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Abstract: Although the deployment and integration of isolated microgrids is gaining widespread
support, regulation of microgrid frequency under high penetration levels of renewable sources is
still being researched. Among the numerous studies on frequency stability, one key approach is
based on integrating an additional loop with virtual inertia control, designed to mimic the behavior
of traditional synchronous machines. In this survey, recent works related to virtual inertia control
methods in islanded microgrids are reviewed. Based on a contextual analysis of recent papers from
the last decade, we attempt to better understand why certain control methods are suitable for different
scenarios, the currently open theoretical and numerical challenges, and which control strategies
will predominate in the following years. Some of the reviewed methods are the coefficient diagram
method, H-infinity-based methods, reinforcement-learning-based methods, practical-swarm-based
methods, fuzzy-logic-based methods, and model-predictive controllers.

Keywords: frequency control; islanded microgrid; renewable energy; virtual inertia control

1. Introduction

Renewable energy sources (RESs) are frequently deployed in modern power grids
to promote a myriad of environmental and economical benefits. However, the increasing
integration of RESs significantly decreases the rotational inertia of the grid, which jeopar-
dizes grid stability and its overall dynamic behavior [1–4]. A central challenge is regulating
the grid’s frequency under high penetration levels of renewable sources. One approach
for addressing this problem is to install fast-reacting storage systems with virtual inertia
controllers alongside low-inertia power sources; such controllers have been extensively
studied in recent years [5–11]. Each control method has its own benefits and limitations.
For instance, classical control paradigms are simple in general but are designed for spe-
cific scenarios, whereas data-driven algorithms are flexible and enable online learning.
However, these algorithms are numerically complex and require adequate data to operate
efficiently. Hybrid control strategies have low numeric complexity, but their convergence
is hard to guarantee in most cases. Proposing suitable guidelines for choosing the best
algorithm is currently an open question, and this question becomes more important when
the microgrid is isolated [11–17].

Microgrids have received increasing attention as a means of integrating distributed
generation into the electricity grid [18]. Usually described as confined clusters of loads,
storage devices, and small generators, these autonomous networks connect as single
entities to the public distribution grid through a point of common coupling (PCC). Figure 1
illustrates a typical microgrid network. Microgrids comprise a variety of technologies:
renewable sources, such as photovoltaic and wind generators, are operated alongside
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traditional high-inertia synchronous generators, batteries, and fuel-cells. Thus, energy is
generated near the loads, enabling the use of small-scale generators that increase reliability
and reduce losses over long power lines. The locality of the microgrid network enables
the improved management of energy. Generators (and possibly loads) may be controlled
by a local energy management system to optimize power flow within the network. The
objectives of energy management depend on the mode of operation: islanded or grid-
connected [19]. In grid-connected mode, the typical objectives are to minimize the price of
energy import at the PCC, to improve power factor at the PCC, and to optimize the voltage
profile within the microgrid [20]. In islanded mode, which is addressed in this paper, the
main goal of power management is to stabilize the system and preserve high reliability
and resiliency in terms of frequency and voltage.
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Figure 1. Schematic representation of a typical microgrid. PCC—point of common coupling.

Few recent survey papers describe different aspects in the context of virtual inertia
within power grids with a high penetration of RESs. A comprehensive review of vir-
tual inertia implementation techniques was provided in [12]. The reviewed works were
classified and compared using virtual inertia topologies. Some selected topologies were
simulated, showing that similar inertial responses can be achieved, relating the parameters
of these topologies through time and inertia constants. A discussion of the challenges
and research directions is presented, indicating future research needs for the integration
of virtual inertia systems. Singh et al. [21] reviewed various topologies for emulating a
virtual inertia algorithm along with control strategies for general distributed generation.
They also reviewed the optimal size and location of synthetic inertia in a power system.
Other authors [22] presented a review focusing on the inertia values for power systems.
The inertia values were estimated based on different regions in the last 20 years. The
contribution of photovoltaic (PV) power plants as virtual inertia was discussed and the
damping factor evolution was analyzed.

Contrary to these comprehensive reviews, which focused on virtual inertia topolo-
gies implementation [12], virtual inertia and frequency control for distributed energy
sources [21], and inertia estimation evolution in power systems [22], we focused on the
systematic comparison of virtual inertia control methods designed to solve the frequency
regulation problem in islanded microgrids. In particular, we aimed to understand why
certain control methods are more efficient in different circumstances, and which control
strategies will gain popularity in the coming years. Toward this end, we considered dif-
ferent control techniques available in the literature for the period of 2010–2020, and then
categorized them into three groups: classic, advanced, and hybrid methods. We provide
a detailed analysis of each control and optimization paradigm through various quality
criteria. Finally, we provide a contextual analysis and highlight the current developments
and trends for various combinations of virtual inertia control methods and technologies
with a focus on microgrid applications.
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The rest of this paper is organized as follows: Section 2 presents a model of a standard
low-inertia microgrid and explains different control quality criteria. Section 3 summarizes
the classical methods applied for virtual inertia control, followed by a discussion of the
advanced control methods presented in Section 4. Hybrid control algorithms are described
in Section 5. Section 6 provides an analysis of recent trends in low-inertia power systems
and virtual inertia control.

2. Overview of Low-Inertia Microgrid System

The low-inertia microgrid encompasses participants with different power generation
inertia and loads with complex dynamics [23–26]. Therefore, microgrids with high RES
penetration pose various challenges for integration to the massive distribution networks
such as (1) active/reactive power imbalance and voltage droop in transmission lines, (2)
production/consumption imbalance in distribution loads, and (3) frequency mismatch with
other microgrids and the rest of the power grid [3,27]. Hence, energy storage systems are
considered the prime actuator in frequency stability control, which, in reality, have physical
limitations such as (1) (dis)charge cycles, (2) restricted power reservation, (3) reserved
power losses, and (4) individual speed of (dis)charge. Moreover, energy storage control
performed by virtual inertia or a virtual synchronous generator (VSG) uses power-inverting
electronics, which has delays in frequency measurement and power conversion [12,28–32].

2.1. Modeling of a Low-Inertia Microgrid

The considered microgrid was adopted from several recent publications [16,33–37] and
is depicted in Figure 2. The addressed scenario includes simplified residential/industrial
loads, energy sources (thermal power plant, wind farm, and solar power plant), and energy
storage systems [11,38,39]. The thermal power plant is composed of a governor with a
generator rate constraint (GRC) and a turbine with a frequency rate limiter, which restricts
the valve opening/closing (VU and VL, respectively). The dynamic model of a microgrid
uses a hierarchical architecture with primary and secondary control loops. The primary
control loop has a droop coefficient 1/R, and the secondary loop has an area control error
(ACE) system with a second frequency controller KI and a first-order integrator. Frequency
regulation is performed by a virtual inertia device with an additional controller. The
balancing system is performed as the first-order transfer function with microgrid damping
coefficient D and system inertia H, which are common for all generators. The power
generation by variable energy sources is modeled as a random signal with a first-order
holder. The hierarchical structure includes the reservation of the primary and secondary
control loops. The modeling parameters of the microgrid are summarized in Table 1;
Table 2 lists the typical simulation scenarios available in the recent literature.

Table 1. Nomenclature: microgrid parameters.

Variable Physical Meaning

∆Pm Generated power change from the distributed generator
Tt Time constant of the turbine
∆Pg Governor valve-position change
Tg Time constant of the governor
∆PACE Control signal change for secondary control
KI Integral control variable gain
∆PW Change in generated power-based wind farm
∆Pwind Initial wind power variation
TWT Time constant of wind turbines
∆PPV Change in generated power-based solar farm
∆Psolar Initial solar power variation
TPV Time constant of the solar system
∆PL Load power change
∆PRL Variations in residential loads
∆PIL Variations in industrial loads
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Figure 2. Schematic representation of an islanded microgrid with hierarchical control. GRC—
generator rate constant; LFC—load-frequency control.

2.2. Frequency Regulation in Low-Inertia Power Systems

Frequency stability is important when low-inertia energy sources penetrate the grid
in large amounts [1,40,41]. For example, the wind turbine rotor of a synchronous generator
has natural inertia, which plays a key role in the power compensation for short periods
(up to 5 s) [3]. Solar panels may be considered as zero-inertia generators, since they do not
provide physical energy storage [42]. The response of frequency deviation is defined by
the rate of change of frequency (RoCoF), which can be calculated as follows [43,44]:

RoCoF =
d(∆ f )

dt
. (1)

The magnitude of the RoCoF reflects the balanced state in the dynamics of renewable
power sources. The problem is generating an active power resembling that generated by
traditional power plants.

Table 2. Nomenclature: dynamic parameters of islanded microgrids in different scenarios.

Name Uncertainty
Parameter

Nominal
Value

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

System inertia H (p.u. MW
s)

95–100% 80% 40–50% 25–30% 15% 10%

Droop characteristic R (Hz/p.u.
MW)

2.4 2.4 2.4 1.8–2.4 2.4 1.2

Time constant of governor Tg (s) 0.1–0.12 0.1 0.1 0.1–0.15 0.1 0.175
Time constant of turbine Tt (s) 0.4–0.975 0.4 0.4 0.4–0.7 0.4 0.7
Time constant of solar
panel

TPV (s) 1.8–1.85 1.85 1.8–1.85 1.8 1.85 1.85

Time constant of wind
turbine

TWT (s) 1.5 1.5 1.5 1.5 1.5 1.5

Integral control variable
gain

Ki (s) 0.05 0.05 0.05 0.04–0.05 0.05 0.03

System damping coeffi-
cient

D (p.u.
MW/Hz)

0.015–0.0195 0.015 0.015 0.0135–0.015 0.015 0.003

Frequency bias β (p.u.
MW/Hz)

1.0 1.0 1.0 0.8–1.0 1.0 0.7
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Table 2. Cont.

Name Uncertainty
Parameter

Nominal
Value

Scenario 1 Scenario
2

Scenario 3 Scenario 4 Scenario 5

Virtual inertia control
gain

KVI 0.5–0.8 1.0 1.0 0.8–1.0 1.0 0.4

Virtual inertia time
constant

TVI (s) 10 10 10 10 10 11

Virtual inertia control
power limiter

∆Pinertia,max / min0.25–0.3 0.25-0.3 0.25–0.3 0.3 0.3 0.25

Valve gate speed VU/L 0.3–0.5 0.5 0.1–0.5 0.1–0.5 0.3 0.5
Time constant phased
locked-loop (PLL)

ωn (s) 1.5 – – – – 0.3

References [16,33,35–
37,45]

[34,37] [16,33,34,
37,45,46]

[16,34] [33] [35]

2.3. Virtual Inertia Control

The virtual synchronous generator (VSG) produces the power alternative to the real
synchronous machine [47,48]. This generator can be applied in systems with a high level
of fluctuating renewable power to enhance the frequency stability. Virtual inertia (VI) is
a specific part of the VSG designed to compensate for the lack of inertia using a power
injection mechanism [3]. The default operational limitations of the virtual inertia device
cannot provide reliable frequency support. Therefore, an additional robust controller must
be used to deal with nonlinearities in low-inertia environments. Traditionally, the virtual
inertia control setup (Figure 3) consists of a derivative component, a designed controller
K(s), virtual inertia control (energy storage system and virtual inertia variable gain), and a
power limiter (∆Pinertia,max, ∆Pinertia,min).

Limiter

ControllerDerivative Virtual Inertia

Control

Figure 3. Typical structure of a virtual inertia control block.

2.4. Energy Storage System

The energy storage system (ESS) has been implemented in various physical real-
izations [38,49,50]. The technology can be directly incorporated into frequency-response
services and support the RoCoF during a frequency event. For the last decade, ESSs became
an essential component in renewable energy integration, since they may provide frequency
smoothness and balance for further dispatch [5,51–57]. The simplified ESS model can be
represented as follows:

G(s) =
1

TVIs + 1
. (2)

2.5. Hierarchical Control

Hierarchical frequency control introduces a multilevel cascade system with three
key layers: primary, secondary (load frequency control), and tertiary control, and two
additional layers: internal generation control and high-level policy control. Primary control
is responsible for regulation of individual elements: power sharing, frequency droop, and
local voltage control. Secondary control is oriented toward the balancing of active and
reactive power by determination of the set-points of the primary controller and secondary
control, including grid synchronization, automatic generation control (AGC), secondary
load-frequency control (LFC), and voltage-drop control. Tertiary control (i.e., reserved) is
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related to energy management. It is used to provide optimal power flow and steady-state
conditions in a distribution network [3,58–61].

2.6. Control Quality Criteria

In this section, we discuss typical control criteria. They are then used to examine the
benefits and drawbacks of the presented algorithms.

• Online learning. Real-time optimization is used to adapt controllers to varying con-
ditions [62,63], and usually requires a special computational device for additional
tuning, validation, and verification.

• Robustness. Flexible reaction to disturbances is an important requirement in low-
inertia power grids, since, in practice, frequency deviation is limited to the range of
±0.1–1.5 Hz [12,64–68], and Nadir requirements are ±0.024 Hz [12,69]. Using this
criterion, we briefly describe testing scenarios and the performance of the considered
virtual inertia controller.

• Implementation complexity. Complexity corresponds to the implementation efforts
of an algorithm in real controlling hardware: size, number of inputs and outputs,
mathematical complexity, etc.

• Optimization difficulty. This depends on the number of inputs and outputs, time
for optimization procedure, and other requirements for the computational power to
provide the maximum possible efficiency.

2.7. Description of the Virtual Inertia Control Algorithms

Several recent works [12,16,33–36,70,71] addressed the problem of optimal frequency
support with high penetration of variable renewable energy sources. For example, Kerd-
phol et al. [35] designed a robust H∞ controller to provide stability support based on the
rate of change of frequency. The proposed solution provides advantages over conven-
tional virtual inertia control and optimally tuned proportional integral (PI) controllers
in scenarios when the wind farm is connected, solar panels are disconnected, and the
system inertia is 10% and 100%, respectively. Kerdphol et al. [34] further studied the prob-
lem by implementing a virtual inertia control scheme combined with a fuzzy-logic-based
approach. The proposed algorithm performed robustly under different scenarios with
additional uncertainties, including 80%, 40%, and 30% total system inertia and mismatches
in the primary/secondary control loops. Kerdphol et al. [45] proposed a model predictive
control scheme and compared it to a fuzzy-logic controller for the case of additional load
connections. Unlike the previous works, the studied microgrid has conceptual differences:
a closed-loop turbine system, RES power generation from two complex wind farms, and
minor differences in the transfer function describing the turbine and system inertia. Similar
ideas were presented in Tamrakar et al. [72], but without modeling renewable energy
disturbances. Magdy et al. [16] presented a PI controller optimized using particle swarm
optimization and combined with a digital frequency protection system in scenarios of
(dis)connecting loads and renewable energy sources.

In the following sections, we discuss the main features and constructive advantages
and disadvantages of the most common algorithms for virtual inertia control, focusing
on the load-frequency stability, implementation complexity, and performance against
disturbances. We categorize the revised implementations into three groups: advanced,
classical, and hybrid control as detailed in Figure 4.
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Figure 4. Classification of algorithms for virtual inertia control. PI—proportional integral.

3. Classical Control Algorithms

The major features of classical control algorithms are as follows:

• Classical optimization. The optimization is based on the reaction to disturbances,
which are approximated by a transfer function or state-space representation. Usually,
classical optimization are applied to slow processes [73].

• Simplicity. Classical algorithms have a simple control structure, which enables effec-
tive manual tuning and requires low computational power.

• High robustness. Classical algorithms can be highly robust, but require a specific
design procedure.

3.1. H-Infinity

H-infinity, H∞, achieves the synthesis of an optimal controller by considering mi-
crogrid disturbances and uncertainties via state-space representation, which can provide
high robustness and simple hardware realization. However, the main difficulty is the
necessity of designing an accurate state-space description for tuning the controller [33,35].
Frequency control based on H∞ was used in [33,35,74–76]. The solution presented in [35]
applies a linear fractional transformation in the optimal H∞ regulator design as the basis
for modeling microgrid uncertainties z, such as system inertia H, damping properties D,
and phased locked-loop (PLL) delays (ωn and ζ).

H∞ optimization performs in offline mode and is more vulnerable to low-inertia
nonlinearities than data-driven algorithms. At the same time, synthesis of the robust
model by H∞ provides reliable frequency support. For example, Kerdphol et al. [33]
implemented this method, which was successfully tested with 95%, 45%, and 15% of the
nominal system inertia and using two types of disturbances: (1) 10% of step changes in
load power demand and (2) mismatch in microgrid generation by increased time constant
of the governor and time constant for the turbine. Kerdphol et al. [35] reported an H∞
controller tested with 100% and 10% system inertia in a scenario with 80% renewable
energy penetration. However, the common limitation of the H∞ method is the notable
peaks during (dis)connection of power plants. H∞ requires a detailed understanding of
classical control theory and optimization, which does not require powerful hardware for
operation. Nevertheless, the synthesized control model is a high-order transfer function
and often requires order reduction [33,35]. The biggest difficulties with H∞ optimization
are the procedure for developing an accurate state-space representation and the manual
estimation of disturbances. The optimization based on application of the H∞ controller is
summarized in Algorithm 1.
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Algorithm 1 Design of the H∞ controller

1: Define the state vector xT = [∆ f , ∆Pm, ∆Pg, ∆PACE, ∆Pinertia, ∆PW , ∆PPV , ∆ fPLL1, ∆ fPLL2]
T

2: Define the distribute vector wT = [∆Pwind, ∆Psolar, ∆PL]
T

3: Define the control input u = ∆ fPLL and output y = ∆ fPLLK(s)
4: For a given microgrid, derive the state-space model with defined vectors
5: Design the optimal H∞ controller using the linear fractional transformation technique
6: Validate the designed K(s) controller using a close-loop inequality equation, and if needed, repeat

the optimization procedure

3.2. Coefficient Diagram Method

Controllers based on the coefficient diagram method (CDM) rely on an algebraic
optimization approach through polynomial state-space representation and the Routh–
Hurwitz stability criterion [77,78], where the theoretical basis is constituted to satisfy the
Lipatov–Sokolov stability criterion [79–82].

Similar to H∞, the optimization procedure is designed for offline mode. The imple-
mentation of a controller based on the CDM in Ali et al. [36] produced frequency stability
in a range less than ±0.1 Hz in a scenario with 100% inertia and two types of disturbances:
(1) 10% step load perturbation and (2) random load demand. In contrast to H∞, it can
mitigate peaks after the (dis)connection of renewable energy sources. However, the so-
lution uses a two degrees of freedom system structure expressed as N(s)/D(s), which is
designed to track a limited number of disturbances. The main drawback of CDM con-
troller synthesis is similar to H∞: it relies on a good understanding of classical control
theory optimization. However, it can be implemented using relatively simple hardware. In
contrast to H∞, CDM optimization performs without requiring order reduction and uses
the coefficient method instead of the Bode diagram [36,83]. However, the validation of
synthesized control by Routh–Hurwitz or Lipatov–Sokolov stability criteria depends on the
order of the synthesized control system [36,81–83]. The design procedure is summarized
in Algorithm 2, which was adopted from the flowchart provided by [36].

Algorithm 2 CDM algorithm

1: Define polynomial equation for microgrid modeling
2: Define external disturbances d = [Pwind, Psolar, PL] and reference input r = ∆ fre f and

CDM controller as K(s)
3: Calculate the K(s) output system as y = ∆Pinertia and the input system as u = ∆ f with

external disturbances and reference input
4: Calculate the polynomial of the designed K(s) control system with microgrid external

disturbances
5: Validate the designed K(s) control system
6: if the stability conditions of optimal CDM controller are verified then, go to step 10
7: else Check the value of the stability indices and the stability limits
8: Calculate the desirable CDM controller Ktarget(s)
9: Compare Ktarget(s) and K(s),

10: if the model is validated then
11: A robust K(s) controller is obtained
12: Check the robustness of the system response
13: else Repeat the procedure
14: end if
15: end if

4. Advanced Control Algorithms

The major features of advanced control algorithms can be expressed as follows:

• Adaptation to uncertain conditions. Advanced control algorithms may provide adap-
tive reactions to disturbances that were not predicted.
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• Prediction-based optimization. Fast processes, such as electrical frequency variation,
are easier to predict than postreaction. This principle gives additional advantages,
because data-based optimization follows the events prediction model. The drawback
of the approach is the necessity to design a memory buffer for data recording and
further prediction-based tuning.

• Online learning. Data-driven optimization implies recorded data analysis of controlled
processes. When conditions are changing radically, this approach provides a strategy
for optimization of controller parameters in parallel with real-time control.

• Complexity. Advanced algorithms require a powerful computing system. The main
benefit from complexity is effective multiloop control and adaptation to process
dynamics.

4.1. Reinforcement Learning-Based Controller

Reinforcement learning (RL) is an agent-based and model-free machine learning al-
gorithm [84]. The main approach of RL optimization is based on trial and error, which
allows direct validation of the artificial neural network (ANN)-based controller with the
control object and prediction of negative consequences [37,84–86]. The benefit of this
method is mandatory data-driven optimization, which is naturally designed for online
learning. In [37], RL was compared with H∞, producing slightly better performance in
terms of frequency stability in scenarios with 100%, 80%, and 40% inertia and connection
of wind, solar, and thermal plants during the launch of industrial and residential loads,
and 20% RES penetration. Since the algorithm uses a deep neural network, it requires
strong computational hardware and is relatively complex for implementation. The method
requires selection of an optimal action a(t)∗ at each step s(t) and takes a long time. For RL,
it is necessary to design a proper reward system and to choose the right training strategy,
which may differ [37,87–89]. For example, in previous works [87,88], the RL optimization
for frequency support was performed by approximated dynamic programming. In contrast,
Skiparev et al. [37] used the deep deterministic policy gradient to train an RL-based con-
troller for virtual inertia emulation. The optimization mechanism using the RL algorithm
is summarized in Algorithm 3.

Algorithm 3 Reinforcement-learning-based algorithm

1: Define the actor and critic neural networks
2: Define at = ∆Pinertia, st = ∆ ft, and st+1 = ∆ ft+1 of RL controller
3: Define the desirable total reward for the RL controller rtarget
4: Start training the RL-based controller
5: Receive initial process observation of microgrid dynamics as state s1
6: Select action at of the actor network according to current policy and disturbances

exploration
7: Execute action at of the actor network
8: Observe reward rt and state st+1 using the critic network
9: if r ≥ rtarget then Controller training successfully completed

10: else Continue training
11: end if

4.2. Fuzzy Logic Controller

Fuzzy logic controller design provides effective manual optimization compared with
other advanced algorithms. Several examples of frequency regulation can be found in
the literature [34,62,90–94]. Since fuzzy-logic-based controllers can be manually tuned,
the data-driven approach is optional. Correct configuration of the controller can create a
robust system. Kerdphol et al. [34] applied a standard fuzzy logic controller for virtual
inertia control, which was capable most of the time of holding ∆ f inside the ±0.1 Hz band
with 80%, 60%, and 30% system inertia in scenarios with 20% and 80% RES penetration
and mismatch in primary/secondary control loops. Controller design requires a good
understanding of fuzzy rules design principles. In addition, the method requires powerful
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hardware for implementation. However, it uses fuzzy logic without an optimizer, which
can be considered a drawback, since it requires the manual design of the optimal fuzzy
rules [92,95].

5. Hybrid Control Algorithms

Hybrid algorithms inherit features from both categories. Model predictive control
(MPC) is an example of a controller that cannot be classified into either of the above-
mentioned categories. Optimization can be based on state-space representation [45] or
input/output (I/O) relation approximated by the data-driven approach [96]. The PI
controller optimized by particle swarm optimization (PSO) is another hybrid example,
combining a simple controller with the data-driven approach [16].

5.1. Evolutionary Optimization

Particle swarm optimization is a popular evolutionary algorithm inspired by collective
species behavior such as flocks of birds [97]; stochastic optimization should provide the
best performance through searching for a global minima. The particle swarm strategy is a
stochastic data-driven optimizer that enables online learning [16,56,98,99]. Magdy et al. [16]
used PSO for optimal tuning of a PI controller via searching the global minima of a
microgrid, which provided robust control with 100%, 80%, and 30% system inertia. The
performance of the optimal PI in Magdy et al. [16] showed relatively stable frequency
support with 100%, 50%, and 30% system inertia and with 57% RES penetration. In contrast
with other solutions, Magdy et al. [16] applied a dynamic model of a microgrid with
digital protection, which provided additional frequency stability. PI/PID is a widely used
controller in the power industry due to its simple construction [100–102]. However, the
PSO algorithm is a self-learning optimizer, which is more complex for implementation.
To produce an optimally tuned PI controller, the optimizer has to consider the state-space
dynamic modeling of microgrid uncertainties, which requires a relatively long time to find
optimal settings. The PSO procedure is summarized in Algorithm 4, adopted from [16].

Algorithm 4 PSO algorithm

1: Define microgrid state-space matrix
2: Define state vector XT = [∆ f , ∆Pg, ∆Pm, ∆PWT , ∆PPV , ∆Pinertia]

T

3: Define external disturbances vector WT = [∆PWind, ∆PSolar, ∆PL]
T

4: Define the control output signal as Y = [∆ f ]
5: Compute the state-space model for a given microgrid with defined inputs and outputs
6: Initialize the D-dimension of particles as PI/PID controller coefficients
7: Perform optimization by minimization of the fitness function for each particle
8: Calculate the velocity and current position of each particle. Validate the optimized

PI/PID controller
9: if stopping criteria of PI/PID controller are met then

10: Optimal parameters of PI/PID are obtained
11: else Repeat optimization
12: end if

5.2. Model Predictive Control

The model predictive controller (MPC) requires the development of a robust pre-
diction model based on a detailed representation of the process dynamics via collected
data [45,103,104]. As a hybrid algorithm, the MPC can be implemented with data-driven [105]
or finite-time-horizon [46,106] optimization approaches. Kerdphol et al. [45] applied finite
impulse response optimization for model prediction based on the virtual inertia emulation
with microgrid state-space representation.

Regarding optimization, MPC can provide real-time learning through data-driven
and finite-horizon approaches. According to Kerdphol et al. [45], MPC performance is
higher than that of the fuzzy-logic-based controller, and may provide better ∆ f stability
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during (1) (dis)connection of RES power, (2) sudden load change, and (3) mismatch in the
main thermal generation scenarios with 100%, 50%, and 25% system inertia and 34% RES
penetration. Implementation of the model-prediction-based controller depends on the type
of prediction model. The controller requires the calculation of each time sample and heavily
depends on the designed model used in the predictions of microgrid disturbances [45,72].
Specifically, Kerdphol et al. [45] used the finite impulse response, which considers each
sampling instant in the prediction of microgrid disturbances. The general concept of MPC
optimization is summarized in Algorithm 5.

Algorithm 5 MPC algorithm

1: Define the MPC controller as K(s)
2: Define the MPC controller input as u = ∆ f , output as y = K(s)∆ f , and the desired

profile as r = ∆ fre f
3: Predict the microgrid dynamics for the current time
4: Optimize the first control step of K(s)
5: Adjust the first control step according to MPC control rules
6: Implement the local MPC controller
7: if Evaluate the disagreement of tracking consensus with constrains then
8: End MPC optimization
9: else Repeat optimization

10: end if

6. Recent Directions and Trends

One goal of this study was to highlight the popularity of various control methods
for virtual inertia emulation reflected in the recent literature. Such trends are explored in
this section based on the contextual analysis of additional virtual inertia control. Based on
this analysis, we explain the motivation for the choice of several optimal control methods
and try to better understand why and when the reviewed methods are most efficient.
Special attention is paid to the analysis of relevant keywords describing each method and
application area. The fuzzy logic controller, model predictive control, coefficient diagram
method, and H-infinity methods are well-defined by their names. However, reinforcement-
learning and evolution algorithms are often defined by a specific strategy. Therefore, we
used several of the most common types of these optimizations during our literature search.
The keywords we used for the control methods are summarized in Table 3. The search was
also restricted to the title, abstract, and keywords fields.

Table 3. Search expressions that were used in the literature search.

Primary Expression Secondary Expression Third Expression

“FLC OR Fuzzy Logic Controller”
“MPC OR Model predictive

control”
“PI/PID”

“virtual inertia control” “microgrid” “EA OR GA OR Evolution
algorithms OR Genetic algorithms

”
“CDM OR Coefficient diagram

method”
‘’H∞ OR H-infinity”

“PSO OR Particle swarm
optimization ”

“RL OR Reinforcement learning ”
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Figure 5 depicts the rising trend in publications on virtual inertia control over an
11-year period. The Scopus database produced 404 papers and IEEE Xplore produced
239 papers.
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Figure 5. Yearly number of publications in the period from 2010 to 2020 on virtual inertia control.

The frequency-support-related algorithms mostly continued the rising trend, as de-
tailed in Figure 6. To provide a more in-depth analysis, we selected several algorithms
commonly used in frequency-control applications. Fuzzy logic and PI/PID appeared to be
the most popular control algorithms. Publications indicate the stable interest in usage of
PID controller, which can be further equipped with an additional optimization loop based
on data-driven algorithms and/or combined with advanced controllers [16,62,99,107,108].
Due to the natural ability in finding global minima, evolution algorithms (e.g., PSO, firefly,
and bat) are mostly combined with the fuzzy logic controller (FLC) and/or PID [16,62,99]
as one of the most frequently used hybrid algorithms of the existing control loops. Model
predictive controllers gained similar attention; in recent years, they have become the most
popular. One notable rise was found in the usage of the reinforcement-learning-based
strategies, which may become even more popular in the next years due to their ability to
perform effective study based on interactions with the environment [37,85,88]. Therefore,
we think that the data-driven algorithms will attract more attention in the coming years
due to the growing prevalence of data mining and cloud technologies.
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Figure 6. Trends in the frequency-support algorithms in microgrids. FLC—fuzzy logic controller,
MPC—model predictive control, EA—evolution algorithm, RL—reinforcement learning, H∞—H-
infinity, CDM—coefficient diagram method.

Figure 7 depicts the search results for the specific technologies used for frequency
regulation in microgrids. Energy storage appears to be the most widely used technology.
Virtual synchronous generators, virtual inertia, and phase locked-loop have small numbers
of publications, since each technology related to synthetic inertia generation is individual
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and requires specific design and case studies. Notably, many possibilities exist for research
into VSG/VI-related applications [12,22].

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
0

30

60

90

120

150

180

Year

N
um

be
r

of
Pu

bl
ic

at
io

ns

ESS
VSG
VI

PLL

Figure 7. Trends in frequency-control technologies in microgrids. ESS—energy storage system,
VSG—virtual synchronous generator, VI—virtual inertia, PLL—phased locked-loop.

Based on analysis of the above trends, it is reasonable to conjecture that in the coming
years, the virtual inertia problem will remain in the focus of the community. The isolated
microgrid, as a part of the general power grid, faces several important challenges such as
active and reactive power balance, power losses in transmission lines, grid frequency out-
matching, power production/consumption balance, among others [109]. Most microgrids
use simplified models of domestic loads, power plants, and energy storage systems. The
European Commission reported the potential research challenges in the renewable energy
area in the period of 2021–2027:

• Integrated local energy systems, microgrids, and modular solutions [110–113];
• Cross-border cooperation in transmission grids [110,114–117];
• Electrical transport (cars, trucks, ships, etc.) [110,118–120];
• Effective energy management in domestic appliances (HVAC, boilers) by demand-side

management technologies [110,113,115,121,122];
• Solutions for the integration of energy systems and coupling of different energy

vectors, networks, and infrastructures in the context of a digitalized, green, and
cybersecure energy system [110,113,123].

According to the REN21 report, 63% of world experts agree that by 2050, power
generation will focus on centralized or decentralized renewable energy [119] and 71% agree
that the transition to 100% renewable energy on a global level is feasible and realistic [119].
In addition, most experts agree that renewable energy should provide at least 32% of the
EU energy consumption by 2030 [2,119]. Hence, there is a clear need for continuing the
research on and adoption of various solutions, supporting the integration of renewable
energy sources; microgrids will most likely play a key role in achieving these goals.

7. Conclusions

Here, we reviewed recent works related to virtual inertia control methods designed to
solve the frequency regulation problem in islanded microgrids, with an attempt to better
understand the unique characteristics, common uses, and mathematical foundations of
the most popular control methods. The control techniques on which we chose to focus
were selected following an in-depth content analysis of various sources from the main
databases, as detailed in Section 6. This analysis revealed interesting trends in the current
research, and may help to understand why certain control methods are more efficient in
different circumstances (Table 4), and which control strategies will gain popularity in the
coming years.
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Table 4. Comparison of virtual inertia control algorithms: advantages, drawbacks, and quality criteria.

Hand. App. Online/
Offline

Advantages Drawbacks Computational
Complexity

Robustness Optimization
Complexity

Refs.

C
la

ss
ic

al
al

go
ri

th
m

s

Robust H-
infinity

Offline • Robust frequency
control

• Strong overshoot
minimization

• Significant peaks
during connec-
tion disturbances

• Need for order
reduction

• Limited robust-
ness

Medium High Medium [36,74,75,124–
126]

Coefficient
diagram
method

Offline • Higher robust-
ness

• No need for
order reduction

• Limited robust-
ness

Medium High Medium [36,81,83,127]

A
dv

an
ce

d
al

go
ri

th
m

s

Fuzzy-logic-
based con-
troller

Online • Flexible reaction • Limited by fuzzy
rules adaptation

• Manual optimiza-
tion

• Long compu-
tational time

High High High [16,34,45,128]

Reinforcement-
learning-
based
controller

Online • Reward learning
system

• Advanced feed-
back from system

• High robustness

• Available sample
data are needed

• Specific to the re-
ward/punishment
optimization

Very High High Very High [37,85,87,88,
129]

H
yb

ri
d

al
go

ri
th

m
s

PI/PID and
particle
swarm op-
timization

Online • Low numeric
complexity

• Simple controller

• Convergence to
global optimal
solution is not
guaranteed

• Limited robust-
ness

Low Low Low [16,56,98]

Model predic-
tive control

Online • High robustness
• Fast reaction

based on predic-
tion

• Fast optimization

• Need data re-
served for predic-
tion model

• Complex opti-
mization

High High High [45,46,70,72,
106,130]

For instance, the data show that evolutionary algorithms methods are widely used for
tuned PI/PID controllers probably since this enables the analysis of stochastic scenarios
with nonlinear constraints. However, evolutionary algorithms may converge to local
minima and are therefore not suitable for every application. In such cases, classical control
methods seem to be the natural choice since they provide simple and effective solutions
to the virtual inertia problems whenever grid dynamics are well-defined. If there is
uncertainty in the grid dynamic and nonlinear constraints, fuzzy-logic-based controllers
are used extensively, although they are limited to specific and manually defined rules;
in cases with a large number of rules, the needed resources increase significantly. The
controllers based on the coefficient diagram method principle seem to be the least popular
method, maybe due to their limitation of tracking only a limited number of disturbances.
Artificial neural networks are also increasing in use due to the increasing amounts of
available data; specifically, reinforcement-learning methods are commonly used for solving
complex problems when a fully satisfactory algorithm is lacking. In our opinion, these
trends may change in the near future due to global initiatives related to the integration
of electric vehicles into microgrids and due to the continuing integration of renewable
energy sources and beyond-the-meter technologies, which may lead to more available
data and thus favor the use of new and more efficient controllers with a focus on data-
driven approaches.

Concerning future research, since microgrids are increasingly decentralized and less
regulated by governments, it is often impractical to study them from the perspective
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of one single entity with unlimited information and control span. Therefore, the recent
increasing trend in studies of virtual inertia control for isolated microgrids will likely
continue. Whereas classic control techniques are still mainly the focus of the community,
the wide adoption and integration of technological innovations such as the Internet of
things (IoT), cloud technologies, and data processing powers will likely start shifting the
main attention toward data-driven control techniques in the coming years. Another topic
of interest may be combining virtual inertia control with suitable energy storage as a
supportive technological solution in isolated microgrids. To answer this challenge, the
development of new optimal control methods can be considered a possible avenue for
future research.
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MPC Model predictive control
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