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Abstract: A nonlinear mathematical model for the dynamics of permanent magnet synchronous
machines with interior magnets is discussed. The model of the current dynamics captures saturation
and dependency on the rotor angle. Based on the model, a flatness-based field-oriented closed-
loop controller and a feed-forward compensation of torque ripples are derived. Effectiveness and
robustness of the proposed algorithms are demonstrated by simulation results.

Keywords: interior permanent magnet synchronous machine (IPMSM); flatness-based field-oriented
control (FOC); nonlinear machine dynamics; torque ripple compensation

1. Introduction

As modern three-phase current-fed machines are increasingly used for industrial
applications, efficient and accurate current control of such machines is of great economic in-
terest. This is due to the fact that the current controller influences the operational behaviour
of the machine to a very large extent, namely the energy efficiency and the occurrence of
undesirable side-effects, e.g., torque ripples. The aforementioned electric machines com-
prise induction machines (IMs) and permanent magnet synchronous machines (PMSMs),
where the latter are more energy-efficient and have a higher power density [1].

The present work considers a PMSM with interior magnets (IPMSM). Such IPMSMs
are particularly advantageous in terms of their achievable torque density [2]. Due to
increasingly involved designs of the rotor [3,4] and the stator [5], and due to higher power
density [6], effects such as magnetic saturation of the iron material, cross-coupling [7], and
the dependency of the system dynamics on the rotor position become more important for
high-precision control design [8]. Typically, the influence of the rotor position is neglected.
However, some modelling approaches exist in the literature that emphasise the importance
of considering the rotor dependence in the machine model, see e.g., [8–13].

For PMSMs, the consideration of the rotor position in modelling and control design
is useful for compensating ripples on the torque and the current, see e.g., [8]. In [9]
and [10], stator-fixed PMSM flatness-based control schemes are proposed, which rely on
a graph-theoretic approach to magnetic equivalent circuit PMSM modelling from [14].
The proposed method to derive the mathematical model is rather involved, which might
contradict industrial practice. Moreover, the dependency of the model on the rotor angle is
greatly simplified for control design.

In contrast to control schemes based on a stator-fixed model, other flatness-based ap-
proaches for PMSMs exist in the literature that build upon the field-oriented control method-
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ology. That is, the machine is described in rotor-fixed coordinates, see e.g., [15–21]. However,
usually only fundamental wave models are considered that impede the handling of physical
interdependencies of the rotor and the stator field, affecting both the current dynamics and
the electromagnetic torque. In saturated electrical machines, those interactions manifest
themselves as torque and current ripples.

In [8,22], the dynamics of a PMSM, including the dependence on the rotor angle, is
modelled based on a rigorous investigation of the physical phenomena. The model is
derived in rotor-fixed coordinates, and a feed-forward control scheme based on look-up
tables is proposed to compensate ripples on the current and the torque. In [23] torque
ripples of a flux-switching permanent magnet machine are reduced by means of a feed-
forward control scheme, where polynomial approximations for the Fourier coefficients of
an inverse torque model are derived.

The contribution of the present paper is twofold. On the one hand, a nonlinear
mathematical model of the dynamics of an IPMSM is presented (Section 2). The model
includes saturation, cross-coupling, and the dependency on the rotor angle. In industrial
practice, the model can easily be transferred to various types of machines without much
additional development effort. Moreover, the frequently used rotor-fixed coordinates
are preserved. Following the notion of imperfect dynamical systems of [24], the angle-
dependent proportion of the dynamics may be considered an imperfection and, thus, a
conceptually straightforward extension of the well-known fundamental wave model.

On the other hand, the proposed machine model is exploited in order to derive a
flatness-based field-oriented control (FOC) scheme (Section 3.1) as well as a feed-forward
compensation of torque ripples (Section 3.2). That is, the aforementioned imperfection is
systematically compensated. To keep the embedded control algorithms computationally
efficient and to reduce the required memory, they rely on a simplified version of the model
from Section 2. Here, physical considerations are exploited to achieve an efficient reduction
at reasonable losses in accuracy, and the parameters of the reduced model are calibrated by
using existing data from finite element method (FEM) simulations. The proposed scheme
for current control and compensation of torque ripples explicitly decouples the dq-currents.
This significantly simplifies tuning of controller gains and yields an accurate tracking of
even highly dynamic reference currents and a good robustness against model uncertainties,
which is demonstrated in Section 4.

2. Mathematical Modelling
2.1. Voltage Equations

In the following, a three-phase PMSM with star-connected stator winding is con-
sidered. The three phase voltages uabc = (ua, ub, uc)T result from ohmic losses over
the stator windings (resistance Rs) and the change in the corresponding flux linkages
ψabc = (ψa, ψb, ψc)T according to Faraday’s law of induction

uabc = Rsiabc +
dψabc

dt
, (1)

where iabc = (ia, ib, ic)T are the phase currents. The flux linkages are generated by the
permanent magnets and the coil currents.

Note that in the abc-frame the current dynamics depend naturally on the electrical
rotor angle θ, which complicates the design of control algorithms, see e.g., [25]. In order to
simplify the latter, the system variables are transformed into a rotor-fixed dq-coordinate
frame aligned with the magnetic flux of the permanent magnet. To this end, the Park
transformation

(·)dqn = T(θ)(·)abc (2a)

with

T(θ) =
2
3

 cos(θ) cos
(
θ − 2π

3
)

cos
(
θ + 2π

3
)

− sin(θ) − sin
(
θ − 2π

3
)
− sin

(
θ + 2π

3
)

1
2

1
2

1
2

 (2b)
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is used, see e.g., [25]. Applying this transformation to the phase voltages, Equation (1)
yields the well-known voltage equations in the dq-frame

ud = Rsid +
dψd
dt
−ωψq, (3a)

uq = Rsiq +
dψq

dt
+ ωψd, (3b)

with the zero component

un = Rsin +
dψn

dt
, (4)

where ω = dθ/dt. In the fault-free case, the neutral point of a PMSM with symmetric
star-connected stator winding is isolated such that un = 0 [26]. Hence, Equation (4) is
omitted in the following for the sake of brevity.

When saturation and the dependency on the rotor angle are neglected, the well-known
linear fundamental wave model is obtained, and the voltage Equation (3) simplify to

ud = Rsid + Ld
did
dt
−ωLqiq, (5a)

uq = Rsiq + Lq
diq
dt

+ ω(Ldid + ψm), (5b)

with the constant inductances Ld and Lq as well as the permanent magnet flux ψm.
In practice, the inductances depend on both currents id and iq and the electrical rotor

angle θ. The dependency on the currents is a result of the saturation of the iron material,
which yields a varying slope of the ψ-i-characteristics over the current. Additionally, the
d-current affects the q-component of the flux linkage and vice versa due to common flux
paths in the stator yoke, which is known as cross-coupling, see [7].

Besides the saturation and cross-coupling of the magnetic flux linkage, the rotor angle
plays a significant role that should be taken into account. In order to obtain the constant
inductances Ld, Lq and ψm as in the simplified model in Equation (5), the flux linkages
in the abc-frame must be purely sinusoidal over the rotor angle. However, in practice,
several physical effects lead to deviations from pure sinusoidal distributions of the flux
linkages over the rotor angle. On the one hand, the air gap field excited by the stator has a
staircase shape due to concentrated fluxes in the slots [26]. On the other hand, the rotor
shape and the position of the magnets often yield a significant variation of the magnetic
flux distribution from an ideal sinusoidal shape caused by the arrangement of the magnets
and the resulting magnetic reluctance, see e.g., [3]. It should be emphasised that due to
these reasons, even in the dq-frame, the dependency of the flux linkages on the rotor angle
is significantly pronounced.

Altogether, the time derivatives of the magnetic fluxes in Equation (3) can be expanded
in order to achieve

ud = Rsid + ψdd
did
dt

+ ψdq
diq
dt

+ ψdθ
dθ

dt
−ωψq, (6a)

uq = Rsiq + ψqd
did
dt

+ ψqq
diq
dt

+ ψqθ
dθ

dt
+ ωψd (6b)

with the abbreviations

ψdd =
∂ψd
∂id

(id, iq, θ), ψdq =
∂ψd
∂iq

(id, iq, θ), ψdθ =
∂ψd
∂θ

(id, iq, θ),

ψqd =
∂ψq

∂id
(id, iq, θ), ψqq =

∂ψq

∂iq
(id, iq, θ), ψqθ =

∂ψq

∂θ
(id, iq, θ).
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2.2. Torque Characteristics

As the current dynamics, the torque generated by the motor depends on the rotor
angle, too. This dependency yields undesired fluctuations in the motor torque, which can
be classified as follows [27]:

1. Torque ripple due to the interaction of the stator field distribution with the electromag-
netic rotor properties, which is excited by

(a) a non-sinusoidal rotor field distribution and
(b) a varying reluctance distribution over the circumference of the rotor.

2. Cogging torque due to the interaction of the rotor field distribution with the circumfer-
ential variation of the stator reluctance.

3. Pulsating torque: sum of the torque ripple and the cogging torque.

A frequently used approach to derive the torque characteristics of an electric machine
is to calculate the magnetic coenergy W∗m, see e.g., [28]. Then, the torque Te is achieved as

Te = p
∂W∗m

∂θ
, (7)

where p is the number of pole pairs. Alternatively, the power balance can be exploited as
follows [28]. The electrical power Pe supplied to the motor reads

Pe = uT
abciabc =

3
2
(udid + uqiq), (8)

where ud and uq are given by the voltage Equation (6). Since the mechanical power output
Pm can be described as

Pm = TeΩ = Te
ω

p
, (9)

with the rotor speed Ω = ω/p, the electrical torque Te is calculated by splitting the
power balance up into copper losses, change in magnetic energy, and mechanical power,
see e.g., [25]. Doing so,

Te =
3p
2
(
ψdiq − ψqid

)
+

3p
2
(
ψdθ id + ψqθ iq

)
(10)

is obtained, see also [28] or [29].
If the dependency of the rotor angle is neglected, the second summand on the right-

hand side of the torque expression in Equation (10) is omitted and the well-known torque
equation is obtained, representing a constant torque when the currents id and iq are con-
stant [25].

Notice that Equation (10) yields a vanishing torque for vanishing currents and, thus, is
insufficient to explain the existence of the cogging torque. Hence, Equation (10) is extended
analogous to [13] as follows:

Te =
3p
2
(
ψdiq − ψqid

)
+

3p
2
(
ψdθ id + ψqθ iq

)
+ Tcog(id, iq, θ), (11)

where Tcog is the cogging torque.

2.3. Simplified Model for Embedded Control

In order to exploit the current dynamics in Equation (6) for model-based control,
partial derivatives of the flux linkages must be known. To this end, either the characteristics
of the flux linkages or the magnetic coenergy can be stored on the embedded control
hardware. Then, the required partial derivatives of the flux linkages are obtained by
(repeated) partial differentiation, see e.g., [10,13,30]. Doing so, the achievable control



Energies 2021, 14, 1590 5 of 14

accuracy is the better the more accurate the embedded numerical model of the flux linkages
or coenergy is.

In principle, the magnet characteristics can be represented on the embedded hardware
by data-based surrogate models such as look-up tables (in combination with a suitable
interpolation algorithm), artificial neural networks, or Gaussian processes. However, such
universal approximators may be inefficient in terms of required memory or computational
effort since they do not exploit physical interdependencies.

In the following, an alternative approach for representing the relevant characteristics
of a PMSM is described. Initially, the torque Equation (11) is approximated as

T̂e(id, iq, θ) =
3p
2
(
ψ̄d(id, iq)iq − ψ̄q(id, iq)id

)
+ (12)

3p
2
(
ψ̂dθ(id, iq, θ)id + ψ̂qθ(id, iq, θ)id

)
+ T̂cog(id, iq, θ),

where the mean flux linkages over one electrical revolution

ψ̄j(id, iq) =
1

2π

∫ 2π

0
ψj(id, iq, θ)dθ, j ∈ {d, q} (13a)

replace ψd and ψq, respectively. Note that ψ̄d and ψ̄q are independent of the rotor angle. The
partial derivatives ψdθ and ψqθ and the cogging torque Tcog are replaced by the following
particular truncated Fourier series:

ψ̂dθ(id, iq, θ) = ∑
k∈{6,12,24}

cdk(id, iq) sin(kθ + (adkid + bdk)), (13b)

ψ̂qθ(id, iq, θ) = ∑
k∈{6,12,24}

cqk(id, iq) sin(kθ + (aqkiq + bqk)), (13c)

T̂cog(id, iq, θ) = ∑
k∈{12,24,36}

cck(id, iq) sin(kθ + φck). (13d)

These expressions are justified as follows:

1. Due to the interaction of the nonsinusoidal stator field distribution with both that of
the rotor as well as that of the reluctance, only integer multiples of the 6th fundamental
stator frequency fs are present in ψdθ and ψqθ . This is due to the interaction of the three
phases, see e.g., [11,12,27,31]. For the motor studied in this research, it has turned out
that the 18th harmonic and frequencies greater than the 24th harmonic almost vanish.
Additionally, linear regression models for the phase shifts are sufficiently accurate for
the particular type of motor.

2. The fundamental frequency of the cogging torque can be derived from the number
of pole pairs of the rotor and the stator slots, as presented e.g., in [32]. For the
present machine, 36 fs is achieved. It has turned out that subharmonics also need to
be considered. Here, constant approximations of the phase shifts are sufficient.

Note that no coefficient of the problem-tailored surrogate models of Equation (13)
depends on more than two variables. This allows efficient implementation of these models
on an embedded hardware by simple look-up tables.

In order to approximate the current dynamics of Equation (6) as well, surrogate models
for the partial derivatives ψdd, ψdq, ψqd, and ψqq of the flux linkages are required in addition
to Equation (13). To this end, averaged flux linkages in Equation (13a) are numerically
differentiated on the embedded hardware.

2.4. Model Calibration

In order to calibrate the torque model in Equation (13), training datasets can be
generated either based on laboratory measurements or on a numerical simulation model
such as a finite element model. The first approach would require a physical prototype of the
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motor and an accurate test bench for dynamic torque measurement. In contrast to this, the
second approach can be pursued in an earlier project phase, when no physical prototype
of the motor is available. Since the utilisation of high-fidelity FEM computations has
become common practice in industry, we propose to simply reuse the available simulation
models as they are for data generation. This also avoids the necessity for involved torque
measurement equipment.

For the present machine with 2p = 6 poles, representative normalised magnetic flux
linkages and their normalised partial derivatives, respectively, are shown in Figures 1 and 2,
respectively. It can be seen that the magnetic flux linkage and its partial derivatives vary
over the electrical rotor angle θ. This variation is mostly pronounced for small currents and
gets smaller with increasing magnetic saturation, see Figure 1. Moreover, the saturation
influences the q-direction more than the d-direction, see Figure 2.
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Figure 1. Exemplary flux linkage characteristics of the considered machine, normalised by the averaged flux linkage ψ̄d(0, 0)
due to the permanent magnets.

Given the training data on a sufficiently fine grid, the standard particle swarm opti-
misation algorithm [33] has been used for least-squares fitting of the model parameters.
Figure 3 demonstrates the achieved model accuracy, where the number of id-iq-abscissas
has been reduced by a factor of 10 in comparison with the number of training datasets.
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Figure 2. Exemplary normalised partial derivatives of the flux linkages.
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Figure 3. Comparison between the calibrated surrogate model from Section 2.3 and the accurate
numerical finite element method (FEM) simulation.

3. Control Algorithm
3.1. Flatness-Based Current Control

Given a nonlinear system

dx
dt

= f (x, u), x ∈ Rn, u ∈ Rm, (14)

where u is the input and x is the state, whether the system is differentially flat or not is
of great interest from a control perspective. This is due to the fact that a differentially flat
system is controllable and, moreover, a so-called flat output y ∈ Rm can be found such
that the design of multi-variable decoupling feed-forward and feedback control laws for y
becomes particular simple [34].

Considering the nonlinear machine model in Equation (6), that may be written in
the form of Equation (14) with the input u = (ud, uq)T , the state x = (id, iq)T , and the
output y = (id, iq)T , it can easily be seen that for the current dynamics in Equation (6),
y is a flat output. In order to design a feedback law, the new input v = (vd, vq)T with
vd = did/dt, vq = diq/dt is introduced, which allows us to rewrite the current dynamics
given in Equation (6) as

ud = Rsid + ψddvd + ψdqvq + ω(ψdθ − ψq), (15a)

uq = Rsiq + ψqdvd + ψqqvq + ω(ψqθ + ψd). (15b)

Choosing the components of v as PI control laws

vj =
dy∗j
dt

+ KPj(y∗j − yj) + KI j

∫ t1

t0

(y∗j − yj)dτ, j ∈ {d, q}, (16)
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and where t 7→ y∗j (t) denotes the (at least once differentiable) reference trajectory for yj,
the decoupled closed-loop dynamics

dej

dt
+ KPjej + KI j

∫ t1

t0

ejdτ = 0, j ∈ {d, q} (17)

of the tracking errors ej = y∗j − yj is achieved, which is asymptotically stable for KPj, KI j > 0.
Note that the closed-loop error dynamics in the dq-coordinates are linear and decoupled,
which simplifies the tuning of the controller gains. The actual controller gains can, e.g., be
chosen by pole placement.

3.2. Torque Control and Compensation of Torque Ripples

Given a desired torque T∗e , various strategies exist in the literature to choose advanta-
geous desired combinations i∗d and i∗q of the dq-currents, such as the so-called maximum
torque per ampere (MTPA) algorithm [35]. However, these algorithms typically do not take
into account the dependency of the torque characteristics on the rotor angle. This results in
torque ripples, which excite noise and vibrations during operation of the motor.

Besides a ripple-reducing design of the motor [32], torque ripples can be compensated
by control algorithms. Here, it is common practice in the literature to inject a ripple-
compensating current in the q-direction, see e.g., [23,36,37].

Such an algorithm based on the efficient torque model from Section 2.3 is described in
the following. That is, given desired values i∗d and i∗q for the dq-currents, which have been
computed without consideration of the torque ripples, an injection current iqc is sought
such that when

i∗∗q = i∗q + iqc (18)

instead of i∗q is used as the reference current for the underlying current control law, torque
ripples are reduced.

Based on Equation (11), the desired torque T∗e is computed as

T∗e (i
∗
d , i∗q ) =

3p
2

(
ψ̄d(i∗d , i∗q )i

∗
q − ψ̄q(i∗d , i∗q )i

∗
d

)
, (19)

where ψ̄d and ψ̄q are given by Equation (13a). By comparison of the desired torque of
Equation (19) with the approximated actual torque of Equation (11), the injection current
iqc is achieved as the solution of the implicit nonlinear equation

T∗e (i
∗
d , i∗q )− Te(i∗d , i∗q + iqc, θ) = 0. (20)

Note that no analytical solution of Equation (20) for iqc can be found. Hence, an
iterative solution is performed in each real-time step, where the bisection method is
proposed in the present work due to its robustness and simplicity. To keep the required
number of iterations small and, thus, to reduce the computation time, an initial guess i0qc is
computed in each real-time step as

i0qc =

3p
2

(
−ψ̂qθ(i∗d , i∗q , θ)i∗q − ψ̂dθ(i∗d , i∗q , θ)i∗d

)
− T̂cog(i∗d , i∗q , θ)

3p
2

(
ψ̄d(i∗d , i∗q ) + ψ̂qθ(i∗d , i∗q , θ) + L̄dqi∗q − L̄qqi∗d

) , (21)

where L̄dq and L̄qq are the arithmetic means of ψ̄dq and ψ̄qq over the whole range of operation
of the motor. Given the initial guess i0qc from Equation (21), the search interval of the

bisection method is reduced to
[
i0qc − δ/2, i0qc + δ/2

]
, where the interval width δ is chosen

to capture relevant errors of the initial guess. Starting with i0qc, the approximate solution iN
qc

of iqc is achieved after N iterations of the bisection method.
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For the flatness-based control law in Equation (16), not only the desired currents i∗d
and i∗∗q are required, but also their time derivatives di∗d/dt and di∗∗q /dt = di∗q /dt + diqc/dt.
If the overlying algorithm, which generates i∗d and i∗q , does not also provide di∗d/dt and
di∗q /dt, it is often reasonable to assume di∗d/dt ≈ di∗q /dt ≈ 0 or to approximate di∗d/dt and
di∗q /dt numerically from i∗d and i∗q . In contrast to this, the injection current iqc is relatively
quickly fluctuating. Hence, greater care should be taken on the computation of diqc/dt to
achieve a sufficient bandwidth of the ripple compensation. In the present work, a simple
linear time-invariant differentiating filter with the transfer function s/(Ts + 1), where s is
the differentiation operator and T is the time constant of the filter, is used to approximate
diqc/dt from iN

qc. If a higher accuracy is required, diqc/dt can be computed by implicit
differentiation of Equation (20) at the cost of increased computational complexity.

The proposed control scheme, consisting of the flatness-based field-oriented current
controller from Section 3.1 and the feed-forward compensation of torque ripples, is illus-
trated in Figure 4.

i∗d , di∗d
dt

iqc, diqc
dt i∗∗q ,

di∗∗q
dt ud,q ua,b,c

ia,b,c

θ, ω
id,q

i∗q ,
di∗q
dt

Ripple comp.
(20)

Controller
(15), (16)

Inverse Park
(2)−1

Physical
system

Park (2)

Figure 4. Block diagram of the closed-loop control scheme.

4. Simulation Results

For numerical validation, a co-simulation of the proposed algorithms with a detailed
model of the physical system has been implemented in MATLAB/SIMULINK. The physical
system is simulated with the ode45 variable-step solver using a relative tolerance of 10−8.
The control algorithms have been discretised using the trapezoidal integration rule and
run at a fixed sampling period of τel/20, where the electrical time constant τel is defined as

τel =
1

Rs

∂ψ̄d
∂id

(0, 0). (22)

Note that for the present motor, the selected time constant based on the d-direction is faster
than its counterpart for the q-direction. The controller gains in Equation (16) are chosen as

KPd
τel

=
KPq

τel
= 1.6× 106 1/s2,

KId
τel

=
KIq

τel
= 3.2× 109 1/s3. (23)

To demonstrate the robustness of the control algorithms, 10% relative parameter errors on
both Rs and the magnetic flux characteristics as well as a bias of 0.1◦ on the measured rotor
angle are simulated.

Figure 5 demonstrates that the flatness-based feedback controller from Section 3.1
enables a very accurate tracking of large simultaneous set-point changes on both id and
iq within a time significantly shorter than the time constant defined by Equation (22).
Furthermore, the controller shows a good robustness against the simulated parameter
errors and the measurement error on the rotor angle.

Figure 6 shows the effectivity of the torque ripple compensation from Section 3.2
over the whole range of achievable torques for the given motor. It can be seen that
already by the initial guess of Equation (21) for the required compensation current iqc, an
average relative reduction of the torque ripples by approximately 73% is achieved. By
iterative refinement of the initial guess based on Equation (20), the average relative ripple
reduction increases to 84%. For operating points where the torque ripples are particularly
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pronounced, even higher relative reductions are reached. This can be seen in more detail in
Figure 7. The remaining relatively small ripple after the proposed compensation is due to
the simplifications of Equation (13) in comparison to the high-fidelity FEM-based model.
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i q
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Figure 5. Tracking characteristics of the flatness-based field-oriented current controller for a simulta-
neous rapid set-point change over the whole current ranges.
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Figure 6. Averaged torque ripple relative to the respective mean torque without compensation, with
compensation by i0qc and by iN

qc.
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Figure 7. Generated torque and closed-loop controlled dq-currents with and without torque ripple
compensation (note the different scaling of the id and iq axes).

5. Conclusions

Mathematical models for the current dynamics and the torque of PMSMs have been
introduced. The proposed models capture saturation, cross-coupling, and dependency on
the rotor angle. Based on the models, a control scheme containing a flatness-based field-
oriented closed-loop current controller and a feed-forward compensation of torque ripples
has been derived. In order to improve the computational efficiency and to reduce required
memory on embedded hardware, the motor characteristics used in the control algorithms
have been approximated by truncated Fourier series. These application-specific surrogate
models have been calibrated using data from FEM simulations, which are typically present
in an industrial design process for electric motors. High accuracy of the current control
and effective compensation of torque ripples has been simulatively demonstrated even
under significant model uncertainties and a bias on the measurement of the rotor angle.
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