the value of I(ε) is simply a constant that can be
easily evaluated numerically. In [12], an infinite series in (1− ε), with coefficients defined
in terms of transcendental functions, the so-called Lerch transcendental, has been given.
In passing, we would like to observe that it is possible to obtain an infinite series in (1− ε)
with explicit coefficients instead. Indeed, if we take the Taylor series of the integrand in the
expression (19) in (1− ε), we get

I(ε) =
∫ ∞

0

(
V0 + V1(1− ε) + ∑

n=2
Vn(1− ε)n

)
dx (20)

Clearly, the first term gives the result (13)–(15). The function V1 is equal to V1 = x3/(ex − 1).
The integral of this term can be easily obtained from Equation (14), giving

∫ ∞

0
V1dx =

∫ ∞

0

x3

ex − 1
dx =

π4

15
. (21)

The other terms can be calculated as follows:

Vn =
x2

n(n− 1)
e−(n−1)x − 1

ex − 1
, x ≥ 2. (22)

By integrating each term and putting it all together, we get

I(ε) =
4π4

45
− π4

15
(1− ε)− 2

∞

∑
n=2

cn(1− ε)n, (23)

where

cn =
1

n(n− 1)

n−1

∑
k=1

1
k3 . (24)

From the above expression, we see that I(ε) is an increasing function of ε, from
I(ε = 0) = 0 to I(ε = 1) = 4π4

45 ∼ 8.6586. At order N, the approximation IN(ε) of I(ε) is
expressed by

I(ε) ∼ IN(ε) =
4π4

45
− π4

15
(1− ε)− 2

N

∑
n=2

cn(1− ε)n, (25)

For ε in the range (0.05, 1), the relative errors | I(ε)−IN(ε)
I(ε) | for N = 10, N = 20, and

N = 50 are reported in Figure 2: the maximum relative error for N = 20 is about 2.1%,
whereas for N = 50, this maximum corresponds to about 0.11%.
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Figure 2. Plots of the relative error | I(ε)−IN(ε)
I(ε) | for N = 10, N = 20, and N = 50. The scale is

logarithmic. The peaks at the level of 10−9 are due to the numerical round-off error, since the
calculation has been performed with 10 significant digits.

Once the value of I(ε) has been fixed, numerically or by the approximation
Equation (25), we can obtain from Equation (18) the entropy rate for unit surface dṡ
by dividing it by the volume and by multiplying by the speed of light c [11,15], giving

dṡ =
16σ

3
I(ε)T3. (26)

Hence, the entropy rate due to radiative processes is obtained by integration over the
entire fin. With the same approximation as in Equation (2), one obtains

ṡσ|Tin→T = 2L
16σ

3
I(ε)

∫ `

0
(T3 − T3

in)dx. (27)

The total entropy rate (in W/◦K) of the fin by convection and radiation is found by
summing up the two contributions (8) and (27):

ṡ|Tin→T = ṡh|Tin→T + ṡσ|Tin→T = 2L
∫ `

0

(
h ln
(

T
Tin

)
+

16σ

3
I(ε)(T3 − T3

in)

)
dx. (28)

3. An Entropy-Based Indicator for the Efficiency of the Fin in Its Steady State

Efficiency is a widely adopted indicator for the capability of a fin to dissipate heat [1,2,16].
Before the introduction of physical indicators, there is usually a definition of some reference
state of the system under consideration. This is the case also for efficiency. The reference
state, implicitly given in the definition of efficiency, is given by the fin at the constant
temperature equal to the temperature of the base Tb (θ = 1). Accordingly, the efficiency
η of the fin is defined as the ratio of two terms: in the numerator, one has the actual
heat transfer; in the denominator, one has the ideal heat transfer for a fin with an infinite
thermal conductivity in the reference state. This efficiency for the steady state solution of
Equation (5) can be also written as [4]

η =
Bi1(θ0 − θ(1)) + Bi0(1− θ(0)) + N1(φθ4

0 − θ(1)4) + N0(φ− θ(0)4)

α(1− θ0) + β(1− φθ4
0)

. (29)

In the following, we define an efficiency on the base of the amount of entropy produced
by the fin in the process of dissipation of heat by convection and radiation. Furthermore,
to make a comparison with the classical efficiency (29), the definition of the entropy rate
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ṡ must include the same reference state. More comments will be given in the following
about the reference state of our definition. Now, let us calculate the difference between
the entropy produced by the fin by evolving the system from Tin to Tb and the entropy
produced by evolving the system from Tin to a suitable T:

ṡ := ṡ|T→Tb
= ṡ|Tin→Tb

− ṡ|Tin→T , (30)

i.e., by applying (28):

ṡ = 2L
∫ `

0

(
16σ

3
I(ε)(T3

b − T3)− h ln
(

T
Tb

))
dx. (31)

We introduce, for greater clarity, a reference convective entropy rate ṡ0,h and a reference
radiative entropy rate ṡ0,σ:

ṡ0,h = 2L`h, ṡ0,σ = 2L`
16σ

3
I(ε)T3

b . (32)

These two entropies correspond respectively to the entropies produced by the fin
by evolving the system from Tin to exp(1)Tin and from T = 0 to Tb. The expression (31)
then becomes

ṡ =
∫ 1

0

(
ṡ0,σ(1− θ3)− ṡ0,h ln(θ)

)
dz. (33)

As said, the classical efficiency is equal to the ratio between the actual heat transfer to
the ideal heat transfer for a fin at temperature Tb. Our definition of the entropic efficiency
is the ratio between the entropy produced by the fin during the evolution of the system
from the initial temperature T0 to the steady state T with respect to the entropy produced
by the fin by evolving the system from the same initial distribution T0 to the reference
temperature Tb. We notice that the steady state T is independent of the initial distribution
temperature Tin: as the initial state, we then take T0. It follows that the indicator giving the
entropy-based effectiveness of the fin to dissipate heat by convection and radiation can be
defined as fp;;pws:

ηs
.
=

∫ 1
0

(
ṡ0,σ(θ

3 − θ3
0)− ṡ0,h ln

(
θ0
θ

))
dz(

ṡ0,σ(1− θ3
0)− ṡ0,h ln(θ0)

) = 1−
∫ 1

0

(
ṡ0,σ(1− θ3)− ṡ0,h ln(θ)

)
dz(

ṡ0,σ(1− θ3
0)− ṡ0,h ln(θ0)

) . (34)

As it should be, if θ(z) = θ0, then ηs = 0, whereas ηs = 1 when θ(z) = θb = 1. By looking
at the definitions before Equation (5), we see that the ratio between the reference entropies ṡ0,σ
and ṡ0,h is proportional to the ratio of α and β, i.e., the dimensionless convective and radiative
coefficients:

ṡ0,σ

ṡ0,h
=

16
3

I(ε)
ε

β

α
(35)

Therefore, Equation (34) can also be written in the following form:

ηs =

∫ 1
0

(
16
3

I(ε)
ε β(θ3 − θ3

0)− α ln
(

θ0
θ

))
dz(

16
3

I(ε)
ε β(1− θ3

0)− α ln(θ0)
) = 1−

∫ 1
0

(
16
3

I(ε)
ε β(1− θ3)− α ln(θ)

)
dz(

16
3

I(ε)
ε β(1− θ3

0)− α ln(θ0)
) (36)

As a final note, let us calculate the difference between the entropy rate produced by the
fin during the evolution of the system from the temperature T0 to the steady state T and the
entropy rate produced by the fin by evolving the system from the same initial distribution
T0 to the reference temperature Tb. This is the difference between the numerator and the
denominator of Equation (36). We get
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ṡ|T0→T − ṡ|T0→Tb
=

(
ṡ0,σ(θ

3 − θ3
0)− ṡ0,h ln

(
θ0

θ

))
dz−

(
ṡ0,σ(1− θ3

0)− ṡ0,h ln(θ0)
)

dz

=
∫ 1

0

(
ṡ0,σ(θ

3 − 1) + ṡ0,h ln(θ)
)

dz
(37)

Notice that, since Tb > T0 (i.e., θ0 < 1), the temperature θ(z) is expected to be a
decreasing function of z and hence θ < 1 for every point of the fin. The difference in (37) is
then always negative, implying ηs < 1. Physically, this means that the reference state Tb is
the state expected to possess the maximum entropy rate.

In the next section, we start to analyze the purely convective case and to investigate
the reliability of the definition (36). Additionally, we make a comparison with the classical
definition of the efficiency (29).

4. The Pure Convective Case

For a fin dissipating heat solely through the convective mechanism, Equation (34) for
the efficiency becomes

ηs = 1− 1
ln(θ0)

∫ 1

0
ln(θ)dz. (38)

The simplest case is that of a rectangular longitudinal profile. In this case, the di-
mensionless profile is given by f (z) = 1. The solution of Equation (5) with the boundary
conditions (6) gives the steady state temperature θ(z). This function, given in [4], is

θ(z) = θ0 + (1− θ0)Bi0
m cosh(m(1− z)) + Bi1 sinh(m(1− z))

m(Bi0 + Bi1) cosh(m) + (m2 + Bi0Bi1) sinh(m)
. (39)

The previous formula allows us to obtain the temperature distribution along a fin
with a base at T = Tb and an insulated tip. It is sufficient to take Bi1 = 0 and to make the
limit Bi0 → ∞. In this case, Equation (39) reduces to

θ(z) = θ0 + (1− θ0)
cosh(m(1− z))

cosh(m)
. (40)

From Equation (38), the corresponding value of the entropic efficiency is

ηs = −
1

ln(θ0)

∫ 1

0
ln(1 + a cosh(my))dy, (41)

where a = 1−θ0
cosh(m)θ0

. As explained in the Introduction, we expect that the efficiency is also
a function of the temperature of the fluid, and it is thought that the Gardner result (valid
for a rectangular fin with an insulated tip, exactly as in this case) gives accurate results
for small values of the temperature gradient between the base and the fluid. Then, to test
the consistency of our definition of the efficiency (34), we calculate the limit θ0 → 1 (small
gradients) and determine if the limit is in agreement with the Gardner’s result. In the limit
θ0 → 1, we get for the integrand on the right-hand side of (41)

− ln(1 + a cosh(my))
ln(θ0)

=
cosh(my)
cosh(m)

+
1
2

(
cosh(my)
cosh(m)

− cosh(my)2

cosh(m)2

)
(1− θ0) + O((1− θ0)

2) (42)

The corresponding value of the efficiency is then given by

ηs =
tanh(m)

m
+

1
8

sinh(2m)− 2m
2m(1 + cosh(2m))

(1− θ0) + O((1− θ0)
2) (43)
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Gardner’s classical results about the efficiency corresponding to a temperature profile
given by (40) is given by [4,16]

η =
tanh(m)

m
(44)

Therefore formula (43) can be rewritten as

ηs = η +
1
8

sinh(2m)− 2m
2m(1 + cosh(2m))

(1− θ0) + O((1− θ0)
2) (45)

As it can be seen from this example, (38) can be considered an extension, based on the
quantity of heat dissipated by the fin, of the classical definition of efficiency. In Figure 3,
we plot efficiency (41) and efficiency (44) as a function of θ0 and m (left) and the difference
between formula (41) and the classical formula (44). The observation that the entropic
efficiency ηs (38) reduces to the classical efficiency η (29) when θ0 → 1 is not peculiar to
this particular example and fin profile but, as we will see in the next subsection, holds for
any arbitrary profile. This gives further support to the effectiveness of our definition (36).

Figure 3. The plot of efficiency ηs (41) and η (44) as a function of θ0 and m (left) and a plot of the
difference between this efficiency and the classical formula (44) (right).

In the case of a purely convective fin with an arbitrary profile, the steady state is
described in dimensionless variables by the following equation:

d
dz

(
f (z)

dθ

dz

)
= α(θ − θ0) (46)

For the sake of simplicity let us consider the case of a fin with an insulated tip and the
base at the constant temperature Tb (i.e., θ = 1). The boundary conditions (6) are given in
this case by

(θ − 1)|z=0 = 0,

dθ

dz

∣∣∣∣
z=1

= 0.
(47)

In [4], it has been shown that the following change in variable is particularly useful:

θ(z) = F(y(z)), with f (z)
dy
dz

= 1. (48)
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Indeed, thanks to the previous definition of y(z), Equation (46) becomes

d2F
dy2 = α f (z)(F(y)− θ0). (49)

By taking into account the boundary conditions, it is possible to make explicit the
dependence on θ0 of the function F(y). The solution of Equation (49) can be written as

F(y) = θ0 + (1− θ0)g(y) (50)

where g(y) solves d2g
dy2 = α f (z)g(y) with boundary conditions given by g(y)|z=0 = 1 and

dg
dy

∣∣∣
z=1

= 0. This implies that g(y) is independent of θ0. The entropic efficiency (38) of the
fin is written as

ηs = 1− 1
ln(θ0)

∫ 1

0
ln(θ)dz = − 1

ln(θ0)

∫ 1

0
ln
(

1 +
1− θ0

θ0
g(y)

)
dz (51)

In the limit θ0 → 1, we get

ηs =
∫ 1

0
g(y)dz +

(1− θ0)

2

∫ 1

0

(
g(y)− g(y)2

)
dz + O((1− θ0)

2). (52)

Let us look at the classical definition of the entropy. From [4] (see Equation (15)), we
have in terms of the function F(y) defined in Equation (48)

η
.
=

1
α(1− θ0)

(
dF
dy

∣∣∣∣
z=1
− dF

dy

∣∣∣∣
z=0

)
=

1
α(1− θ0)

∫ 1

0

d
dz

(
dF
dy

)
dz =

1
α(1− θ0)

∫ 1

0

d2F
dy2

dy
dz

dz. (53)

However, by multiplying Equation (49) for dy
dz and by using the constraint f (z) dy

dz = 1,

it follows that d2F
dy2

dy
dz = α(F(y)− θ0), giving

η =
1

1− θ0

∫ 1

0
(F(y)− θ0)dz (54)

or, from Equation (50),

η =
∫ 1

0
g(y)dz. (55)

The previous result confirms that the classical efficiency of a convective fin is indepen-
dent from the temperature of the fluid and furthermore shows that, for small values, the
difference in temperature between the base of the fin and the fluid the two definitions of
efficiency, ηs (38) and η (29), give the same value. This result is general does not depend on
the fin profile or the temperature distribution across the fin, since the function g in (50) is
arbitrary. In the next section, the more general convective-radiative case will be considered.

5. The Convecting-Radiating Fin and Its Efficiency

If the fin dissipates heat both by convection and radiation, the differential equation
describing the steady state becomes nonlinear and it is very challenging, in general, to find
out solutions general solutions. However, a family of explicit solutions have been described
in [4]: the solutions have been written in terms of an auxiliary function y(z) introduced by a
change of variables. The boundary conditions are similar to the ones given by Equation (6).
For completeness, we report the corresponding principal formulae and we restrict the
discussion to gray fins. From a mathematical point of view, this means setting φ = 1 in
Equations (5) and (6).
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Let us make the following change in variables:

θ(z) = θ0 + wy(z)2, w ∈ R. (56)

and assume that it holds the constraint f (z) dy
dz = 1. Then, by integrating the steady version

of Equation (5), one gets the following implicit formula for y(z) [4]:

− A
y
+ E1 arctan

(
y
b1

)
+ E2

(
arctan

(
y + a2

b2

)
+ arctan

(
y− a2

b2

))
+ F2 ln

(
(y + a2)

2 + b2
2

(y− a2)2 + b2
2

)

=
βw3

2
(z + C),

(57)

where the values of A, E1, E2, and F2 are given by

E1 = − 1
b3

1
(
a2

2 + (b1 − b2)2
)(

a2
2 + (b1 + b2)2

) ,

E2 =
1
4

(
(a2

2 − 3b2
2)(a2

2 + b2
1 − b2

2)− 2b2
2(3a2

2 − b2
2)
)(

a2
2 + (b1 − b2)2

)(
a2

2 + (b1 + b2)2
)(

a2
2 + b2

2
)3b2

,

A =
1

b2
1(a2

2 + b2
2)

2
, F2 =

1
8

(
(b2

2 − 3a2
2)(a2

2 + b2
1 − b2

2) + 2a2
2(3b2

2 − a2
2)
)(

a2
2 + (b1 − b2)2

)(
a2

2 + (b1 + b2)2
)(

a2
2 + b2

2
)3a2

.

In these expressions, the coefficients b1, a2, and b2 can be given in terms of the ratio
α/β, the dimensionless fluid temperature θ0, and the parameter w appearing in (56). One
has

b1 =

√
2θ0 + b

w
, a2

2 =
b− 2θ0 + 2

√
2θ2

0 + b2

4w
, b2

2 =
2θ0 − b + 2

√
2θ2

0 + b2

4w
. (58)

In the previous expressions, the value of b is given by the unique real solution of a
cubic equation:

α

β
= b(b2 + 2bθ0 + 2θ2

0). (59)

It remains to fix the values of w, appearing in (56), and the constant C, appearing
in (57). One must set the boundary condition at z = 0. The first of the two boundary
conditions (6) can be written as a polynomial equation for y(0) = y|z=0 (see [4]):

Bi0(wy(0)2 − (1− θ0)) + N0

(
(wy(0)2 + θ0)

4 − 1
)
− 2wy(0) = 0. (60)

It is also possible to show that, for fixed values of Bi0, N0, θ0 and w, the previous
equation always has one real negative solution (see [4]). Let us call this solution y−.
The initial condition for y is then fixed by y(0) = y−.

The value of w must be fixed, for consistency, by considering the assumed constraints
f (z) dy

dz = 1 and f (0) = 1. One obtains

f (0) = 1 =
2

βy2
−
(
wy2
− + 2θ0 + b

)((
wy2
− + θ0 − b

2

)2
+ θ0(θ0 + b) + 3

4 b2
) . (61)

The value of C can be found by evaluating Equation (57) at y = y− and z = 0. At this
point, the function y(z) is completely determined by Equation (57) for any arbitrary choice
of the parameters β and b. The corresponding values of the dimensionless temperature
θ(z), corresponding to the steady state, are finally found from (56).
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Now, we apply the methodology reported above to describe the dependence of the
entropic efficiency (36) on the dimensionless convection and radiation coefficients α and β
and on the emissivity ε.

For simplicity, let us consider the case of a fin with a base at T = Tb, i.e., θ(0) = 1.
This corresponds to Bi0 → ∞ and/or N0 → ∞. It can be shown that, in this case, w can
also be written as

w =
1
2

(
α(1− θ0) + β(1− θ4

0)
)

. (62)

Let us further assume that, to fix the ideas, the emissivity is equal to ε = 0.5. The cor-
responding value of I(ε) (19) is I(ε) ∼ 5.097. We choose two different values of θ0: θ0 = 0.1
and θ0 = 0.5. For each of these choices, it is possible to consider different values of α.
We take four different values of this parameter, namely α = {0.1, 0.5, 1, 2}. Additionally,
it remains to choose β. We take twenty different values, from β = 0.1 to β = 2, equally
spaced. For each one of these choices, we calculate the distribution of temperatures along
the fin according to Equations (56) and (57). Finally, we calculate the entropic efficiency
of each state by means of Equation (36). The results are given in Figures 4 and 5: as it
is possible to see, in all cases, the efficiency decreases by increasing the values of β and
decreases by increasing the values of α. If one looks at a simialr variation of the parameters
for the classical efficiency, it follows that the behavior of ηs is in agreement with that of
the classical efficiency (29). For comparison, we report in Figure 6 also the corresponding
values of the classical efficiencies, calculated with Equation (29) (see [4]).

Figure 4. The plot of efficiency ηs as a function of β for four different values of α and for θ0 = 0.5.
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Figure 5. The plot of efficiency ηs as a function of β for four different values of α and for θ0 = 0.1.

Figure 6. The plot of classical efficiency η (from [4]) as a function of β for θ0 = 0.1 and θ0 = 0.5 and four different values of α.

6. An Example with Convecting-Radiating Aluminum Fins.

In the previous example, we made use of dimensionless quantities. As it has been
pointed out in [4], thanks to the dimensionless form of the equations, the high number of
physical constants have been replaced by only a few parameters, i.e., α, β, and θ0. In this
way, the relative importance of the convective and radiative terms can be easily assessed [4].
On the other hand, our analytical treatment assumes that the thermal coefficients (i.e.,
the thermal conductivity, the convective heat transfer coefficient, and the emissivity) are
constants. For real materials, this is true only for finite ranges of variation in temperature,
and this must be taken into account in the applications of the above results.

In [4], the relative importance of the convective and radiative effects has been shown
by making a practical example without dimensionless quantities. The fin was assumed to
be made of aluminum, with ε = 0.9 for anodized aluminum. The base was at 800 K, and the
fluid was at 400 K. The thermal conductivity for aluminum is almost constant between
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400 K and 800 K, since it varies from 220 Wm−1 K−1 to 240 Wm−1 K−1 [17]. Two cases
were analyzed, with the only difference being the values of the heat transfer coefficients,
given by 50 Wm−2 K−1 and 250 Wm−2 K−1. These two values correspond respectively
to the values (α, β) = (0.4348, 0.2272) and (α, β) = (2.1739, 0.2272). We do not report the
distribution of temperature across the fin for the two cases. The interested readers can refer
to [4]. Instead, we analyze the distribution of the entropic efficiency as a function of the
heat transfer coefficient and compare these values with those of the classical efficiency.

We divide the h = [50, 250]Wm−2K−1 (or the interval α = [0.4348, 2.1739]) in twenty
sub-intervals and calculate the entropic efficiency for each of these intervals. We calculate
the distribution of the temperature according to Equations (56) and (57) and then the values
of the entropic efficiency through Equation (36). We analyze the case of a fin with a base at
T = Tb, i.e., θ(0) = 1. The other values of the constants appearing in the steady version of
Equation (2) determining the values of α and β are the following: the ratio `2/ fb is fixed
to be equal to 1 m (if both ` and fb are in cm, ` = 10

√
fb), whereas we fix the thermal

conductivity of the aluminum to be equal to κ = 230 Wm−1K−1 between 400 K and 800 K.
For ε = 0.9, the ratio I(ε)/ε, where I(ε) is given by Equation (19), is equal to 8.8875.

After, we plot the corresponding values of the classical efficiency. Formula (29), in the
case of a fin with a base at a temperature equal to Tb and for a gray fin (i.e., φ = 1 in
Equations (5) and(6), it is possible to show that the classical efficiency is simply given
by [4]:

η = y(1)− y(0), (63)

where y(z) is the auxiliary function appearing in Equation (56) for the dimensionless
temperature. The results are reported in Figure 7.

Figure 7. The classical (circles) and entropic (diagonal crosses) efficiency values vs. the convective
heat transfer coefficient for the example of an aluminum fin.

As can be seen from the figure, both the efficiencies decrease as functions of h, but the
entropic efficiency is always lower, in this particular case, with respect to the classical
efficiency. This is in contrast to what happens for the purely convective case. Indeed, if we
take Equations (51) and (55), the difference η − ηs can be written as

η − ηs =
∫ 1

0

(
g(y) +

1
ln(θ0)

ln
(

1 +
1− θ0

θ0
g(y)

))
dz (64)

For Tb > T0, the temperature is expected to be a decreasing function of z (actually, it
has been noticed in [4] that, for a suitable choice of parameters describing the boundary
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conditions, the temperature may possess a minimum in the interval z ∈ (0, 1). For sim-
plicity we avoid such values of the parameters). In this case, the function g(y) is always
bounded in the interval [0, 1], similar to θ0. Then, it can be shown that the integrand in
Equation (64) is always negative, giving a value of the classical efficiency smaller than the
value of the entropic efficiency. A deeper analysis of the properties of formula (34) by
varying the parameters α, β, ε, and θ0 and the comparison with the corresponding values
of the classical efficiency is necessary to provide a further characterization of the function
ηs and will be one of the subjects of a forthcoming paper.

7. Conclusions

We introduced a novel indicator of the performances of longitudinal fins of arbitrary
profile. The indicator takes into account the amount of entropy rate produced by the fin
by approaching its steady state. The contributions to the entropy considered are those
coming from convection and radiation. We have shown that the values of efficiencies given
by the definition and those obtained by the classical formula are compatible in a suitable
approximation. In our opinion, the new definition is however more flexible: indeed, the
role of the fluid temperature is explicit in opposition to the classical formulation. This
has been shown for the convective case with an arbitrary profile, and for example, it is
particularly evident from Equations (45) and (55). If, on the one hand, this new indicator
rests on the concept of entropy and, as such, we expect to reflect the content of the second
principle of thermodynamics (see also [18] for a discussion on this aspect), on the other
hand, we are aware of the fact that a proper evaluation of its efficacy and adherence to the
physical reality needs a deeper assessment. The definition of the indicator (36) relies on
the introduction of a reference state. The reference state of the classical efficiency (29) is
given by the temperature Tb of the base of the fin. We take the reference state of the new
indicator to be the same. This choice is fundamental for two main reasons:

(i) The idea underlying Equation (36) is the following: to measure the dissipation,
through entropy rates, of the steady state of the fin with respect to that of an ideal
fin with the highest dissipation possible. If the real fin is close to this ideal fin, the
corresponding efficiency will be higher. The reference state Tb, as it has been shown at
the end of Section (3), is also the state expected to possess the maximum entropy rate.

(ii) The classical definition of the efficiency η is given by the ratio of the actual heat
transfer over the ideal heat transfer for a fin at temperature equal Tb. Since we take
the reference state for the entropic efficiency to be the same, we have the possibility to
make a direct comparison between the two definitions.

Furthermore, we emphasize that, in our approach, there is no use of any variational
principle. We compare the entropy rates of two possible states: the reference state, at tem-
perature Tb, and the steady state solution of the classical Fourier equation. To analyze both
the convective and the full convective-radiative cases, we used some of the results that
appeared in [4]. In that work, explicit formulae for the steady solutions of the temperature
along the fin have been obtained. A new approximated formula for the integral giving
the entropy of the radiation as a function of the emissivity has been given. Additionally,
we have shown that, for the purely convective case, the entropic efficiency reduces to the
classical definition for small temperature gradients and that the classical definition gives
smaller values of the efficiency. This last observation is not true for the convecting-radiating
fin, as can be seen from the discussion at the end of Section 6; see also Figure 7. We are
aware of the fact that the geometric properties of the fin are only a particular aspect of
the fin optimization, since the material, its manufacturability and cost, and its weight (for
aerospace applications) are other aspects that may become relevant (or not) in specific
applications. Clearly, it is not possible to examine all these aspects in this paper. The in-
terested reader can look for examples in [1,2] and the references therein. On the other
hand, we expect that this work is a starting point for a more in-depth analysis of the
efficiency of fins. Different mechanisms of heat dissipation and profiles can be considered.
The possibility to extend the results to 2D or 3D models will be analyzed in future works:
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we underline that the methodology developed here is fairly general and we believe that it
is worth taking into further consideration to be applied to more complex cases. Another
very interesting and physically more complete direction of research will be to enlarge the
model to include a stress-deformation analysis. The starting point may be decoupling
of the thermal effect from the Newton–Hooke equations for elastic response: we expect
that a corresponding entropy term is added to Equation (28) and that the definition of the
efficiency should change accordingly. The possibility to include these effects to the example
given in Section 6 will be also investigated in a next work.
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