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Abstract: This study compared the methods used to forecast increases in power consumption caused
by the rising popularity of electric vehicles (EVs). An excellent model for each region was proposed
using multiple scaled geographical datasets over two years. EV charging volumes are influenced
by various factors, including the condition of a vehicle, the battery’s state-of-charge (SOC), and the
distance to the destination. However, power suppliers cannot easily access this information due
to privacy issues. Despite a lack of individual information, this study compared various modeling
techniques, including trigonometric exponential smoothing state space (i.e., Trigonometric, Box–
Cox, Auto-Regressive-Moving-Average (ARMA), Trend, and Seasonality (TBATS)), autoregressive
integrated moving average (ARIMA), artificial neural networks (ANN), and long short-term memory
(LSTM) modeling, based on past values and exogenous variables. The effect of exogenous variables
was evaluated in macro- and micro-scale geographical areas, and the importance of historic data was
verified. The basic statistics regarding the number of charging stations and the volume of charging in
each region are expected to aid the formulation of a method that can be used by power suppliers.

Keywords: electric vehicle; charging demand; charging stations; TBATS; ARIMA; ANN; LSTM

1. Introduction
1.1. Background

The advent of electric vehicles (EVs) in the 19th century [1,2] has since posed a growing
challenge to the current automobile industry. Battery limitations and high cost initially
discouraged the use of commercial EVs. However, increasing environmental protection and
global-warming concerns have led to a significant rise in the demand for EVs. Consequently,
considerable research and development have facilitated significant progress, thereby over-
coming several issues associated with EV batteries. These advances have allowed the EV
market to compete with, and in some cases overtake, the combustion-engine automotive
industry [3]. Several governments have implemented regulations, incentives, and industry
promotions [4] to encourage the effective use of EVs. In addition to economic policies regard-
ing electric vehicles, the supporting infrastructure, including sufficient charging stations
and stable power supply in buildings and roads, should be provided.

This study proposes an optimal forecasting model for electric vehicle power suppliers
regarding each EV charging unit in a country, city, or single charging station based on real-
world data. A previous study [5] reported the superior performance of an autoregressive
integrated moving average (ARIMA)-based decoupled forecaster method. Specifically, the
power consumption of separate EVs was forecasted instead of the total power consumption.
Another study [6] proposed a back-propagation (BP) neural network model that included
weather information as an input to improve accuracy. These studies demonstrated that EV
charging prediction studies should be conducted individually.

1.2. Previous Work

Related research can be classified based on a broad geographical scale. Many studies
have forecasted the electricity consumption of a station [7–15], such as a building unit.
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Furthermore, other studies [16,17] have considered cities, where several stations are present.
Similarly, a road [18] or several EVs [19–22] can be considered for the prediction of small-
scale power consumption. However, simulations in most studies [19,20,23–29] are based
on road traffic and not real-world EV electricity consumption data. These studies assume
that fossil vehicles will be replaced by EVs in the future and consider current road traffic as
a reflection of future EV traffic.

Studies can also be classified based on forecast technique, as either classic statistical tech-
niques or machine learning methods. Classic statistical techniques rely on assumptions; how-
ever, they have the advantageous capability of interpreting a factor from estimated values.
EV studies commonly use regression modeling [15,19,22,29], ARIMA modeling [5,17,18,30,31],
and the Bayesian inference method [22]. Machine learning methods typically offer superior
prediction accuracy, where the application of random forests [13,14,17,27] and support vec-
tor machines (SVM) [10,11,13,27,31] has been reported. Furthermore, several deep learning
technologies have been explored, including artificial neural networks (ANN) [9], convo-
lutional neural networks (CNN) [7,31], recurrent neural networks (RNN) [8,9,29,31], long
short-term memory (LSTM) [8,9,29], gated recurrent units (GRU) [8,9], and stacked auto-
encoders (SAE) [9,31]. Finally, the use of BP neural networks [6,18,31,32] and the pattern
sequence-based forecasting (PSF) algorithm [30] has been reported.

Due to the lack of real-world data on EV charging volumes, some simulation studies
substitute current road traffic data. These algorithms are typically based on assumption that
charging events and amounts are determined by the state-of-charge (SOC) at the arrival
time at a destination. Furthermore, day types such as holidays and weekends should
be considered when determining road traffic [9–11,14,17,23,27,28]. Air conditioning and
heating appliances greatly influence the total energy usage of a car, and battery drainage
occurs more quickly at lower temperatures. Thus, seasonal and weather information has also
been used in several studies [6–11,23,28,29]. In addition, factors such as the SOC, type of car,
and battery charging time have been previously considered [10,14,21,23,26–29]. The daily
driving patterns and distance information of an individual driver may be obtained using
questionnaire surveys or sampling [5,19,21,25,26,31]. However, EV scheduling relies on
overcoming privacy and security issues before accessing driver and vehicle information [33].
The main concern in this regard is the exploitation of private information for public and
commercial purposes, and this is a difficult issue for a power provider to overcome.

Taken together with previous work, our previous work [34] demonstrates the effective-
ness of forecasting peak load demand for a building using statistical and artificial intelligence
(AI)-based models under various scenarios including exogenous variables. From the results,
we find that the ANN model gave the lowest error and showed robustness compared to the
statistical time series models. However, the ARIMA model was also valuable in interpreting
the coefficients with exogenous variables. The Trigonometric, Box–Cox, Auto-Regressive-
Moving-Average (ARMA), Trend, and Seasonality (TBATS) model was superior to other
exponential smoothing methods, and it is advisable to apply it when information about the
external variables is not offered. Therefore, the TBATS model, ARIMA model, and ANN
models were selected to compare their performances. Additionally, we decided to consider
the LSTM model, which includes a memory cell for long periods.

1.3. Contributions

Due to data privacy issues, this study proposes a daily EV electricity charge forecast
technique based on past data, special day indicators, and weather. To ensure the applicability
of this forecasting approach based on real-world data and not simulation data, three geo-
graphical scales were considered, namely a single station, a city, and a country. It provides
energy policy legislators and energy suppliers with planning and EV manufacturers with a
new business model. Additionally, with the geographical results, the purpose of our study
is to be restrictive evidence in relaxing regulatory restrictions in the privacy issue. Various
time-series techniques were compared, including the trigonometric exponential smoothing
state space (i.e., TBATS) and ARIMA models, and machine learning techniques such as
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ANN and LSTM modeling. The robustness of the approach was ensured by evaluating the
accuracy of forecasts ranging from one day to one month in advance. This provided an
indication of which models were appropriate for short-term and mid-term predictions.

ARIMA, ANN, and LSTM are multivariate models that can incorporate day indicators
and weather. The performances of these models were compared with the univariate TBATS
models, which were based solely on past values, thereby demonstrating whether exogenous
variables contribute to prediction accuracy. Some researchers believe that a longer data
history is more helpful in the modeling and prediction of future values. This belief was
verified in all the models at different geographical scales by comparing the use of reference
data histories at 3, 6, and 18 months.

2. Forecasting Methods
2.1. Trigonometric, Box–Cox, Auto-Regressive-Moving-Average (ARMA), Trend, and Seasonality
(TBATS) Model

De Livera et al. [35] proposed modified state-space models for exponential smoothing
to overcome the issues related to broader seasonal pattern variation and to handle correlated
errors. Furthermore, the model was restricted to linear homoscedasticity to address the
nonlinearity issue. However, the Box–Cox transformation was used for some types of
nonlinearity and is defined as follows:

y(ω)
t =

{
yω

t −1
ω , ω 6= 0

log(yt), ω = 0
(1)

y(ω)
t = lt−1 + φbt−1 +

T

∑
i=1

S(i)
t−m1

+ dt (2)

lt = lt−1 + φbt−1 + αdt (3)

bt = (1− φ)b + φbt−1 + βdt (4)

S(i)
t = S(i)

t−mi
+ γidt (5)

dt =
p

∑
i=1

ϕidt−i +
q

∑
i=1

θiεt−i + εt (6)

where y(ω)
t is the Box–Cox transformed observation of the actual demand (kilowatts)

for parameter (ω) at time t (t = 1, 2, . . . , T); lt is local-level data; b is the long-term trend;
and bt is the short-term trend within time t, where the value of bt finally converges on
b and not zero; φ is a damping parameter for the trend; dt is a series of ARMA models
with orders (p, q); εt is the random error (white noise) with a mean of zero and constant
variance of σ2; mi is the ith seasonal cycle; and α, β and γi are the smoothing parameters
for i = 1, . . . , T.

Non-integer seasonality can be accommodated by incorporating the trigonometric
seasonal approach into the model, thereby reducing the calculation time. The final TBATS
model involving arguments (ω, φ, p, q, {m1, k1}, {m2, k2}, . . . , {mT , kT}) can be explained
as follows:

S(i)
t =

ki

∑
j=1

S(i)
j,t (7)

S(i)
j,t = S(i)

j,t−1 cos λ
(i)
j + S∗(i)j,t−1 sin λ

(i)
j + γ

(i)
1 dt (8)

S∗(i)j,t = −Sj,t−1 sin λ
(i)
j + S∗(i)j,t−1 cos λ

(i)
j + γ

(i)
2 dt (9)
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where ki is the number of harmonics for the seasonal component; S(i)
t , γ

(i)
1 , and γ

(i)
2 are

smoothing parameters; S∗(i)j,t is the stochastic growth of the ith seasonal component; and

λ
(i)
j = 2π j

mi
. S(i)

j,t is the stochastic level of the ith seasonal component by S(i)
j,t .

2.2. Autoregressive Integrated Moving Average (ARIMA) Model

ARIMA [36] is a statistical modeling technique used for time-series analysis. Once
the data become stationary, the model comprises nonseasonal orders of (p, q) and seasonal
orders of (P, Q). The time-series for series {yt|t = 1, 2, . . . , T} based on ARIMA (p, d, q)
(P, D, Q) can be expressed as follows:

φp(l)ΦP(ls)(1− l)d(1− ls)Dyt = θq(l)ΘQ(ls)εt (10)

where yt is the actual demand (kilowatts) at time t ( t = 1, 2, . . . , T ) and εt is the random
error (white noise) during t, with a mean of 0 and a constant variance of σ2. Furthermore, p,
d, and q are integers and orders of the model φp(l) = 1− φ1l− · · · − φplp, where p denotes
the degree of the nonseasonal autoregressive polynomial θq(l) = 1− θ1l − · · · − θqlq and
q is the degree of the nonseasonal moving-average polynomial. P denotes the degree of
the seasonal autoregressive polynomial for the seasonal operators ΦP(ls) = 1−Φ1ls −
· · · − ΦPlPs, and Q denotes the degree of the seasonal moving-average polynomial for
ΘQ(ls) = 1−Θ1ls− · · · −ΘQlQs. The terms (1− l)d and (1− ls)D are the nonseasonal and
seasonal difference operators for orders d and D, respectively, where s is a seasonal cycle.

The potential factors affecting the variability of load demand are considered regressors,
e.g., climate or socioeconomic variables. The Reg-ARIMA model is a regression ARIMA
model with error terms, where the Reg-ARIMA model with k number of predictors for the
series {yt|t = 1, 2, . . . , T} can be expressed as follows:

φp(l)ΦP(ls)(1− l)d(1− ls)D

(
yt −

k

∑
i=1

βiχti

)
= θq(l)ΘQ(ls)εt (11)

where β is the coefficient of predictor χti, which helps interpret the impact of the variable
on EV charging demands. In this paper, the temperature and the day indicators were used
for the predictors.

2.3. Artificial Neural Network (ANN)

Feed-forward ANN models are inspired by the complex connections between the
neurons of the human brain. The network of cells carries signals from the body along the
axons of neurons, where the signals are transferred between neurons via synapses. Some
neurons are structured at birth, while others either grow and mature, or die if considered
non-useful [37]. A neural network comprises an input layer of input values, a hidden
layer to transform the input values, and an output layer to produce the output values.
Weights connect the three layers, while nodes may be included in the middle layer to mix
input values during the learning of more complex data. While classic statistical models
can provide output directly from an input value as an estimated parameter value, neural
network models are referred to as black-box models because certain aspects are difficult
to express using an equation, such as the weights in the hidden layer. However, this
characteristic of the technique is also advantageous because it allows for the modeling of
complex relationships using neurons with nonlinear functions. Furthermore, additional
exogenous variables may be included in an ANN-based model.

2.4. Long Short-Term Memory (LSTM)

Neural network models (Section 2.3) proceed in the forward direction, assuming that
all inputs are independent. RNN modeling involves the application of a current output
value while also considering past output information. There are three important connections
in RNN: input to hidden layer, hidden to hidden layer, and hidden layer to output layer.
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Here, the weights also go back and forth, connecting the three layers from inputs to hidden,
hidden to hidden, and hidden to output. While feedforward networks mainly receive
inputs and map them to outputs, the characteristics of cyclic connections of RNNs are
designed appropriately for sequential data and many to many sequence modeling can be
considered. However, there is a vanishing gradient problem that past information decays
quickly in RNN, and LSTM is one of the advanced models used to compensate for this
problem. The long short-term memory algorithm was developed in 1997 by Hawkrite and
Schmitthuber [38]. Specifically, RNN uses neurons to convey past information while LSTM
models effectively retain relatively long sequences using a memory cell structure. LSTM is
the most frequently used long-term memory model based on RNN.

3. Data Analysis

EV charge data regarding all charging stations in Korea from 2018 to 2019 were ob-
tained from the Korean Ministry of Environment [39]. The original data were organized as
individual charging events and included charging time, charging load, and charging station
datapoints. The data were aggregated per charging station, city, and country (Table 1) to
provide an optimal model for suppliers, regardless of user behavior or car status, while
considering privacy issues.

Table 1. Parameter estimations for the classic models at three geographical scales.

Level Number of Number of Charging Events Energy Usage (kW/Event)

EV Stations Min Max Mean ± SD Min Max Mean ± SD

National 1916 1444 7824 2493 ± 1494 0.1 100 16 ± 9
City 155 147 562 298 ± 74 0.1 97 15 ± 8

Station 1 1 26 15 ± 8 0.1 32 15 ± 8

At a national level, the total of 1916 charging stations in Korea was used for an average
of 4293 charging events per day. The city of Seoul has the second-highest proportion of
EVs, where 155 charging stations were used for approximately 300 charging events per day.
A single charging station in Seoul was evaluated, where its two chargers were used for an
average of 10.5 charging events per day. The number of charging events differed according
to the geographical area; however, there was no significant difference in the energy per
event (14–15 kW). The number of enrolled EVs by 2019 was about 89,918 in the country, and
14,952 in Seoul. Because we were not able to obtain the ID for each car, instead, we could
assume that at least 96 drivers share a single station in Seoul city.

A time series plot was prepared for each geographical segment (Figure 1). The country
exhibited a clear increase in the total charging capacity due to a growing number of EV
vehicles and charging stations. The variation within the series gradually increased over the
year. The demand during winter was high and was even higher during the summer. The
city exhibited a similar increase over the last two years, where high battery consumption
during summer and winter was attributed to the use of heating/cooling appliances and
battery shortages. The same trends were observed for the single charging station.
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Figure 1. Time series plot of the electric vehicle (EV) charging amount at three geographical scales:
(a) country, (b) city, and (c) single charging station. The y-axis presents the daily energy used that
was calculated by aggregating the multiple charging events (unit: kW/day). The x-axis presents the
periods from January 2018 to December 2019.

Table 2 presents the average charged energy per day by weekdays and weekends in
four representative months. Since the monthly trends were dramatic, we decided to select
four seasons to represent the differences in mean between weekends. The energy used on
weekends was much higher in all months and regional scales.

Table 2. Comparisons for charging amount by weekdays and weekends at three geographical scales.

Month January April

Level Weekdays Weekends Increase Rate (%) Weekdays Weekends Increase Rate (%)

National 28,519 30,276 6.2 26,689 31,540 18.2
City 1517 1540 1.5 1232 1289 4.6

Station 153 158 3.3 77.3 97.6 26.3

Month July October

Level Weekdays Weekends Increase Rate (%) Weekdays Weekends Increase Rate (%)

National 52,002 59,391 14.2 56,837 62,060 9.2
City 1865 2000 7.2 1770 2025 14.4

Station 127 143 12.6 94.3 108 14.5

Weekly seasonality was evaluated based on a two-month daily time series from
November to December 2019 (Figure 2). On the national level, a clear weekly pattern was
observed; the most charging during the week occurred on Saturday, followed by Friday
and Sunday. Similarly, there was high usage in the city during the weekend; higher usage
was observed on weekdays depending on the season. It was more difficult to observe a
pattern at the single charging station because of the smaller number of charging events
per day; hence, random variability was assumed to be high. Overall, vehicle and driver
behaviors were less affected by external variables (e.g., day of the week) as the geographical
scale became smaller.
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Figure 2. EV charging amount patterns in different seasons at three geographical scales: (a) country,
(b) city, and (c) single charging station. White dots represent Saturdays, and black dots represent
Sundays. The y-axis presents the daily energy used (unit: kW/day). The x-axis presents the periods
of two weeks in October.

Temperature, weekends, and holidays were selected as external variables for the
ARIMA, ANN, and LSTM models to account for external factors in the series. The temper-
ature (°C) values were converted to heating-degree-day (HDD) and cooling-degree-day
(CDD) terms, as expressed in Equations (12) and (13), respectively. Furthermore, the effect
of these exogenous variables on the accuracy of regional models was evaluated. Box–Cox
transformation (Equation (1)) was performed to ensure the homoscedasticity of the models.

HDD =

{
18− Tt, if Tt ≤ 18

0 , elsewhere
(12)

CDD =

{
Tt − 24, if Tt ≥ 24

0 , elsewhere
(13)

4. Performance Evaluation

TBATS, ARIMA, ANN, and LSTM models were tested based on a dataset of 730 data
points obtained over two years; the data from 18 months were used for training and those
from the remaining 6 months were used for testing. Furthermore, 30% of the training
set was used as a validation set for the machine learning models. The moving-window
prediction was applied to provide a range of forecast intervals (k), namely forecasts made
one day to one month prior. Each model was fitted for each geographical scale (country,
city, and single charging station), and the accuracy was compared. Exogenous variables
were used in the ARIMA, ANN, and LSTM models, and the difference in accuracy with
and without these variables was compared. Furthermore, the effect of history length on
the forecast was investigated by comparing the accuracy using historic data from the past
3, 6, and 18 months.

The forecast package in R software was used; TBATS, ARIMA, and ANN models
were performed using the tbats(), arima(), and nnetar() functions, respectively, whereas the
LSTM model was calculated using keras. For the ARIMA model and the ANN model, the
number of parameters was chosen using a minimum Akaike information criterion, where
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each parameter was estimated in the updated training set. The ANN model included units,
number of networks, epochs, and decay set as hyperparameters to determine optimal
values. To set the hyperparameters in the LSTM model, search spaces (e.g., units, layers,
activation functions, and epochs) were used to identify the hyperparameter values that
led to the minimum loss of mean squared error (MSE). Moreover, a regularization method
such as weight decay was applied to avoid the overfitting problem in AI models.

The estimated parameters for the time series models based on the 18-month training
set are given in Table 3. The influence of the exogenous variables on the ARIMA model
was evaluated based on each regressor. The estimated values of the temperature variables,
namely CDD and HDD, were found to increase the total power consumption in the all-time
series. Furthermore, the weekend variable was found to have a static effect in the country
and single charging station forecasts and decreased the accuracy of the city forecast. In
addition, the search space and final selection values of the hyperparameters for the machine
learning models are given in Table 4.

Table 3. Parameter estimations for the classic models at three geographical scales.

Model Level Estimated Parameters

ω α ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 θ1 θ2

TBATS
National 0.001 0.434 0.275 −0.838 0.005 −0.347 −0.359 0.028 0.578

City 0.117 0.13 −0.514 0.215 0.829
Station 0.607 0.111

φ1 θ1 Φ1 Θ1

ARIMA
National 0.525 −0.878 0.097 −0.999

City 0.515 −0.865 −0.984
Station −0.882 −0.999

φ1 θ1 Φ1 Θ1 βCDD βHDD βWeekend

Reg-ARIMA
National 0.309 −0.801 1.000 −0.975 0.032 0.029 0.389

City 0.128 −0.876 0.968 −0.875 0.024 0.023 −0.016
Station −0.910 0.062 0.272 0.471

Table 4. Hyperparameters for the machine learning models at three geographical scales.

Model Level Estimated Hyperparameters

Units Decay Networks Epochs

ANN
National 50 0.85 20 100

City 50 0.90 30 150
Station 100 0.90 35 50

Units Decay Networks Epochs

ANN National 100 0.90 50 100
with City 150 0.85 45 100

regressors Station 200 0.90 40 50

Units Decay Layers Epochs Activation Function

LSTM
National 50 0.90 1 100 sigmoid

City 150 0.95 2 200 tanh
Station 150 0.99 3 50 sigmoid

Units Decay Layers Epochs Activation Function

LSTM National 150 0.90 2 100 tanh
with City 100 0.95 1 100 sigmoid

regressors Station 150 0.99 3 100 tanh
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The accuracies of the prediction models were compared according to each geographical
scale based on mean absolute percentage error (MAPE), which is commonly used to present
the error of short-term load forecasting and can be expressed as follows:

MAPE =
100
n

n

∑
t=1
|yt − ŷt

yt
| (14)

where yt is the actual value and ŷt is the forecast demand at time t.

4.1. Macro-Scale Aggregated Data: National Level

The one-step-ahead forecasting results using each model based on the national data
are given in Table 5. The ARIMA, ANN, and LSTM models that included all the exogenous
variables exhibited better performance than the univariate ones. Thus, the robustness and
history length were evaluated only in models that included exogenous variables.

Table 5. Accuracy of one-step-ahead forecasting at the national scale.

History (Months)
TBATS ARIMA ANN LSTM

18 6 3 18 6 3 18 6 3 18 6 3

Univariate 6.5 6.4 7.7 5.3 5.8 6.7 7.2 6.9 7.2 15.1 9.6 8.9
Multivariate 5.0 5.4 4.7 5.7 5.4 6.9 7.0 7.1 8.7

The rolling forecasting results based on different lengths of historic data are given in
Table 6. The accuracy of the one-day forecast (k = 1) using the TBATS, ANN, and LSTM
models was higher when a long history was used; however, the ARIMA model exhibited
better prediction accuracy when the shortest history (3 months) was used. Forecast using
all the models for one week ahead (k = 7) was inaccurate when only 3 months of historic
values were used. The forecast for three weeks ahead (k = 21) was generally more accurate
as the history length increased, although the best prediction using the LSTM model was
achieved when only 3 months history was used. In fact, even the one-month forecast
(k = 30) using the LSTM model was more accurate when a shorter history length was used.
However, the remaining models, namely TBATS, ARIMA, and ANN, performed best when
more historic information was included.

Table 6. Accuracy of rolling forecasting with different historical lengths (3, 6, and 18 months) at the national scale.

Steps Ahead (K)
TBATS ARIMA ANN LSTM

18 6 3 18 6 3 18 6 3 18 6 3

One day (k = 1) 6.5 6.4 7.7 5.0 5.4 4.7 5.7 5.4 6.9 7.0 7.1 8.7
One week (k = 7) 7.7 8.7 9.2 7.9 7.9 8.2 7.0 6.8 7.4 10.8 9.0 11.1

Three weeks (k = 21) 9.3 9.8 11.5 9.3 10.6 13.5 7.4 9.7 8.5 11.9 12.9 6.7
One month (k = 30) 11.0 12.4 12.9 8.3 9.3 12.6 8.2 10.9 9.4 13.0 14.0 6.3

K = 30/1 ratio 1.7 1.9 1.7 1.6 1.7 2.7 1.4 2.0 1.4 1.9 2.0 0.7

The robustness of the models was evaluated by attempting to achieve accurate mid-
term predictions (k = 30) while maintaining good short-term predictions (k = 1), where the
ratio of the MAPE values at (k = 1) and 30 was used. A MAPE ratio greater than 1 indicated
that the prediction accuracy was lower in the mid-term than in the short-term. Conversely,
a value below 1 indicated that the predictions were more accurate when forecasting in the
future. Furthermore, a value closer to 1 indicated higher robustness and consistency.

The one-day forecast (k = 1) from the ARIMA model based on 3 months historic
information was accurate (MAPE = 4.7%); however, the accuracy decreased sharply by one
month (k = 30) (MAPE = 12.6%), thereby giving a MAPE ratio of 2.7. The ARIMA model
based on 18 months historic information exhibited slightly lower accuracy for the one-day



Energies 2021, 14, 1487 10 of 16

prediction (k = 1) (MAPE = 5.0%) but maintained relatively good accuracy until one month
(k = 30) (MAPE = 8.3%), giving a MAPE ratio of 1.66. Interestingly, the LSTM model
based on 3 months historic information exhibited better mid-term prediction accuracy than
short-term (MAPE ratio = 6.3). This was attributed to the memory cells, which maintained
long-term memory. Overall, a long history was generally helpful in the TBATS, ARIMA,
and ANN models; however, it did not enhance the performance of LSTM.

4.2. Macro-Aggregated Data: City Level

The one-step-ahead forecasting results using each model based on the city data are
given in Table 7. Both the ARIMA and ANN models performed better when the exogenous
variables were included. Thus, the robustness and history length were evaluated only in
models that included exogenous variables.

Table 7. Accuracy of one-step-ahead forecasting at the city scale.

History (Months)
TBATS ARIMA ANN LSTM

18 6 3 18 6 3 18 6 3 18 6 3

Univariate 8.6 8.8 8.7 8.5 9.0 9.4 9.7 10.3 9.4 14.1 10.5 10.0
Multivariate 7.9 7.9 7.8 9.0 9.2 10.0 15.6 13.5 9.9

The rolling forecasting results based on different lengths of historic data are given
in Table 8. The accuracy of the one-day forecast (k = 1) of the ANN model was higher
with a longer history, whereas a short history was best for the LSTM model. There was
no significant difference between the short-term predictions using TBATS and ARIMA;
thus, the shorter history provided sufficient information. However, the longer history
facilitated better one-week, three-week, and one-month forecasts, even in the TBATS and
ARIMA models.

Table 8. Accuracy of rolling forecasting with different historical lengths (3, 6, and 18 months) at the city scale.

Steps Ahead (K)
TBATS ARIMA ANN LSTM

18 6 3 18 6 3 18 6 3 18 6 3

One day (k = 1) 8.6 8.8 8.7 7.9 7.9 7.8 9.0 9.2 10.0 15.6 13.5 9.9
One week (k = 7) 9.6 9.7 10.6 8.0 8.7 8.6 10.7 9.1 10.4 17.0 18.4 17.5

Three weeks (k = 21) 13.0 14.7 14.3 8.4 10.7 9.3 13.8 12.5 13.1 21.4 23.1 21.6
One month (k = 30) 16.4 18.7 17.7 10.0 12.9 12.4 16.7 14.8 14.6 22.4 26.0 23.8

K = 30/1 ratio 1.9 2.1 2.0 1.3 1.6 1.6 1.9 1.6 1.5 1.4 1.9 2.4

The robustness of the models was evaluated based on the highest performance in
short-term predictions, as was determined at the national level. All the ARIMA models
exhibited an excellent MAPE (>8%) for the one-day forecasts (k = 1), regardless of history
length. However, the 18-months history was more favorable for long-term predictions. The
TBATS model exhibited similar one-day forecast (k = 1) performance to that of ARIMA;
however, the mid- to long-term predictions were much lower, which led to unsatisfactory
robustness. Furthermore, the LSTM model performed unsatisfactorily throughout the city
level forecasts, although the short-term prediction was better with a shorter history, as was
observed on the national level.

The city unit demonstrated improved predictive power in the time series of aggregated
data with exogenous variables. Similar to the national level, the historic data improved
the short- to mid-term predictive power in the ARIMA model. Furthermore, the ARIMA
model outperformed the LSTM model when a short history was used.

Overall, the ARIMA, TBATS, ANN, and LSTM models exhibited promising results,
where the predictive power was more useful in the linear model due to a better fit of
the data to the linear function. Information regarding exogenous variables was the best
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fit for ARIMA, better than TBATS, a univariate model. LSTM is a type of RNN with
growing popularity. However, it cannot be assumed that LSTM will always outperform
feed-forward neural networks. Furthermore, even with the application of decay, it cannot
be assumed that a long history will enhance the performance if the role of the LSTM
memory cell is excessive.

4.3. Micro-Data: Single Charging Station

The one-step-ahead forecasting results using each model based on the data for a single
small-scale charging station are given in Table 9. The external variables did not improve the
accuracy of the ARIMA model when the history length was 6 to 18 months. However, the
exogenous variables worked effectively when 3 months historic data were used. Similarly,
the ANN did not exhibit enhanced accuracy when the exogenous variables were considered.
However, the results of the LSTM model were satisfactory when exogenous variables were
used throughout. Though the models without the exogenous variables were generally
more accurate, there was no significant difference. Even in mid-term predictions, only
models with the exogenous variables were compared to determine whether the exogenous
variables enhanced the forecasting performance on a micro-scale (single charging station).

Table 9. Accuracy of one-step-ahead forecasting at the single charging station scale.

History (Months)
TBATS ARIMA ANN LSTM

18 6 3 18 6 3 18 6 3 18 6 3

Univariate 25.6 27.6 25.9 24.6 24.8 25.8 29.5 29.5 29.8 37.3 30.5 26.9
Multivariate 25.2 24.5 20.6 31.7 32.1 29.3 23.4 21.4 24.7

The rolling forecasting results of the TBATS model and the ARIMA, ANN, and LSTM
models with exogenous variables are given in Table 10. The accuracy of the one-day
forecast (k = 1) using the TBATS model was high when more historic information was
included; however, the differences between the various history lengths were not significant.
Furthermore, the ARIMA and ANN models were most accurate with a short history,
whereas the accuracy of the LSTM model was the highest when 6 month historical data
were used. The TBATS and ARIMA models were slightly more accurate for one-week,
three-week, and one-month forecasts (k = 7, 21, and 30); however, there was no significant
difference. Furthermore, the one-week and three-week forecasts (k = 7, and 21) using the
ANN model were accurate when only 3 months historic data were used, whereas the LSTM
model was not significantly affected by the history length.

Table 10. Accuracy of rolling forecasting with different historical lengths (3, 6, and 18 months) at the single charging
station scale.

Steps Ahead (K)
TBATS ARIMA ANN LSTM

18 6 3 18 6 3 18 6 3 18 6 3

One day (k = 1) 25.6 27.6 25.9 25.2 24.5 20.6 31.7 32.1 29.3 23.4 21.4 24.7
One week (k = 7) 25.6 27.8 26.1 24.6 27.0 25.7 30.3 31.0 29.0 24.6 20.9 25.6

Three weeks (k = 21) 25.6 30.6 26.0 23.3 32.8 26.7 28.3 44.4 26.9 26.6 28.7 30.0
One month (k = 30) 28.9 37.5 29.3 25.6 27.3 25.7 32.3 52.5 35.4 24.3 24.4 23.6

K = 30/1 ratio 1.1 1.4 1.1 1.0 1.1 1.2 1.0 1.6 1.2 1.0 1.1 1.0

All the models exhibited MAPE ratios close to 1. However, their robustness cannot be
assumed because the one-step-ahead forecasts of the single EV station were generally less
accurate. Thus, a small geographical scale is associated with the difficulty in predicting EV
charging based on past values, calendar, and weather effects.

The actual values for two weeks in October 2019 were plotted with the predicted
values from each model (Figure 3). The national level exhibited a clear weekly pattern,
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indicating that all the models exhibited good predictive performances. However, the LSTM
model tended to underestimate the variance. The weekly pattern was not clear on the city
scale, wherein only the ARIMA and ANN models predicted the fluctuation at the peak EV
charging times, whereas LSTM showed no significant change in volatility. The plot of the
single charging station revealed low overall prediction accuracy, which was attributed to
the difficulty in predicting the peak date based on external variables or past values.

Figure 3. Predicted and actual values for three geographical scales: (a) country, (b) city, and (c) single
charging station The y-axis presents the daily energy used (unit: kW/day). The x-axis presents the
day in October 2019.

4.4. Discussion

Aggregated data from multiple charging stations on a national and city scale revealed
useful patterns for power suppliers, thereby facilitating higher accuracy. The application of
exogenous variables in the ARIMA, ANN, and LSTM models (regardless of history length)
generally led to higher forecast accuracy on the nation and city levels. However, the small
scale of the charging station posed a challenge in forecasting, where only about 10 charging
events occurred per day. Thus, exogenous variables did not contribute to the predictions
when more than six months of historic data were incorporated into the ARIMA and ANN
models. It is worth a try to split the models between the weekday and the weekends due
to different energy patterns in macro-scale for the higher performance. Conversely, three-
month historic data paired with the exogenous variables effectively enhanced the predictive
power. Despite the clear special day and temperature effect patterns in the aggregated data,
the single charging station micro-unit was more affected using individual factors such as
driver characteristics, SOC, and car type. Despite these problems, the LSTM model provides
a good micro-scale forecast when exogenous variables are used.

A stable EV charging power supply model provides historical data to build a database.
A minimum length is typically required when fitting a model; however, this study in-
vestigated whether a longer history of past values unconditionally increased prediction
accuracy. One-step-ahead forecasting revealed that historical data did not necessarily
enhance forecasting power, specifically in the LSTM models, although more historical data
did generally facilitate better forecasting power due to improved long-term robustness.
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The negative effect of the historic data on the LSTM model was attributed to those historic
data with a small variance that does not provide valuable information for future events
with large variance due to the memory cell of the model.

Furthermore, classic and machine learning modeling techniques were compared. It
was difficult to apply classic techniques because there are certain assumptions (e.g., sta-
tionary state) required to fit a series to the model. Consequently, the machine learning
methods were preferred due to easier hyperparameter tuning and superior performance.
However, machine learning methods did not always exhibit powerful predictive capabili-
ties. The national and city datasets were linear and patterned macro-units; thus, the classic
ARIMA model was the most accurate and robust, followed by TBATS, ANN, and LSTM.
Specifically, the ARIMA model is best in the presence of regressor information whereas the
TBATS model provided good short-term prediction when exogenous variable information
was not given. As mentioned, LSTM did not perform well when a long history was used
because the memory cell of the model retained information for too long. However, the
LSTM model performed better than the classic and simple micro-data methods in cases
with relatively high variability. In general, the differences between the classic and machine
learning approaches were not clear in the case of micro-scale data with high variability. The
studied EV charging station was adjacent to a highway road and was not in a residential or
commercial district. Thus, fewer drivers routinely visited this charging station, thereby
leading to weak driver behavioral patterns. Instead, micro-data should be accessed at
a customer level, where car type, SOC, traffic volume, and destination scheduling are
important factors.

The findings demonstrated that the consideration of exogenous variables generally
enhanced the forecast accuracy. Specifically, the aggregated data revealed that calendar and
weather information can be used to effectively describe the entire time series, including
the original target variables. Assuming that the maintenance of a sufficient database is
viable, historical data shows promise in increasing the short- and mid-term predictive
power in the ARIMA model. However, three-month historical data is sufficient for accurate
mid-term predictions using the LSTM model.

5. Conclusions

In response to the growing popularity of EVs, a forecast model for electricity consump-
tion should be established. Previous studies have demonstrated that building separate EV
charging forecast models instead of predicting the total conventional power consumption
can lead to improved prediction. The factors affecting a single car, such as car type, SOC,
drive behavior, and destination, have been considered in previous studies. However, it is
difficult for a power supplier to easily incorporate these factors into a predictive model
due to privacy issues. Therefore, this study considered predictions based on past values,
weather, and day effects as alternatives. The forecasts were divided into national, city,
and single charging station patterns, thereby providing insights into the predictability of
various regional scales.

This study examined a model that shows the best results when using only past data
and public data due to privacy issues. The results were presented in the geographical scales
of a nation, city, and station using actual measured data for applicability to other areas.
Therefore, analyzing multivariate models of ARIMA, ANN, and LSTM showed higher
accuracy than univariate models. However, in single station data, exogenous variables did
not significantly influence accuracy because individual behavior is an important factor in
determining consumption. Therefore, in order to increase the predictive power in micro-
units, privacy issues must be resolved.

Next, the robustness was checked for the stable power supply. Is long data always
useful at this time? Three scenarios for the history length were compared: 3 m, 6 m, and
12 m. As a result, it was found that previous values were unconditionally stable in the
short-term forecast, but the past values played an essential role in mid- to long-term forecast.
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Future studies should focus on fitting the same models using past data and future data also
for the validation.

Lastly, time-series techniques and machine learning techniques were compared. Ma-
chine learning had the advantage of relatively few assumptions for model fitting and easy
hyperparameter tuning, but as a result, it did not always show good predictive power. In
macro-data with relatively straightforward patterns, the ARIMA model with regressors
showed the best results, followed by TBATS, ANN, and LSTM. The TBATS model is ex-
pected to be useful when only univariate values are available. The LSTM modelshowed
the best performance for micro-data. However, it is still likely that other forecasting meth-
ods need to be developed because the influence of individual EV factors is considered
significant in a micro-unit.

Several previous studies have reported that past observations play a secondary role.
EV distribution and charging are not sufficiently established in certain regions. Therefore,
a bottom-up and top-down dominance at the micro-level cannot be established yet. An
effective micro-scale EV charging station prediction technique must be further investigated
using appropriate simulated or actual data. Moreover, the privacy issues regarding driver
information should be resolved to effectively forecast power supply for charging stations
within the smart grid market. Exploring the EV charging patterns is important not only
for policy legislators and suppliers but also for EV manufacturers because these charging
infrastructures certainly attract new-EV buyers as an administrative strategy. At the same
time, to solve unstable energy supply planning in micro-scale sites such as charging stations,
again, privacy issues need to be discussed and relaxed soon.
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CNN convolutional neural networks
EV electric vehicle
GRU gated recurrent units
HDD heating-degree-day
LSTM long short-term memory
MAPE mean absolute percentage error
MSE mean squared error
PSF pattern sequence-based forecasting
SAE stacked auto-encoders
SOC state-of-charge
SVM support vector machines
TBATS Trigonometric, Box–Cox, auto-regressive-moving-average, trend, and seasonality



Energies 2021, 14, 1487 15 of 16

References
1. Guarnieri, M. Looking back to electric cars. In Proceedings of the 2012 Third IEEE History of Electro-Technology Conference

(HISTELCON), Pavia, Italy, 5–7 September 2012; pp. 1–6.
2. Wakefield, E.H. History of the Electric Automobile Battery-Only Powered Cars; Society of Automotive Engineers: Warrendale, PA,

USA, 1993.
3. Ehsani, M.; Gao, Y.; Longo, S.; Ebrahimi, K. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles; CRC Press: Boca Raton, FL,

USA, 2018.
4. IEA. Global EV Outlook. Available online: https://www.iea.org/reports/global-ev-outlook-2019 (accessed on 8 February 2021).
5. Amini, M.H.; Kargarian, A.; Karabasoglu, O. ARIMA-based decoupled time series forecasting of electric vehicle charging demand

for stochastic power system operation. Electr. Power Syst. Res. 2016, 140, 378–390. [CrossRef]
6. Zhao, W.; Dai, T.-T.; Wang, L.-C.; Lu, K.; Chen, N. Short-term Load Forecasting Considering Meteorological Factors and Electric

Vehicles. IOP Conf. Ser. Mater. Sci. Eng. 2018, 439, 032114. [CrossRef]
7. Li, Y.; Huang, Y.; Zhang, M. Short-term load forecasting for electric vehicle charging station based on niche immunity lion

algorithm and convolutional neural network. Energies 2018, 11, 1253. [CrossRef]
8. Zhu, J.; Yang, Z.; Guo, Y.; Zhang, J.; Yang, H. Short-term load forecasting for electric vehicle charging stations based on deep

learning approaches. Appl. Sci. 2019, 9, 1723. [CrossRef]
9. Zhu, J.; Yang, Z.; Mourshed, M.; Guo, Y.; Zhou, Y.; Chang, Y.; Wei, Y.; Feng, S. Electric vehicle charging load forecasting:

A comparative study of deep learning approaches. Energies 2019, 12, 2692. [CrossRef]
10. Sun, Q.; Liu, J.; Rong, X.; Zhang, M.; Song, X.; Bie, Z.; Ni, Z. Charging load forecasting of electric vehicle charging station based

on support vector regression. In Proceedings of the 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference
(APPEEC), Xi’an, China, 25–28 October 2016; pp. 1777–1781.

11. Lu, K.; Sun, W.; Ma, C.; Yang, S.; Zhu, Z.; Zhao, P.; Zhao, X.; Xu, N. Load forecast method of electric vehicle charging station using
SVR based on GA-PSO. IOP Conf. Ser. Earth Environ. Sci. 2017, 69, 012196. [CrossRef]

12. Shi, X.; Qiu, L.; Tian, L.; Liang, M.; Yi. L. Short-term load forecasting for electric vehicle charging stations based on time series
distance measuring. In Proceedings of the 2017 13th IEEE International Conference on Electronic Measurement & Instruments
(ICEMI), Yangzhou, China, 20–22 October 2017; pp. 417–423.

13. Majidpour, M.; Qiu, C.; Chu, P.; Pota, H.R.; Gadh, R. Forecasting the EV charging load based on customer profile or station
measurement? Appl. Energy 2016, 163, 134–141. [CrossRef]

14. Lu, Y.; Li, Y.; Xie, D.; Wei, E.; Bao, X.; Chen, H.; Zhong, X. The application of improved random forest algorithm on the prediction
of electric vehicle charging load. Energies 2018, 11, 3207. [CrossRef]

15. Cheon, S.; Kang, S.-J. An electric power consumption analysis system for the installation of electric vehicle charging stations.
Energies 2017, 10, 1534. [CrossRef]

16. Louie, H.M. Time-series modeling of aggregated electric vehicle charging station load. Electr. Power Compon. Syst. 2017, 45,
1498–1511. [CrossRef]

17. Buzna, L.; De Falco, P.; Khormali, S.; Proto, D.; Straka, M. Electric vehicle load forecasting: A comparison between time series and
machine learning approaches. In Proceedings of the 2019 1st International Conference on Energy Transition in the Mediterranean
Area (SyNERGY MED), Cagliari, Italy, 28–30 May 2019; pp. 1–5.

18. Wang, S.; Xue, G.; Ping, C.; Wang, D.; You, F.; Jiang, T. The application of forecasting algorithms on electric vehicle power
load. In Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China,
5–8 August 2018; pp. 1371–1375.

19. Huber, J.; Dann, D.; Weinhardt, C. Probabilistic forecasts of time and energy flexibility in battery electric vehicle charging.
Appl. Energy 2020, 262, 114525. [CrossRef]

20. Gerossier, A.; Girard, R.; Kariniotakis, G. Modeling and forecasting electric vehicle consumption profiles. Energies 2019, 12, 1341.
[CrossRef]

21. Arias, M.B.; Kim, M.; Bae, S. Prediction of electric vehicle charging-power demand in realistic urban traffic networks. Appl. Energy
2017, 195, 738–753. [CrossRef]

22. Lee, D.-H.; Kim, M.-S.; Roh, J.-H.; Yang, J.-P.; Park, J.-B. Forecasting of Electric Vehicles Charging Pattern Using Bayesians method
with the Convolustion. IFAC-PapersOnLine 2019, 52, 413–418. [CrossRef]

23. Arias, M.B.; Bae, S. Electric vehicle charging demand forecasting model based on big data technologies. Appl. Energy 2016, 183,
327–339. [CrossRef]

24. Su, S.; Zhao, H.; Zhang, H.; Lin, X.; Yang, F.; Li, Z. Forecast of electric vehicle charging demand based on traffic flow model and
optimal path planning. In Proceedings of the 2017 19th International Conference on Intelligent System Application to Power
Systems (ISAP), San Antonio, TX, USA, 17–20 September 2017; pp. 1–6.

25. Moon, H.; Park, S.Y.; Jeong, C.; Lee, J. Forecasting electricity demand of electric vehicles by analyzing consumers’ charging
patterns. Transp. Res. Part D Transp. Environ. 2018, 62, 64–79. [CrossRef]

26. Wang, H.; Zhang, Y.; Mao, H. Load Forecasting Method of EVs Based on Time Charging Probability. In Proceedings of the 2018
International Conference on Power System Technology (POWERCON), Denver, CO, USA, 16–19 April 2018; pp. 1731–1735.

https://www.iea.org/reports/global-ev-outlook-2019
http://doi.org/10.1016/j.epsr.2016.06.003
http://dx.doi.org/10.1088/1757-899X/439/3/032114
http://dx.doi.org/10.3390/en11051253
http://dx.doi.org/10.3390/app9091723
http://dx.doi.org/10.3390/en12142692
http://dx.doi.org/10.1088/1755-1315/69/1/012196
http://dx.doi.org/10.1016/j.apenergy.2015.10.184
http://dx.doi.org/10.3390/en11113207
http://dx.doi.org/10.3390/en10101534
http://dx.doi.org/10.1080/15325008.2017.1336583
http://dx.doi.org/10.1016/j.apenergy.2020.114525
http://dx.doi.org/10.3390/en12071341
http://dx.doi.org/10.1016/j.apenergy.2017.02.021
http://dx.doi.org/10.1016/j.ifacol.2019.08.245
http://dx.doi.org/10.1016/j.apenergy.2016.08.080
http://dx.doi.org/10.1016/j.trd.2018.02.009


Energies 2021, 14, 1487 16 of 16

27. Mao, M.; Yue, Y.; Chang, L. Multi-time scale forecast for schedulable capacity of electric vehicle fleets using big data analysis.
In Proceedings of the 2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG),
Vancouver, BC, Canada, 27–30 June 2016; pp. 1–7.

28. Yan, J.; Zhang, J.; Liu, Y.; Lv, G.; Han, S.; Alfonzo, I.E.G. EV charging load simulation and forecasting considering traffic jam and
weather to support the integration of renewables and EVs. Renew. Energy 2020, 159, 623–641. [CrossRef]

29. Tat, T.H.C.; Fränti, P. Real-time Electric Vehicle Load Forecast to Meet Timely Energy Dispatch. In Proceedings of the 2018 IEEE
International Conference on Service Operations and Logistics, and Informatics (SOLI), Zhengzhou, China, 11–13 October 2018;
pp. 148–153.

30. Gomez-Quiles, C.; Asencio-Cortes, G.; Gastalver-Rubio, A.; Martinez-Alvarez, F.; Troncoso, A.; Manresa, J.; Riquelme, J.C.;
Riquelme-Santos, J.M. A novel ensemble method for electric vehicle power consumption forecasting: Application to the spanish
system. IEEE Access 2019, 7, 120840–120856. [CrossRef]

31. Choi, S.; Sohn, H.G.; Kim, S. A study on electricity demand forecasting for electric vehicles in KOREA. Korean Data Inf. Sci. Soc.
2018, 29, 1137–1153.

32. Tan, B.; Chen, H. Multi-objective energy management of multiple microgrids under random electric vehicle charging. Energy
2020, 208, 118360. [CrossRef]

33. Al-Ogaili, A.S.; Hashim, T.J.T.; Rahmat, N.A.; Ramasamy, A.K.; Marsadek, M.B.; Faisal, M.; Hannan, M.A. Review on scheduling,
clustering, and forecasting strategies for controlling electric vehicle charging: Challenges and recommendations. IEEE Access
2019, 7, 128353–128371. [CrossRef]

34. Kim, Y.; Son, H.G.; Kim, S. Short term electricity load forecasting for institutional buildings. Energy Rep. 2019, 5, 1270–1280.
[CrossRef]

35. De Livera, A.M.; Hyndman, R.J.; Snyder, R.D. Forecasting time series with complex seasonal patterns using exponential smoothing.
J. Am. Stat. Assoc. 2011, 106, 1513–1527. [CrossRef]

36. Box, G.; Jenkins, G.; Reinsel, G.; Ljung, G. Time Series Analysis, Control, and Forecasting; John Wiley & Sons: Hoboken, NJ,
USA, 2015.

37. Demuth, H.B.; Beale, M.H.; De Jess, O.; Hagan, M.T. Neural Network Design; Martin Hagan: Stillwater, OK, USA, 2014.
38. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
39. Ministry of Environment, Republic of Korea. Available online: http://eng.me.go.kr (accessed on 8 February 2021).

http://dx.doi.org/10.1016/j.renene.2020.03.175
http://dx.doi.org/10.1109/ACCESS.2019.2936478
http://dx.doi.org/10.1016/j.energy.2020.118360
http://dx.doi.org/10.1109/ACCESS.2019.2939595
http://dx.doi.org/10.1016/j.egyr.2019.08.086
http://dx.doi.org/10.1198/jasa.2011.tm09771
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://eng.me.go.kr

	Introduction
	Background
	Previous Work
	Contributions

	Forecasting Methods
	Trigonometric, Box–Cox, Auto-Regressive-Moving-Average (ARMA), Trend, and Seasonality (TBATS) Model
	Autoregressive Integrated Moving Average (ARIMA) Model
	Artificial Neural Network (ANN)
	Long Short-Term Memory (LSTM)

	Data Analysis
	Performance Evaluation
	Macro-Scale Aggregated Data: National Level
	Macro-Aggregated Data: City Level
	Micro-Data: Single Charging Station
	Discussion

	Conclusions
	References

