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Abstract: The wood processing industry produces a significant amount of wood waste. Biomass
valorization through pyrolysis has the potential to increase the added value of wood wastes. Pyrolysis
is an important thermochemical process that can produce solid, liquid, and gas products. This paper
aims to review the pyrolysis of wood wastes from Indonesia, including teak wood (Tectona grandis),
meranti (Shorea sp.), sengon (Paraserianthes falcataria (L) Nielsen), and rubberwood (Hevea brasiliensis).
The review is based on an in-depth study of reliable literatures, statistical data from government
agencies, and direct field observations. The results showed that pyrolysis could be a suitable process
to increase the added value of wood waste. Currently, slow pyrolysis is the most feasible for Indonesia,
with the main product of charcoal. The efficiency of the slow pyrolysis process can be increased by
harvesting also liquid and gaseous products. The use of the main product of pyrolysis in the form of
charcoal needs to be developed and diversified. Charcoal is not only used for fuel purposes but also
as a potential soil improvement agent.

Keywords: biochar; renewable energy; pyrolysis; sengon; meranti; rubberwood; teakwood wood
waste; bio-oil

1. Introduction

Indonesia is a country endowed with very rich forest resources. Geographically,
Indonesia’s location on the Equator is advantageous because it has tropical forests with
high-quality timber. The primary forest product is wood, which is then used for domestic
purposes and is converted into processed wood products for export. Since the 1970s,
the wood processing industry has become one of the most important subsectors in Indone-
sia. In this period, the characteristics of the national timber industry were export-oriented,
so that it became the largest foreign exchange source of non-oil and gas and was very
significant in the national economy. Despite the decline, in 1997 the production of sawn
timber and plywood was still quite large, at 2.6 million and 6.7 million m3, respectively.
Ten years later, in 2007, sawn timber and plywood production were only 525 thousand
and 3.4 million m3. The decline in productivity was also indicated by a decrease in the
export volume from 2 million m3 of sawn timber and 6 million m3 of plywood in 2000 to
635 thousand m3 and 2.7 million m3 in 2007, respectively, for sawn timber and plywood [1].

Currently, Indonesia is one of the world’s wood exporters, in 9th position, with a
share of 2.9%. In 2017, the wood and wood goods industry was still ranked 7th of primary
commodities in non-oil and gas exports with values of USD 4.5 billion and USD 4.4 billion,
respectively. Wood products (HS44 code) still provide a share of 2.7% of total non-oil and
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gas exports. Indonesian wood product exports have an increasing trend with a fairly high
value from USD 4.1 billion in 2015 to USD 4.5 billion in 2018 [2]. The wood industry also
provides job opportunities for many people. For example, in Jepara Regency (Central Java)
alone, there are at least 15,271 units of industries consisting of 14,091 units (92%) of small
enterprises, 871 units (6%) of medium enterprises, and 309 units (2%) of big industries [3].
These industries are bound to involve thousands of workers.

The present condition of the wood industry still shows promising prospects. In 2019,
production of logs totaled 48.0 million m3, and processed timber reached 38.8 million m3

consisting of sawn timber 2.1 million m3, plywood 4.2 million m3, wood chips 31.4 million
m3, and veneer 1.2 million m3. In addition, there is still pulp of 7.6 million tonnes [4].
The wood industry has special characteristics where the availability of raw materials is very
dependent on forest management because it relates to the tempo of the tree renewal process.
It takes at least 5–8 years for the wood to be ready for harvesting since planting at the forest
area [5]. The wood industry also produces large amounts of waste. Therefore, the efficient
use of wood waste will significantly contribute to the wood industry’s sustainability.
In general, Indonesia is still inefficient in utilizing natural wood resources, especially for
natural forests outside Java. Handling wood waste is a problem for various parties, namely
(1) the waste producer (forest concessionary entrepreneurs and wood processing industry),
(2) the government, and (3) the surrounding community [5]. Therefore, the problem of
handling wood waste is the responsibility of the three parties together.

The basic concept of handling waste in general is 3R, which is reduce, reuse and
recycle. Waste removal should be the last option. Wood waste can still be processed into
other products. Wood, including wood waste, is a multipurpose and renewable resource
that may once again be an important energy source [6]. However, biomass is complex
and heterogenous that may impede its exploitation up to full potential [7]. There are
various treatments or ways to recycle wood waste into value-added products. Pyrolysis
is a promising thermochemical valorization method for treating wood waste into other
value-added products. The purpose of this paper is to conduct a review of the pyrolysis of
wood waste for Indonesia. The discussion will be limited to wood waste that is prominent
in Indonesia, including rubberwood, meranti wood, sengon wood, and teak wood.

2. Potential Wood Wastes for Indonesia

The wood industry is divided roughly into two types: the log industry and the pro-
cessed wood industry. Type of wastes and their quantity resulted from different activities
are significantly different. Log is the main product of harvesting activity from various
forests, including natural forests managed by concessionaires, land clearing processes,
industrial-based forest, and community-based forest. A part of logs is used as raw materi-
als in wood industries and are processed into various products.

2.1. Wood Waste of Forest Harvesting

Harvesting wood from the forest produces logging residue, not only from felled trees
but also from surrounding trees that have been damaged during harvesting. Logging
waste is classified into four forms: broken stems, stumps, branches and twigs, and fallen
trees. The collection and transportation to the utilization location is a big problem because
the terrain and road conditions are very heavy so that it is considered nonusable. Prior
to 2000, the efficiency of timber harvesting was very low and generated many wastes.
Darusman (1988) noted that forest exploitation in a wet tropical forest from a natural
forest concession (HPH) in South Kalimantan reached an efficiency of 51.0% of the volume
of commercial tree stands. Waste (49%) consisted of residue in the harvesting area of
42.3% (mainly trunks and branches above 10 cm), in the log yard 6.8% (trunks), and in log
pond 1.9% (trunks). Meanwhile, forest exploitation waste in an HPH in East Kalimantan
reaches 39.9%, consisting of 26.5% (trunks) and 13.4% (branches) [5]. Research in 1985 also
showed that forest wood harvesting waste with 10–40 cm diameter was still large. Logging
waste of diameter 10–40 cm was 27.9 m3/ha in Aceh, 28.9 m3/ha in North Sumatera,
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and 52.4 m3/ha in East Kalimantan. It is worth noting that wood waste of 10–40 cm
diameter and >4 m length was in the highest proportion of 62.7% (Aceh), 58.5% (North
Sumatra), and 47.5% (East Kalimantan) [8]. Forest wood waste with a diameter of 10–40 cm
has the potential to become industrial raw materials. Research in a North Kalimantan
HPH showed that from the volume of logs cut 22.5 m3/tree, equivalent to 8.7 m3/ha,
wood waste (branches and twigs) with a diameter of 10–30 cm reaches 9.46 m3/tree or
3.64 m3/ha (41.7%). In addition, the surrounding wood that is not harvested produces a
waste volume of 1.9 m3/ha. Meanwhile, selected logging in a concession in West Papua
obtained the volume of harvested wood 13.16 m3/tree (8.2 m3/ha), resulting in 5.1 m3/tree
or 3.2 m3/ha plus 1.8 m3/ha of waste from surrounding damaged trees [9].

Until 2013, logging waste was still quite significant. Data collected from forest com-
panies reveals that logging residue was 33.8% and 30.1% in West Sumatera and Cen-
tral Kalimantan. The wastes consist of the stump, stem without branch, top stem, and
branch. Furthermore, it was also revealed that the wood wastes volume 2.7–7.9 m3/tree
or 21.2–69.6 m3/ha in Central Kalimantan and 3.7–5.5 m3/tree or 17.4–48.7 m3/ha in
West Sumatera. The waste was mainly found in the harvesting plot, namely 97% in both
locations [10].

From the above figures, it can be seen that the wood waste during forest exploitation
activities is still very large so that new methods of harvesting forest wood are required
to improve its efficiency. This led to the adoption of the RIL (Reduced Impact Logging)
harvesting method. A study in two concession areas of forest management in Wasior and
Nabire Districts (West Papua Province) compared Reduced Impact Logging (RIL) and
conventional techniques. Results showed that the RIL technique produces slightly better
performance with wood utilization 4.0 m3 out of clear bole 4.6 m3 and wood waste of
0.5 m3 (in the harvesting site) and 0.1 m3 (in the landing point), which equivalent to the
recovery rate of 87.8% and residual factor of 12.3%. Wood utilization in conventional
technique was 4.6 m3 out of 5.3 m3 clear bole and waste of 0.7 m3 (in the harvesting site)
and very little in the landing point), meaning a recovery rate of 86.2% and residual factor
of 13.8%. In general, most of the logging waste was in the form of defective wood (65.1%),
broken wood (23.3%), and timber waste (11.6%) with good potential [11]. The advantages
of the RIL method were also reported in the Indonesian Selective Cutting and Planting
(TPTI) system, where wood waste was 11.1 m3/ha with the RIL harvesting method and
16.3 m3/ha using the conventional logging method [12].

Many other studies on residual factors and utilization factors have also been carried
out in natural forests. Sianturi et al. (1984) showed that the factor of timber utilization in
Pulau Laut natural forest was 80% [13]. The low waste is caused by the calculation method
where the whole tree method considers only clear bole wood (up to the first branch).
A study conducted in Central Kalimantan, East Kalimantan, and Jambi revealed that the
logging waste ranges from 16.3% to 24.6% of the clear bole volume. The logging waste
is on average of 22.2%, consisting of 9% defected wood and 12.2% trimming waste and
stumps [14].

Improved forest management and logging techniques can increase logging efficiency
and reduce logging waste. Research in Perseroan Terbatas (PT) Roda Mas Timber, a for-
est concession in Kalimantan, showed logging residue of 1.4 m3/tree with 0.4 m3/tree
(25.6%) in good quality. The logging efficiency was reported as 91.4% on average, with an
average logging waste of 1.4 m3/tree [15]. It was also shown that the topography did not
significantly influence the exploitation factor. Another study in PT Kemakmuran Berkah
Timber (South Kalimantan) concession reported that exploitation factor was 93% on flat
terrain (0–8◦), and 92% on other terrain topography (sloping (9–15◦), rather steep, (16–25◦),
and steep (26–40◦)) [16].

Table 1 summarises the efficiency and residues of wood harvesting using improved
methods. We can take an assumption for wood waste resulted from logging activity as
20% of the total harvested volume. With a round wood production of 48.0 million m3,
the wood waste in Indonesia will reach a total of no less than 12 million m3. This is a huge
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potential. Therefore, making the best possible use of it will support the sustainability of the
wood industries as well as forest. It is worth noting that sustainable forest management is
essential to guarantee the sustainability of the wood processing industry [17].

Table 1. Wood harvesting efficiency using the improved method in Indonesia (in %).

Location Efficiency Total Waste Remarks

West Papua
(improved method) 86.2% 13.8% Defect wood (65.1%), broken wood (23.3%),

and timber waste (11.6%)
Central Kalimantan,

East Kalimantan, and
Jambi (improved

method)

77.8% 22.2%

Meranti wood. Waste is an average value
and no significant difference in the three
areas. The waste consists of 9% defected
wood and 12.2% trimming and stumps.

Java 79.6 20.4
Teakwood. Residues consist of the broken
stem, short dimension, branch and twig,
stump, and irregular wood shape

Kalimantan 91.4% 8.6 Logging residue 1.4 m3/tree with
0.4 m3/tree (25.6%) is of good quality

There are four species of wood special to Indonesia, namely jati or teak wood (Tectona
grandis), meranti (Shorea sp.), sengon (Paraserianthes falcataria (L) Nielsen), and rubberwood
(Hevea brasiliensis). Table 2 shows the characteristic of those woods important to pyrolysis.

Table 2. Characteristic of wood specific to Indonesia (meranti, teak, rubberwood, sengon).

Wood Properties Unit Meranti Teakwood Rubberwood Sengon

Physical properties:
Air-dry density g/cm3 0.85 0.66 0.60 0.46
Specific grafity 0.48 0.66 0.59 0.38
Chemical properties:
Hemicellulose % 26.0 17.0 18.3 25.9
Cellulose % 40.3 34.0 34.6 51.9
Lignin % 38.2 30.0 25.5 22.2
Heating value (HHV) MJ/kg 19.6 20.2 19.4 17.8
Ash %TS 1.2 2.10 2.4 1.59
Fixed carbon %TS 22.7 12.69 16.8 n.a
Volatile solid %TS 78.61 80.29 74.4 90.01
C % 42.10 51.6 45.5 52.5
H % 7.88 6.0 5.8 6.0
O % 49.75 42.2 39.68 42.3
N % 0.24 0.26 0.20 0.2
S % 0.03 0.01 0.02 n.a

Note: References: Meranti [18–22]; Teak: [22–28]; Ruberwood: [20,29,30]; Sengon: [31–34].

Meranti (Shorea sp.) is popular wood in the trade in Indonesia or even Southeast
Asia. Generally, meranti wood is used as material for building construction and furniture,
such as roof frames, parquet floors, stair railings, doors, windows, and even floor mats.
Studies on meranti logging in three provinces (West Sumatra, West Kalimantan, and South
Kalimantan) show that the average recovery factor is 0.8%, and no significant difference in
the three provinces [35].

Teakwood is the mainstay of wood for the production of furniture and carvings, and is
appreciated worldwide. Teakwood forests in Indonesia cover about 1.77 million ha, mainly
in Java. Teakwood forests are managed by Perum Perhutani, a state-owned company,
which is able to supply only 403,432 m3 of this wood, while the demand for teak reaches
1.5–2.2 million m3 [24]. Currently, the availability of teak in Indonesia is dominated by
small diameter woods (<30 cm), and about 80% of the teakwood comes from community
forests of 6 years old or even less [36]. Thinned wood of more than 10 cm diameter
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is even used for carpentry [37]. Research on teakwood harvesting concluded that the
recovery utilization factor in an average of 79.6% and residual factor of 20.4%. The wood
residues constitute the broken stem, short dimension, branch and twig, stump, and irregular
wood shape. Most of the wood waste from teakwood harvesting is utilized by the local
community for fuels [38].

Sengon is a remarkably fast-growing species native to the eastern island of Indonesia.
In good growing conditions, sengon trees of 3–5 years old in the Perhutani area (Kediri, East
Java) had an average diameter of 11.3–18.7 cm and an average height of 11.7–20.5 m [39].
Sengon distribution area in Indonesia is quite wide, starting from Sumatra, Java, Bali,
Flores, and Maluku [40]. Sengon is a significant multipurpose tree for timber materials,
packing cases, and furniture [31]. It is also used for light construction (ceilings, panels,
interiors, furniture, and cabinets), feedstock for plywood and particleboard, and pulp for
making paper.

Rubberwood is produced from plantations. In 2019 rubber plantations were 3.68 mil-
lion ha consisting of smallholder 3.25 million ha (88.3%) and large plantations 437.4 ha
(12.7%) [4]. The productive age of rubber trees is 25–30 years so that roughly 4% or
around 147,200 ha/y of the plantations have to be rejuvenized [41,42]. Rubberwood can
be explored as veneer material, sawn timber, MDF (Medium Density Fibreboard), active
biochars, as well as fuels in brick and roof tile industries [43,44]. Rubberwood logs vol-
ume of 1–1.5 m cuts is estimated to 40 m3/ha from smallholdings and 75 m3/ha from
estate plantations [43]. Rubberwood with a diameter greater than 5 cm is 87.7% (used for
industrial raw materials), and that less than 5 cm accounts for 12.3% (used for fuel) [45].
Rubberwood is good fuel due to its high calorific value of 17.90 MJ/kg.

2.2. Wood Waste from Wood Processing Industry

Some examples of processed wood include sawn timber, plywood, wood chips, and ve-
neers. The wood processing industry also Included the woodworking, furniture, and
woodcraft industry. Processes in the wood sawmill generally involve stages of break down
sawing, resawing, edging, and trimming [46].

Waste from the processing wood industry includes pieces (woodcuts), blocks, dam-
aged wood, and sawdust. In 1989, the Ministry of Forestry estimated the amount of waste
in sawn timber production to be 50%, consisting of 15% sawdust, 25% cut, and 10% cut
edge [26]. Research in a sawmill industry in East Kalimantan showed that a total wood
waste of 42% was produced during wood processing. The waste consists of bark, off-
cut slabs, cross cuts, shavings, and sawdust [46]. The wastes from sawmill industries
in Java still reaches 49.3% to 50.1% consisting of 23.5–24.1% slabs, 13.5–14.2% sawdust,
and 12.0–14.2% cutting edge [5]. Other research at four wood sawmills in South Kaliman-
tan revealed that the sawmill industry produced waste of 40.48% of the volume of wood
processed, consisting of offcut slabs (22.3%), wood chips (9.4%), and sawdust (8.8%). Based
on the processing stages, waste in the form of the slab was resulted from break down
sawing 5.5%, resawing 8.2%, and edging 8.6%. Sawdust was wasted from all sawing stages,
namely, break down 1.6%, resawing 2.8%, edging 2.9%, and trimming 1.5%. Waste in the
form of wood chips (9.4%) was produced from trimming only [47].

The waste generated from sawmilling of matoa wood (Pometia spp.) at PT Inhutani
II Manokwari (Papua) was 47.6%, consisting of 5.5% in the form of sawdust, 35.6% of
slabs, and 6.5% of large pieces. Meanwhile, sawmill waste of ironwood (Instia sp.) in the
upstream wood processing industriy PT Prabu Alaska unit I in Fakfak (Papua) was 33.8%
consisting of 4.1% sawdust, 29.0% big slabs, and 0.4% cut edge [46]. Another study at
five sawmill enterprises in Jepara (Central Java) showed that the types of wood include
teak (Tectona grandis), mahogany (Swietenia sp.), trembesi (Samanea saman), and mango
(Mangifera sp.). The results also show that the yield or sawing recovery from sawmills
reached 70–80%. This figure is relatively high because the sawing pattern applied is one-
sided, and the resulting sawn timber did not experience side alignment or re-sawing into
square boards. Compared to the regulations issued by the government, sawmills in Jepara



Energies 2021, 14, 1407 6 of 25

are efficient [48]. Another factor is the fact that wood resources in Java, especially teak,
are getting increasingly difficult to obtain, so there is pressure to make use of the wood as
maximum as possible.

The characteristics and types of raw materials seem to influence the type and amount
of wood wastes. The type and percentage of waste produced by sawmills using log
raw materials will differ from those that use sawn timber (square blocks). For example,
the waste produced by a Wood Industry, Jayapura Regency (Papua) that used flitches,
consisting of shaving, powder (sawdust), slabs (slab), and cut ends (cross cuts); respectively,
16.0% (sawdust), 13.5% (shaving), 11.6% (slabs), and 1.1% cross cuts [46].

Plywood industry is another wood processing which also produces significant wastes.
In short, plywood processing resulted from activities such as log cutting, log stripping
(peeling) for veneers, preparing veneers, structuring veneer, cutting edges of the plywood,
and sanding the plywood. The waste from four plywood industries in South Kalimantan
was on average of 54.8% by volume of used wood. Details of the wastes consisted of log
pieces (3.7%), log peel remnants (18.3%), wet veneers (8.5%), shrinkage (3.7%), dry ve-
neers (9.6%), reduction in thickness (dry veneers) (1.9%), cut edges of plywood (3.9%),
sawdust (2.2%) and plywood dust (3.1%). Utilization of these two types of waste includes
fuel, blockboard core, blockboard, particleboard, core veneer joints, or plywood back
veneers [47].

Table 3 summarises the performance of wood industries. We can confidently assume
that waste from sawmills is no less than 40% of the volume of wood processed, and plywood
waste is in an average of 50% of the processed materials. With the production of sawn
timber of 2.1 million m3 and plywood 4.2 million m3 [4], the potential of wood waste in
Indonesia is 5.6 million m3, consisted of 1.4 million m3 from sawmills and 4.2 million m3

from the plywood industry.

Table 3. The efficiency of Wood Industries in Indonesia.

Industry Efficiency Waste Remarks

Sawn timber 50.0% 50.0% 15% sawdust, 25% cut, 10% cut edge
Sawmill, Jayapura 57.8% 42.2% Sawdust 16.0%, shaving 13.5%, slabs 11.6%, and cross cuts 1.1%.

Sawmill, Java 49.9–50.7% 49.3–50.1% Slabs 23.5–24.1%, sawdust 13.5–14.2%, and cutting edge
12.0–14.2%.

Sawmill, South Kalimantan 49.9–50.7% 40.8% Slabs (22.3%), wood chips (9.4%), and sawdust (8.8%).

Plywood, South Kalimantan 54.8% 45.2%
Log pieces (3.7%), log peel (18.3%), wet veneers (12.2%), dry
veneers (11.5%), plywood cut edges (3.9%), sawdust (2.2%), and
plywood dust (3.1%).

Sawmill, PT Inhutani II
Manokwari (Papua) 52.4% 47.6% Matoa wood (Pometia spp.). The waste consists of sawdust 5.5%,

slabs 35.6%, and large pieces 6.5%.
Sawmill, IPKH PT Prabu
Alaska, Fakfak (Papua) 66.2% 33.8% Besi wood (Instia sp.). The waste consists of sawdust 4.1%, big

slabs 29.0%, and cut edge 0.4%.

Sawmill, Jepara (Central Java) 70–80% 20–30% Teakwood, mahogany (Swietenia sp.), trembesi (Samanea saman),
and mango (Mangifera sp.).

3. Wood Wastes Pyrolysis

Pyrolysis, rooted from the Greek words “pyr” meaning “fire” and “lysis” meaning
“breakdown” or “disintegration”, is an endothermic thermochemical decomposition of
organic matter into different useful products [49]. Most papers describe pyrolysis as a pro-
cess with an inert atmosphere in the absence of oxygen [50–54]. However, limited oxygen
is allowed as long as it does not facilitate gasification to a substantial level [55,56]. From a
thermal point of view, the pyrolysis process can be divided into four steps: drying, initial
stage, intermediate stage, and final stage [20,55]. It should be noted that this description
applies only to the pyrolysis of biomass. Drying occurs up to temperature 105 ◦C, in which
the moisture is evaporated and is followed by an initial stage up to 225–325 ◦C where
hemicellulose decomposes. The intermediate stage is the heart of pyrolysis, taking place at
temperatures of 325–375 ◦C, where cellulose decomposes to produce bio-oil, and biomass
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particles decompose into biochar, condensable and non-condensable gases. The final phase
occurs at 250–500 ◦C where lignin, the hardest component to decompose, degrades into
phenols and phenol derivatives [57]. Pyrolysis gases are released, and a char layer is
formed. In general, pyrolysis reaction can be presented as the following, Equation (1):

Biomass + heat→ char + liquid + gas + steam (1)

Pyrolysis is an old conversion technology for biomass. Originally, pyrolysis was a low
heating rate process identical to carbonization with solid fuel charcoal as the main product.
Now, pyrolysis has developed into a versatile technology with the ability to produce a
variety of products. Solid, liquid, and gaseous products can be produced depending on
pyrolysis conditions. Depending on the residence time and heating rate, pyrolysis can be
classified into slow, intermediate, and fast pyrolysis. Slow pyrolysis is usually intended to
obtain solid products of biochar or charcoal, whereas fast pyrolysis is to obtain more liquid
products. Fast pyrolysis is described by high heating rates and very short residence times
(<2 s) and followed by rapid condensation [58]. Table 4 provides a description of these
types and product distribution of pyrolysis.

Table 4. Type of pyrolysis and corresponding product composition [7,49,59–61].

Parameter Slow Intermediate Fast

Temperature 400–500 ◦C ~500 ◦C 300–1000 ◦C
Heating rate 1 ◦C/s 1–1000 ◦C/s >1000 ◦C/s

Residence time 10–2000 min 5–30 s 1–2 s
Pressure 1 atm 1 atm 1 atm

Particle size 5–50 mm - <1
Biochar yield 35% 25% 12–25%

Bio-oil 25–30% 40–50% 60–75%
Gas 25–35% 25% 13–20%

Carbon in biochar 50–95% 66–74% 64–90%

The fraction of products is affected by several factors such as the type, particle size,
and composition of biomass, and process conditions such as heating rate, temperature,
and residence time. The liquid yield is optimized at fast pyrolysis conditions when the
heating rate around 1000 ◦C/s and pyrolysis temperature at around 500 ◦C. Under this
condition, biomass pyrolysis is expected to produce 60–70 wt.% bio-oil, 15–25 wt.% biochar,
and 10–15 wt.% gas [62]. Fast pyrolysis is considered as a technology capable of producing
high-value liquid products for direct substitutes of fossil fuels or is further processed into
chemicals. Products with high value, such as chemicals and fertilizers, are interesting
opportunities but very challenging [62].

Pyrolysis of wood wastes has been reported for many wood residues. Pyrolysis of
meranti sawdust in temperature range of 450–600 ◦C produced a maximum bio-oil of
33.7 wt.% at 600 ◦C. Biochar yield decrease from 39% at temperature 450 ◦C to 24.4% at
650 ◦C, while non-condensable gas increased from 37.9% at 450 ◦C to 45% at 650 ◦C [20].
Another work on pyrolysis of meranti sawdust by Mazlan et al. (2015) used particle size
of 0.15–0.5 mm, temperature 450–550 ◦C, and residence time 10 minutes. Results showed
that biochar yield decreased with temperature from 38.7% at temperature 450 ◦C to 28.7%
at 550 ◦C. On the other side, bio-oil and gas products increased from 24% and 37.6% to
30% and 41.6%, respectively, at the temperature of 450 ◦C and 550 ◦C [63]. Bio-oil yield
from pyrolysis of meranti sawdust can be increased by using nitrogen gas. Azura et al.
(2017) reported pyrolysis red meranti sawdust using particle size of 0.3–3.0 mm, residence
time 40–100 min, N2 flow rate 5–30 L/min, and temperature 350–600 ◦C. The highest
bio-oil yield of about 63.2 wt.% is gained using feed particle of 0.3 mm at the temperature
of 450 ◦C, 25 L/min of N2 stream, and 60 min of retention time. In addition, within the
particle size range of 0.3–3.0 mm, there is no appreciable difference in bio-oil yield due to
particle size [21].
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Teakwood sawdust can be made into activated charcoal with satisfactory quality.
The yield of teakwood charcoal is 28.6%. The charcoal is characterized by a moisture
content of 11.3% (wet basis), ash content of 7.7% (dry basis), volatile matter of 11.3%
(dry basis), and fixed carbon of 81.0 [64]. Ratnani et al. (2019) recently also reported that
activated carbon obtained from teakwood waste satisfies the quality of national standard
SNI 0258-79. It was also revealed that teakwood pyrolyzed at 750 ◦C produced the most
satisfying activated carbon characterized by 1.0% water content, 15.1% volatile matter,
2.3% ash, and 82.5% fixed carbon [65]. Another study used teak tree sawdust (TTSD) with
particle sizes of 0.5–1.0 mm pyrolyzed at 450 ◦C in a fixed bed pyrolyzer. The bio-oil yield
of 33.3 wt.% was collected with a calorific value of 23.41 MJ/kg, higher than its parent
biomass [66]. It is unusual because bio-oil’s calorific value is usually lower than the parent
biomass [53]. Rahmat et al. (2014) reported that pyrolysis of teakwood waste at 450 ◦C
resulted in a product composition of 22.2% biochar and 53.0% liquid consisting of 49.3%
wood vinegar, 3.3% tar, and 0.4% bio-oil [67].

Pyrolysis of rubberwood waste is triggered, among others, by the fact that rubberwood
is one of the important plantation crops in South East Asia, including Indonesia, Malaysia,
and Thailand. Lim and Egashira (2005) reported pyrolysis of rubberwood waste, where
the liquid product of 52 wt.% was collected from pyrolysis at above 430 ◦C, gas product of
around 26 wt.% after 600 ◦C, and biochar of 24 wt.% at above 530 ◦C [68]. Another study by
Mazlan et al. (2015) used rubberwood sawdust of 0.15–0.50 mm (particle size) and pyrolysis
temperatures range of 450–650 ◦C. The bio-oil product increased with temperature and
achieved the highest yield of 33.0 wt.% at 550 ◦C. In addition, biochar yield decrease from
around 38.7% at 450 ◦C to 26% at 600 ◦C, whereas non-condensable gas increased from
36% at 450 ◦C to 46.2% at 600 ◦C [20]. As presented in Table 2, the bio-oil product has a low
calorific value because of its high oxygen and water content. The oxygen element in the bio-
oil can be reduced by applying torrefaction before the pyrolysis process. Chen et al. (2018)
revealed that torrefaction pretreatment to rubberwood sawdust prior to the pyrolysis
process resulted not only in more uniform bio-oil but also in reducing oxygen content in
the bio-oil [17]. Preliminary evaluation on slow pyrolysis of rubberwood to produce wood
vinegar or bio-oil was reported by Ratanapisitet al. (2009). The highest yield of wood
vinegar of 27.4% was achieved at a temperature of 550 ◦C and a heating rate of 1.4 ◦C/min.
The liquid product has pH of about 2.9–3.8 and specific gravity of 1.01–1.03, depending
on the process conditions [69]. Rubberwood of 7.5–20 cm diameter and 40 cm length was
pyrolyzed using a brick dome-type kiln to produce quality charcoal with a calorific value
of 27.5 MJ/kg [70].

Sengon wood pyrolysis was reported by Wibowo et al. (2013) at pyrolysis temperature
of 350–500 ◦C and residence time of 30 and 60 min. The results showed that the charcoal
yield decreased from 30.3% at 350 ◦C to 23.3% at 500 ◦C. On the other hand, the liquid
product increased from 44.3% at 350 ◦C to 51.7% at 500 ◦C. At the same temperature range,
the product gas also increased from 30.8% to 33.0% [71]. Activated charcoal from sengon
wood waste has a high surface area, especially from pyrolysis at elevated temperatures.
Hendrawan et al. (2019) reported that the surface area of the activated carbon produced
from pyrolysis of sengon wood increased with temperatures from 380.8 to 1000 m2/g,
respectively, at temperatures of 400 to 600 ◦C [72]. Nugrahaningtyas et al. (2019) compared
bio-oil production from four wood waste cut into pieces with a volume size of 1–3 cm3

and pyrolysis temperature of 300 ◦C. The bio-oil yield is 33.0%, 35.8%, 37.0%, and 38.8%,
respectively, from bangkirai, coconut, sengon, and meranti [73].

Table 5 summarizes properties of the pyrolysis products (biochar and bio-oil) resulted
from wood wastes of meranti, teakwood, rubberwood, and sengon wood.
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Table 5. Characteristics of biochar and bio-oil of meranti, teakwood, rubberwood, and sengon wood
produced from pyrolysis.

Parameter
Meranti Teak Rubber Sengon

B.oil B.char B.oil B.char B.oil B.char B.oil B.char

Proximate
Moisture (wt.%) n.a 2.9 13.8 2.12 n.a 2.9 n.a n.a

Ash (%DS) n.a 3.0 n.a 10.89 n.a 4.9 n.a n.a
Volatile matter (%) n.a 42.5 n.a 17.88 n.a 50.6 n.a n.a
Fixed carbon (%) n.a 51.6 n.a 69.11 n.a 41.6 n.a n.a
Elemental analysis

C 15.7 84.9 65.08 75.51 15.7 77.2 n.a 72.4
H 8.2 2.3 7.19 3.17 8.2 2.6 n.a 5.1
O 76.0 12.4 26.84 20.09 69.2 15.2 n.a 21.9
N 0.1 0.4 0.89 1.23 0.1 0.4 n.a 0.1

Calorific value
(MJ/kg) 6.7 28.5 23.41 27.51 7.4 29.1 n.a 24.55

References: [63,74–76].

4. Application of Pyrolysis Products
4.1. Biochar

So far, charcoal produced through the pyrolysis process has been used primarily as a
fuel in metal casting, blacksmithing, filters, and grilling food to give it a distinctive taste
like satay. This relates to the high calorific value of biochar of about 29 MJ/kg (Table 2),
which is considerably higher than that of biomass or bio-oil. This relates to the declining of
H/C and O/C element ratios. For example, Gupta et al. (2019) reported the H/C atomic
ratio of teakwood is 1.4, and its biochar has H/C of 0.7 at pyrolysis temperature 400 ◦C and
decreased to 0.3 at 700 ◦C, whereas the O/C ratio decreased from 0.7 (raw teakwood) to 0.2
(biochar, 400 ◦C) and further decreased to 0.1 (biochar, 700 ◦C). At the same time, relative
energy increased from 17.7 MJ/kg (raw) to 27.2 MJ/kg (biochar 400 ◦C) and 28.9 MJ/kg
(biochar 700 ◦C) [75]. However, charcoal has broader and more value-added potential,
such as materials for soil amendment, activated carbon, electrode materials, and graphene.
It is worth noting that biochars produced by slow pyrolysis have lower surface area than
those produced by flash pyrolysis or gasification [77].

4.1.1. Soil Amendment

The utilization of biochar to improve soil quality is among the accepted soil conserva-
tion technologies to maintain or increase land productivity. Biochar is a carbon-rich (carbon
~85%) product with a highly stable composition and does not degrade. The organic part
of biochar has a great carbon content, and the inorganic part comprises minerals such as
calcium (Ca), magnesium (Mg), potassium (K), as well as inorganic carbonates, depend on
the biomass type [78]. Biochar is identified as a superb soil amendment having the possi-
bility to revolt the environmental management concepts [79]. The utilization of biochar
for soil amendment provides beneficial effects on soil and significantly improves crop
growth [80]. Other benefits of biochar to soil involve increasing plant yield and reducing
nutrient loss [81]. Application of biochar influences soil properties, both physical (bulk
density, porosity) and chemical (pH, electrical conductivity, capacity of cation exchange,
nutrient levels), and biological properties (microorganism population structures). Biochar
also offers chances to stockpile carbon (C) in the soil much longer than the raw feedstock.
Biochar also influences the microbial community in soil by offering habitats and finally
converting nutrients into ready-available forms for plants [82].

Sánchez-Monedero et al. (2019) reported the effects of biochar and compost appli-
cation across the different cropping systems in Europe. All amendment materials are
suitable to enhance organic C in the soil. Compared to the control treatment, the increase
in organic C is 11%, 36%, and 20% for compost, biochar, and biochar-compost blend, re-
spectively [83]. Conversely, Alotaibi (2016) confirms that the positive effects of biochar
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are more pronounced in a mixture with fertilizer than that of biochar alone [84]. Chan
(2007) conducted a pot trial to study the effect of green waste biochar on the soil quality of
Alfisol soil and radish production. Interaction of nitrogen fertilizer and biochar resulted in
a higher yield, indicating the function of biochar in increasing N fertilizer efficiency for
the plant. With N fertilizer, the dry matter of radish yield increases from 95% to 266% in
the zero biochar (control) and soils with 100 t/ha biochar addition [85]. Biederman (2013)
analyzed huge separated studies from hundreds of published papers and revealed that
application of biochar into soils increases aboveground biomass, crop productivity, soil
microbial, rhizobia nodulation, phosphorus (P), potassium (K), total nitrogen (N), and total
carbon (C) in the soil, as well as K content in plant tissues. The pH of soil also inclines
after the application of biochar. Therefore, biochar’s application is an answer because
biochar enhances soil fertility, stimulates crop development, improves plant production,
and decreases contaminations [86].

4.1.2. Other Encouraging Applications

Charcoal or biochar produced from wood wastes pyrolysis has high potential applica-
tions in other areas. Recently, Jain et al. (2017) reported a greatly mesoporous activated
carbon resulted from the hydrothermal carbonization process of teakwood sawdust as an
encouraging material in electronics. The carbon, processed using benzene tetracarboxylic
acid and followed by physicochemical activation, has a high surface area of 2108 m2/g.
This activated carbon is promising as an electrode in the fabrication of Li-ion capacitor
with high energy. The material delivers an excellent energy density of around 111 Wh/kg
when it couples with LiC6 [87].

Another promising application for wood waste carbon is a precursor for graphene,
as a support material for fuel cell catalysts working at low-temperature such as Polymer
exchange membrane fuel cells (PEMFC). Graphene from biomass carbon has a unique
morphological plane structure with high surface area, high conductivity, and defective
sites. Therefore, it has potential to be used as a support material for fuel cell catalysts
working at low-temperature like Polymer exchange membrane fuel cells (PEMFC) [88].
Very recently, Sudarsono et al. (2020) reported that graphene powder prepared through
microwave-assisted carbonization of sengon wood revealed a high performance as support
for iron-based oxygen reduction catalyst (Fe-N/C) in the acidic medium [89]. The meso-
porous structure of reduced graphene oxide (RGO) prepared from sengon wood pyrolysis
is comparable to graphite RGO and even increases the stability by 8% and better methanol
tolerance when compared to a benchmark noble metal-based on platinum (Pt/C) cata-
lyst. Non-precious metal salts, especially iron (Fe), with polymeric nitrogen precursors
(Fe-N/C), have gained the most attention owing to their facile synthesis, low cost, envi-
ronmental friendliness, and good performance as an ORR catalyst. Non-precious catalyst
supported on reduced graphene oxide (RGO) derived from sengon wood shows promising
performance for fuel cell application [90]. Fe-based electrocatalyst with stabilized graphitic
N-bond supported by sengon wood-derived RGO (Fe-N/RGO) shows excellent perfor-
mance for ORR (oxygen reduction reaction) in the acidic medium [91]. Fe-N/C catalyst
also exhibits high ORR activities similar to or even superior to a benchmark Pt/C catalyst
in alkaline media.

4.2. Bio-Oil

There are several names for the liquid product of pyrolysis, namely bio-oil, liquid
smoke, pyrolysis oil, bio-crude, and wood vinegar. Bio-oil, a black and tarry liquid
with a sharp aroma, is composed of complex hydrocarbon compounds with hundreds of
oxygenated species, high moisture content, and low pH (~2). Table 6 provides properties
of bio-oil produced from pinewood pyrolysis in comparison with mineral oils such as
light fuel oil (LFO), heavy fuel oil (HFO), and #2 diesel fuel. As we will see, the bio-oil
can be improved through different methods into a more desirable product. Bio-oil can be
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explored for many applications from fuel, chemical, and growth regulators as well as an
insect pest repellent.

Table 6. Properties of bio-oil and diesel fuel.

Property Unit Pine [92,93] #2 Diesel [59,94] HFO [92,95] LFO [92,96]

Density kg/L 1.21 0.83 0.9–1.02 0.89
HHV MJ/kg 16.9 50.02 40 43.02

Viscosity cSt 17 2.39 140–380 6
Pour point ◦C −36 −6 >15 −15

Coke residue wt.% 16 0.19 12.2 9
Flash point ◦C 53 60 >65 60

Water wt.% 23.9 - <7 0.025
C dwt.% 40.6 86 85 86.0
H dwt.% 7.6 11.1 11 13.6
O dwt.% 51.7 0 1.0 0
N dwt.% <0.1 1 0.3 0.2
S dwt.% 0.01 0.80 1 <0.18
Cl dwt.% 0.006 - - -

Ash wt.% 0.03 - 0.1 0.01
K and Na ppm 34 - - <0.02

4.2.1. Fuels

Bio-oil produced from biomass pyrolysis is prospective as a competitive fuel to replace
mineral oil. Research on this subject has been started long before. Compared to diesel
oil, in general bio-oil shows a higher density, lower calorific value, and higher viscosity.
However, a medium to large or low-speed engines require less stringent on fuel properties.
Combustion experiments have revealed that bio-oil burns effectively in standard boilers
and furnaces with performance close to those with mineral oil.

The use of pyrolysis oil to substitute heavy fuel oil (HFO) has been demonstrated.
Boilers using HFO are generally larger and stronger than those of light fuel oil (LFO)
boilers. Therefore, pyrolysis oil is more suitable for boiler fuel, but it has to meet acceptable
emission, economic feasibility, and stable quality standards [59]. Several works have been
conducted on bio-oil utilization to substitute HFO in boiler units. For example, Oasma et al.
(2001) reported the utilization of bio-oil using a 4 MW nominal capacity boiler. The test
furnace was cylindric with an inner diameter of 2.4 m and a length of 5.2 m. Different
pyrolysis oils were produced from hardwood and pine with water content 19.3–35.7%,
viscosity 6–42 cSt, calorific value 11.2–17.5 MJ/kg, solid residue 0.03–1.86%. In order to
improve the homogeneity and increase the combustibility of the oils, methanol was added
(10 wt.%) during the experiment. The result showed that bio-oils burnt fairly well in
conventional furnaces and boilers. The fire is greater and combustion takes a lengthier time
than that of fossil oils. Furthermore, even though the particle content is higher, in general,
the emissions resulted from the combustion of bio-oil are better than that of heavy fuel
oil [97].

Some studies, however, recognize important challenges for bio-oil due to its charac-
teristics. High water content in the bio-oils resulted in a negative effect on combustion.
This means that more energy is demanded for the ignition of bio-oils than mineral oils,
resulting in ignition difficulties. High water content also causes low calorific values of
bio-oil in the range of only 40% to 50% of that for mineral oils. Furthermore, bio-oil is
also corrosive for metals in general due to its organic acid content [92]. Bertoli et al. (2001)
confirmed that wood bio-oil is hardly be used as a straight fuel in diesel motor without
blends [98]. The composition of bio-oils is also non-uniform for different biomass feedstock,
making it a low quality fuel need to be upgraded [99]. With all its disadvantages, bio-oil
from fast pyrolysis of wood is estimated to be the promising candidate for replacing HFO
in industrial or district heating boilers [100].
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Solantausta et al. (1993) investigated the use of pyrolysis oil as a fuel in a single-
cylinder Petter AVB 500-cm3 diesel engine run at a speed of 2000 rpm and 50% load. It was
revealed that ethanol is required as pilot fuel to help ignition because bio-oil solely did
not ignite readily in a conventional diesel engine. After warming up using diesel fuel,
the engine was switched to ethanol, and then to 12 min running on bio-oil; switched
back to ethanol, and switched over to bio-oil, etc. Even though pyrolysis oil is difficult
to ignite, it burnt easily when combustion happens, indicating that bio-oil can be an
appropriate fuel for engines with pilot-ignition [101]. Diebold and Bridgwater (1997) cited
that filtered pyrolysis oil successfully works with 18 cylinders, 1.4 MW, low-speed diesel
engine, with a thermal efficiency of 45% and no corrosion problems. They also summarized
that raw pyrolysis liquid had been successfully tested for more than 10 h of continuous
operation using a modified 250-kWe dual-fuel engine with and without dilution with
alcohol [53]. Shihadeh and Hochgreb (2000) also found that pyrolysis oils indicate equal
thermal efficiency to that of diesel fuel. However, pyrolysis oils result in long ignition
delays and significantly lower cylinder pressure rise rates as compared with #2 diesel
fuel [102]. Chiaramonti et al. [96] concluded that diesel engines are very promising to
generate power using pyrolysis oil, but gas turbine plants are the most technically advanced
mode. Some difficulties are still identified correspond to the utilization of straight bio-
oils for fuel of diesel engines that need to be solved, such as combustion delay, carbon
deposition, and corrosion. The use of bio-oil as a fuel source can also be performed through
the steam reforming process to produce hydrogen gas. Hydrogen gas is a promising fuel
source in the future [103]. The steam reforming process is carried out with the help of
metal-based catalysts such as Ni, La, Co, Cu, Cr, Pt, etc. Further description of this process
is added in the next Table 5.

4.2.2. Chemicals

Pyrolysis oil contains so many compounds that can be employed as plant regulators
in the agriculture field. The application of wood vinegar as a plant growth regulator at a
concentration of 50 mL/L effectively increased papaya stem diameter during nursery [67].
Utilization of wood vinegar as pest control at 5 mL mixing with 200 g maize can effectively
decrease the number of maize weevil and reduce maize damage during storage [67]. Bio-oil,
with molecular weight of 300–1000 g/mol, contains molecular fractions of hemicellulose,
cellulose, and lignin polymers escaping the pyrolysis atmosphere [53,104]. The compounds
in bio-oil are classified into five broad categories, namely: hydroxy aldehydes, hydroxy
ketones, sugars and dehydrosugars, carboxylic acids, and phenolic compounds [55]. Table 7
provides a short description of those routes to upgrade bio-oil into chemicals.

Table 7. Summary of the promising route to upgrade pyrolysis oil to produce chemicals.

Chemicals Description

Physical methods:

Emulsion

Produce homogenous emulsions by using the proper emulsifier. Diesel fuel and biodiesel or their
mixtures can significantly improve fuel properties of bio-oil and the resulted emulsion work in diesel
engines with lower emissions [105]. An optimal emulsion of oil palm biomass-based bio-oil and diesel
fuel is achieved with a pH of 3.29, mass density of 0.86 g/cm3, and calorific value of 42.19 MJ/kg [106].
High energy consumption is one of the disadvantages of this method [107].

Filtration

Improve bio-oil quality (viscosity, solids content, ash content, alkali content, and acidity) by using
granular filters. The bio-oil yield decreases with increasing granular size, mass flow rate, and number of
filtration runs. The bio-oil quality (solids content, ash content, initial viscosity, viscosity change, and
aging rate) is enhanced by the hot vapor granular filtration [108]. During filtration, 10–30% of bio-oil
yield is lost due to filter plugging [109].

Solvent addition Reduce bio-oil viscosity and improve its stability using a solvent. Methanol is found to be an effective
additive to improve bio-oil viscosity, stability, and heating value [110], as well as its storability [111].
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Table 7. Cont.

Chemicals Description

Distillation

Distillation is a common method of physical refining of bio-oil. The process separates different products.
McVey et al. (2020) reported a continuous flash distillation to fractionate BTX (Benzene, Toluene, xylene)
from partially deoxygenated bio-oil. For a flow rate of 2 mL/min, the extraction efficiency varies from
16.21% at a temperature of 120 ◦C to 50.81% at a temperature of 140 ◦C [112].

Chemical methods:

Aqueous phase
reforming

Due to the high water content in the bio-oil, aqueous phase reforming (APR) is an optimistic choice to
produce H2 and alkane from biomass. Vispute and Huber (2010) reported APR with a 1 wt.% Pt/Al2O3
catalyst at 265 ◦C of the hydrogenated bio-oil to produce hydrogen with a selectivity of 60% [113].

Mild cracking

To avoid severe catalyst deactivation as occurred with deep cracking of bio-oil, mild cracking is proposed
with the objective to reduce coke and gas formation by partially removing oxygen from the bio-oil [114].
Bio-oil macromolecules are cracked into smaller molecules with the presence of catalysts. The common
catalyst is zeolite, but ZnO is found to be a promising catalyst resulting more stable liquid better than the
non-catalytic bio-oil [115].

Esterification
The process removes acids and produces esters by reacting bio-oil and alcohols with the presence of
catalysts. Methanol is commonly used for esterification due to its high reactivity and less expensive.
HZSM-5 and aluminum silicate are among the preferred catalysts for bio-oil esterification [107].

Catalytic methods:

Hydrogenation

The aim of hydrogenation is to improve bio-oil quality and stability by reducing reactive compounds,
such as organic acids and aldehydes [116]. Hydrogenation is performed with a hydrogen atmosphere at
high pressure and temperature. During hydrogenation, O in the bio-oil is removed in the form of H2O or
CO2, producing high-quality oil products [95]. After upgrading, bio-oil has a higher pH value, water
content, and H element, while the viscosity decreases [117]. Catalyst deactivation is a problem due to
coke formation [118].

Hydrodeoxygenation

Hydrodeoxygenation (HDO) is a promising method to upgrade bio-oil into high-quality fuels
comparable to conventional fossil fuels [119]. During the HDO process, the O element in oxygenated
chemical groups is removed under high hydrogen pressure (507–4200 psi) and temperature between 300
and 400 ◦C [120]. The common catalysts for this process are Ni-Mo or Co-Mo catalysts.

Catalytic cracking

Bio-oil macromolecules are cracked into smaller molecules with the presence of catalysts. Schmitt et al.
(2018) reported the effectivity of Ni-based catalyst working at 325 ◦C and 80 bar with 42% of the oxygen
removal [121]. Traditional catalytic cracking is performed by thermally treating bio-oil in a tubular fixed
bed reactor under hydrogen flow at a higher temperature with high pressure. Recent development
combines catalytic pyrolysis and catalytic cracking as a superior technology to improve the yield and the
quality of bio-oil. The common catalyst in this reaction is zeolite, while the bottleneck for sustainable
application of catalysts is the coke deposition of this catalyst [107].

Steam reforming

The process reacts bio-oil with high-temperature steam with the purposes of steam reforming process is
to produce syngas (H2 and CO) [122,123]. Pan et al. (2006) reported that catalytic steam reforming of the
bio-oil over a metal-doped catalyst of C12A7-Mg in the fixed-bed continuous flow reactor obtain
hydrogen yield of 80% at 750 ◦C and the maximum carbon conversion close to 95% under the optimal
condition [124]. Catalyst deactivation by coke deposition is a serious problem for the sustainable
application of this process [107].

Pyrolysis oil is an auspicious material that can be used for chemicals synthesis through
biorefinery processes. High-value specialty chemicals such as hydroxyacetaldehyde, lev-
oglucosan, organic acids, and food flavors can be obtained [53]. Routes to upgrade bio-oil
for producing value-added chemicals can be classified into physical (emulsion, filtration,
solvent addition, distillation), chemical (aqueous phase separation, mild cracking, es-
terification), and catalytic methods (catalytic cracking, steam reforming, hydrogenation,
hydrodeoxygenation) [125,126].

4.3. Gas

Pyrolysis is a thermochemical process in which biomass is heated up in the absence
of, or limited, oxygen. With no oxygen, the biomass is not combusted, but hemicellulose,
cellulose, and lignin decomposed into charcoal and primary gases. Most of the gases
produced during pyrolysis can be condensed into a liquid (bio-oil), but there are some
permanent gases such as CO2, CO, H2, CH4, and other light hydrocarbons. The low heating
value (LHV) of primary gases is typically 11 MJ/Nm3. Some of the organic vapors are
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cracked to secondary gases that increase LHV up to (20 MJ/Nm3) [53]. Depending on the
pyrolysis conditions, the gas products may achieve 25–35% of the biomass in slow pyrolysis
and 13–20% in fast pyrolysis. The major components of the pyrolysis gas are H2, CH4,
CO, CO2, light hydrocarbons (ethane (C2H6), ethylene (C2H4), propane (C3H8), propylene
(C3H6), and butane (C4H10). Larger hydrocarbons such as hexane (C6H14) or benzene
(C6H6) may also exist [60]. The pyrolysis gases can be explored as a synthesis gas, which
through Fischer–Tropsch synthesis can produce transportation fuels such as gasoline or
diesel fuel [127]. However, it requires extensive reforming and shifting reaction to produce
the desired gas composition. Therefore, the gas is commonly used as fuel to generate
electricity or heat [128,129], which can provide the necessary energy to drive the reaction
during the pyrolysis process. Another application is for fuel in gas engines [130,131].

5. Pyrolysis in Indonesia: State-of-the-Art

The pyrolysis of wood waste and other biomass residues in Indonesia actually has a
bright prospect. Unfortunately, the pyrolysis process uses ancient technology, namely slow
pyrolysis or carbonization, with the main objective of producing charcoal. In principle,
the biomass is heated slowly in the absence of oxygen to a relatively low temperature
(~400 ◦C) over an extended period of time, which in ancient times ran for several days to
maximize the char formation. Furnaces or kilns are made with simple technology. Our field
observations get information about several types of kilns or furnaces used by small and
medium industries, including the box, dome, and drum kiln. Abidin et al. (2018) reported
an average yield of 20.3% by weight from traditional charcoal production with ranges
between 17.60% and 23.12% [132].

5.1. Box Furnace

The box pyrolyzer is a method of making charcoal that has a large enough volume.
However, the processing time for this furnace is relatively long, and the larger the furnace
volume, the longer charcoal processing takes place. This furnace is more efficient for
burning raw materials with clear dimensions such as wood. The furnace design in the
form of a box or square makes it easy to stack wood and adjusts to the volume of wood to
be charred [133]. The box furnace is made of brick and clay construction with a thickness
of ±30 cm and the inside dimensions of 2 m so that the volume capacity of this furnace is
8 m3 (Figure 1a). On the roof of the furnace, there is a window functioning as a facility for
initiating combustion and for introducing additional feedstock. This furnace also has three
small holes on the sides of the stove body (right, back, and left), and each hole has a vertical
position of ±50 cm. In addition, there is a hole in the middle of the furnace door. The small
hole in the furnace is useful as a place to control oxygen and to control the temperature of
the pyrolysis. Temperature control is important because it can affect the shrinkage of raw
materials and heating value [134]. The higher the temperature, the higher the shrinkage
and calorific value.

5.2. Dome Furnace

The dome furnace (Figure 1b) has the largest volume. Therefore, this type of furnace
is commonly used for charcoal production on a commercial scale. However, the processing
time for this stove is relatively longer than that of other types. The main function of this
type of furnace is for the charring process. This furnace is among the permanent stoves.
The dome furnace is also made of brick and clay construction. The dome furnace is divided
into two parts; namely, the body and the dome. The dome furnace has a thickness of
±30 cm, a dimension of 3.8 m of height (2 m of stove height and 1.8 m of dome height),
and a radius of 2 m, with a volume of 41.7 m3. On the left and right of the dome, there are
two windows of 2.4 m2 each, serving as a place for initial combustion as well as a pathway
to enter additional raw biomass. As in the box furnace, there are three locations at the body
of the furnace (right, back, and left) for small holes. Each location has three holes (top,
middle, and bottom) with a vertical distance of ±50 cm. In addition, there is a hole in the
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middle of the furnace door. This furnace is equipped with a condenser system to collect the
liquid products. The condenser system consists of a chimney that connects to the furnace
via a U-shaped pipe, two drums for condensation, and a hose for releasing liquid smoke.
There is also a small cooling pond with water for the condensation process. Nurhayati
(1995) [70] reported performance of dome kiln of 1.4 m3 capacity made from red bricks
spaced using the mould of clay and sand. A charcoal yield of 26.9% was achieved using
rubberwood feedstock with a kiln efficiency of 39.2% and a production rate of 1.6 kg/h.
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5.3. Kiln Furnace

Kiln furnace is a mobile furnace that is easy to move, though it has a fairly large
volume. This furnace is made of flat iron with a thickness of 0.5 cm. The inner dimensions
of the drum furnace include a height of 0.9 m and a radius of 1.2 m so that the volume of
this furnace is 3.1 m3. The kiln furnace has four small holes located each at the bottom,
middle, and top of the drum. Thus, the total of small holes contained in this drum furnace
is 12 holes. The distance between the small holes (vertical) is 30 cm. The function of the
small hole in the drum is to control oxygen and combustion temperature. In addition to a
small hole, this furnace is equipped with a lid serving to minimize the amount of oxygen.
During the pyrolysis process, the lid of the furnace should be tightly set up such that wood
feedstock is not burnt to ash. Syahrinudin et al. (2018) stated that the pyrolyze wood using
a closed drum produces perfect and brittle charcoal without ash. The kiln furnace can be
seen in Figure 2.

5.4. Drum Furnace

The drum furnace, portrayed in Figure 3, is commonly used in small-scale charcoal
producers. The use of drums as a method of making charcoal is widely used by business
actors because it is cheap, easy, practical, and can be easily moved (Mardiyanto and
Purnomo, 2016). In addition, the combustion process in the drum furnace is relatively
faster. However, the drum furnace has a small volume compared to the other furnaces. On
one side, this provides a flexible option to compensate with the low volume of biomass.
On the other side, tens of drum furnaces are required to pyrolyze larger charcoal capacity.
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The inner dimensions of the drum furnace include a height of 0.9 m and a radius of
0.3 m so that the volume of each furnace is 0.3 m3. This type of furnace has four small holes
located at the bottom, middle, and top of the drum. Thus, the total of small holes contained
in this drum furnace is 12 holes. The distance between the small holes (vertical) is ±20 cm.
The main function of the holes is to control oxygen and control the combustion temperature.
Lowering the temperature process favors the greater charcoal yield (Soolany and Fadly,
2020). This furnace is equipped with a drum lid. Charcoal producers sometimes equipped
the drum furnace with a roasting box (Figure 3b) made of 0.5 cm thick iron sheet functioning
to dry moist charcoal. The box has a dimension of 4 m long, 3 m wide, and 0.5 m high,
making a volume capacity of 6 m3. This roasting box has four ears to ease its removal.
Pyrolysis using drum kilns produces charcoal with a better heating value. For example,
Salim (2016) reported the heating value of teak charcoal produced by pyrolysis using a
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drum kiln to be 29.9 MJ/kg [135]. The value is higher than the calorific value of ulin wood
charcoal (29.4 MJ/kg) and api-api wood charcoal (28.3 MJ/kg) pyrolyzed by burying in the
earth [136]. Evaluated from its specific gravity, in fact, teakwood has a lower value (0.7)
than those of ulin wood (1.0) or api-api wood (0.8–1.0). Normally wood with high specific
gravity will have a higher heating value, too [135]. It is worth noting that the pyrolysis
process produces three types of products; namely, biochar, bio-oil, and non-condensable
gas. In the pyrolysis process, all three products should be harvested and utilized. The gas
product can be directly combusted to produce heat used in the pyrolysis process so that a
more efficient pyrolysis system will be created.

6. Market Potential for Charcoal

Charcoal has been used since ancient times for a variety of purposes, but by far its
most important use has been as a fuel in the metallurgical industry and in the preparation
of various grilled dishes. In modern times, charcoal is widely used for outdoor cooking
(grill and barbecue). The domestic market for biochar has much potential. Charcoal is also
required to fulfill the local market. The utilization of charcoal in Indonesia is mainly for
fuel. The demand for charcoal fuel is estimated to be 191,000 ton in urban areas and around
251,000 ton in the village and suburban areas [137]. Therefore, the domestic market for
charcoal is important. Many food stalls require charcoal to cook traditional dishes such as
satay, grilled chicken, grilled fish, grilled meat, roasted corn, and specialty boiled noodles,
which have to be cooked using wood charcoal to get a distinctive taste. With the increase
in the prosperity of the people, food stalls of this kind grow and scatter in various cities
and regions so that they require a considerable amount of charcoal. A study by Yandri
(2013) revealed that most big restaurants serve grilled dishes prepared using charcoal [138].
As for cooking fuel for traditional food, charcoal is generally sold in small and simple
packages (around 250–500 g in a plastic bag) with prices ranging from IDR 4000–5000/kg
or USD 0.29–0.36/kg for wood charcoal and IDR 8000–10,000/kg or USD 0.58–0.72/kg for
coconut shell charcoal. This means the domestic price for charcoal should be attractive for
small and medium enterprises because it is comparable to the export price with destination
to Malaysia and China.

Biochar is a value-added product from wood waste that is expected to become one of
the mainstay commodities. This can be seen from the export of wood charcoal (including
hard bark charcoal or shell charcoal) with HS code 4402, which increased from USD
185.3 million in 2015 to USD 240.5 million in 2017 [2]. The export value further increased to
USD 280.1 million in 2019. Indonesia is currently the largest charcoal exporting country in
the world with a share of 22.3%, export volume reaching 527 million tons, and a value of
USD 280.1 million [139]. The number of countries for charcoal export destinations from
Indonesia is close to a hundred, especially from Asia, Europe, and Africa. Table 8 presents
the top 10 export destination countries for Indonesian charcoal. The average export value is
USD 0.66/kg with the lowest of USD 0.24/kg for Malaysia destination and the highest USD
1/kg for Netherlands and Brazil. The type of charcoal is assumed to greatly determine the
price or value of charcoal.
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Table 8. Top ten countries for Indonesia’s charcoal export destination (2019).

No. Negara
Tujuan

Volume
(ton)

Value
(Million USD)

Value
(USD/kg)

1. Saudi Arabia 86,718 47.3 0.55

2. Korea,
Republic 46,376 24.6 0.53

3. Iraq 22,628 20.2 0.89
4. China 56,482 17.5 0.31
5. Japan 27,835 17.2 0.62
6. Lebanon 12,326 10.7 0.87
7. Malaysia 44,550 10.6 0.24
8. Netherlands 10,389 10.5 1.01
9. Turkey 18,170 10.4 0.57
10. Brazil 8757 9.1 1.04
11. Others 192,900 102.0 0.53

TOTAL 527,131 280.1 0.66
References: [137].

Biochar market surveys reported by various agencies provide very intriguing infor-
mation. For example, Zion Market Research reported a global biochar market value of
approximately USD 260.0 million in 2014. The market size is expected to increase to USD
585.0 million by 2020. The market is expected to grow at a compound annual growth rate
(CAGR) of around 14.5% between 2015 and 2020 [140]. In addition, Acumen Research
and Consulting estimated the CAGR of the global biochar market of 17% between 2014–
2023 [141]. IMARC Group recently reported a biochar market size value of USD 484 million
globally in 2019 and is predicted to grow strongly in the next five years [142]. A survey by
Grand View Research, Inc. estimated a worldwide biochar market size of USD 3.1 billion
by 2025, with a CAGR expectation of 13.2% [143].

7. Prospect and Constraint for Charcoal Industries

Conversion of carbon to biochar can be one way to harmonize between people and the
environment because biochar is related not only to energy but also agriculture, environment,
and development [144]. Therefore, biochar is promising and prospective for industry.
In addition, the technology to produce charcoal is easy and simple. Charcoal can be
produced by heating wood in a simple kiln. This fact is an interesting opportunity for
small and medium enterprises in the agro-industry. So far, community-based forestries
are still limited to harvesting or selling the wood. It is actually a good opportunity to
develop community plantation forests to provide raw materials for charcoal production.
Another prospect for the charcoal industry can be inferred from the increasing demand for
export. For example, the export value for charcoal increases by 16.5% in the period of 2015
to 2019 [139].

It is important to note that biochar utilization has shifted from fuel to other applica-
tions, particularly for land and crops. A survey by Worldbank with 452 respondents stated
that the use of biochar as fuel was followed by only 9.5%, while the application for land and
crops was followed by 79.4% [145]. Biochar is beneficial for infertile and degraded soil such
as acidic soil [146], ex mine-land [147,148], and peatland [149]. This is a very good prospect
considering the large amount of unproductive land in Indonesia that can be repaired using
biochar, such as dry land in East Nusa Tenggara [150], acidic soil in Sumatera, Kalimantan,
and Papua [151,152], and ex mineral mining land on Bangka Island [153].

Some constraints, however, need to be addressed. First of all, the wood wastes exist
in remote areas. Therefore, wood wastes conversion into biochar is feasible for the forest
management enterprises (FMEs) that manage a relatively large production forest area with
a significant amount of wood waste biomass. The FMEs are classified into Natural Forest
Concession or Hak Pengusahaan Hutan (HPH) and Plantation Forest Concession or Hutan
Tanaman Industri (HTI). Generally, the main product extracted by HPH and HTI is the log.
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For HPH, they have to provide payment of Reforestation Fee or Dana Reboisasi (DR) and
Provision of Forest Resources or Provisi Sumber Daya Hutan (PSDH) not only for the log
(main stem) but also small diameter log or KBK (Kayu Bulat Kecil), which includes wood
wastes (such as branches) that they harvested. The DR amount varies based on wood types
and location. For example, the DR for meranti KBK is USD 4/m3, whereas the PSDH for
meranti KBK is 10%/m3 of the standard log price. This PSDH rate also applies to other KBK
such as fuelwood, teakwood stump, and alcoves. For PFCs, there is no DR fee, but they
have to pay PSDH for KBK at a rate of 6%/m3 of the standard log price. The rate is also
applied for sengon and rubberwood. The DR fee for other KBK is 2 for both fuelwoods
(per staple meter) and USD 0.5/piece smaller branch (up to 12 cm diameter) [154].

Another problem is related to the decrease in wood wastes feedstock for charcoal
production. This results from the competing use of wood wastes such as for compost or
mulch. According to a survey by International Biochar Initiative (IBI), feedstock for biochar
production is still dominated by woody biomass sources. The survey found that 87% of
the 200 respondents chose to use woody biomass to produce charcoal [155]. In this case,
charcoal industries should not have their feedstock depend on just one type but should
vary with multiple feedstocks [145]. Another important challenge is that the production of
exported charcoal in Indonesia is generally conducted by small and medium enterprises
using various techniques and processes. Therefore, the quality of the charcoal produced
also varies and results in low biochar prices, only USD 0.66/kg (Table 6). This price is
much lower than the average wholesale price at USD 2.06/kg and the retail price at USD
3.08/kg for pure biochar, as obtained from a survey conducted by IBI in 2014 [155].

Higher quality biochar can be produced by fast pyrolysis. However, in Indonesia, it is
still in the research and development stage. No industrial stage of fast pyrolysis is reported
in work. High technology equipment is one of the obstacles for fast pyrolysis. Another
obstacle is that the main product of fast pyrolysis is bio-oil, while the market demand
for bio-oil is not yet visible. Technological constraints along lack of financial access are
identified in the IBI survey as the main barriers for the industries to expand [155].

8. Conclusions

Indonesia has a huge potential of wood wastes that are still not optimally utilized.
Pyrolysis is a promising method to improve wood wastes by producing three different
products, namely biochar, bio-oil, and pyrolysis gas. In slow pyrolysis, the composition of
the three products is almost equivalent. The liquid portion increases significantly in fast
pyrolysis. Biochar is used mainly for fuel. Other interesting applications of biochar include
soil amendment, black carbon, and graphene for fuel cell. Bio-oil is applied for fuel and
many high-value chemicals. Up to now, the applied pyrolysis technology in Indonesia is
still dominated by slow pyrolysis, with biochar as the main product.
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51. Demirbaş, A.; Arin, G. An Overview of Biomass Pyrolysis. Energy Sources 2002, 24, 471–482. [CrossRef]
52. Bridgwater, A.V. Biomass Fast Pyrolysis. Therm. Sci. 2004, 8, 21–49. [CrossRef]
53. Diebold, J.P.; Bridgwater, A.V. Overview of fast pyrolysis of biomass for the production of liquid fuels. In Developments in

Thermochemical Biomass Conversion; Bridgwater, A.V., Boocock, D.G.B., Eds.; Springer Science + Business Media: Dordrecht,
The Netherlands, 1997; Volume 1, pp. 5–25. ISBN 978-94-010-7196-3.

54. Venderbosch, R.H.; Prins, W. Fast pyrolysis. In Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power;
Brown, R.C., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2011; pp. 124–156. ISBN 978-0-470-72111-7.

55. Basu, P. Biomass Gasification and Pyrolysis: Practical Design and Theory; Academic Press: Burlington, MA, USA, 2010; ISBN
978-0-12-374988-8.

56. Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review. Energy Fuels 2006, 20, 848–889.
[CrossRef]

57. Shafizadeh, F.; Chin, P.P.S. Thermal Deterioration of Wood. In Wood Technology: Chemical Aspects; Goldstein, I.S., Ed.; ACS
Symposium Series; American Chemical Society: Washington, DC, USA, 1977; Volume 43, pp. 57–81. ISBN 978-0-8412-0373-0.

58. Balonek, C.M. Autothermal Oxidative Pyrolysis of Biomass Feedstocks over Noble Metal Catalysts to Liquid Products. Ph.D. The-
sis, University of Minnesota, Minnesota, MN, USA, 2011.

59. Jahirul, M.; Rasul, M.; Chowdhury, A.; Ashwath, N. Biofuels Production through Biomass Pyrolysis—A Technological Review.
Energies 2012, 5, 4952–5001. [CrossRef]

60. Xu, L.; Jiang, L.; Zhang, H.; Fang, Z.; Smith, R.L. Introduction to Pyrolysis as a Thermo-Chemical Conversion Technology.
In Production of Biofuels and Chemicals with Pyrolysis; Fang, Z., Smith, R.L., Jr., Xu, L., Eds.; Biofuels and Biorefineries; Springer:
Singapore, 2020; Volume 10, pp. 3–30. ISBN 9789811527319.

https://www.wood-database.com/batai/
http://doi.org/10.20886/jphh.1988.5.2.47-49
http://doi.org/10.24259/perennial.v8i2.221
http://doi.org/10.1007/s10310-007-0007-y
http://doi.org/10.3390/f10080638
http://doi.org/10.15376/biores.10.2.2526-2548
http://doi.org/10.22302/jpk.v31i1.133
http://doi.org/10.1088/1742-6596/970/1/012019
http://doi.org/10.24111/jrihh.v1i1.864
http://doi.org/10.20886/jphh.2011.29.4.331-342
http://doi.org/10.1002/cjce.5450670111
http://doi.org/10.1080/00908310252889979
http://doi.org/10.2298/TSCI0402021B
http://doi.org/10.1021/ef0502397
http://doi.org/10.3390/en5124952


Energies 2021, 14, 1407 22 of 25

61. Kumarathilaka, P.; Mayakaduwa, S.; Herath, I.; Vithanage, M. Biochar. In Biochar: Production, Characterization, and Applications;
Uchimiya, S.M., Chang, S.X., Bolan, N., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 18–42. ISBN 978-1-4822-4230-0.

62. Bridgwater, A.V.; Meier, D.; Radlein, D. An Overview of Fast Pyrolysis of Biomass. Org. Geochem. 1999, 30, 1479–1493. [CrossRef]
63. Mazlan, M.A.F.; Uemura, Y.; Osman, N.B.; Yusup, S. Characterizations of Bio-Char from Fast Pyrolysis of Meranti Wood Sawdust.

J. Phys. Conf. Ser. 2015, 622, 012054. [CrossRef]
64. Komarayati, S.; Gusmailina, G.; Hendra, D. Manufacturing Activated Charcoal from Teakwood Sawdust (in Bahasa Indonesia).

Bul. Penelit. Has. Hutan 1997, 15, 94–100.
65. Ratnani, R.D.; Purbacaraka, F.H.; Hartati, I.; Syafaat, I. Actived Carbon from Teak Wood, Jackfruit Wood, and Mango Wood

Pyrolysis Process. J. Phys. Conf. Ser. 2019, 1217, 012055. [CrossRef]
66. Bardalai, M.; Mahanta, D.K. Characterisation of Pyrolysis Oil Derived from Teak Tree Saw Dust and Rice Husk. J. Eng. Sci. Technol.

2018, 13, 242–253.
67. Rahmat, B.; Pangesti, D.; Natawijaya, D.; Sufyadi, D. Generation of Wood-Waste Vinegar and Its Effectiveness as Plant Growth

Regulator and Pest Insect Repellant. BioResources 2014, 9, 6350–6360. [CrossRef]
68. Lim, K.G.; Egashira, R. Pyrolysis and Characterization of the Products for Recycle of Rubberwood Residues. Master’s Thesis,

Tokyo Institute of Technology, Tokyo, Japan, 2004.
69. Ratanapisit, J.; Apiraksakul, S.; Rerngnarong, A.; Chungsiriporn, J.; Bunyakarn, C. Preliminary Evaluation of Production and

Characterization of Wood Vinegar from Rubberwood. Songklanakarin J. Sci. Technol. 2009, 31, 343–349.
70. Nurhayati, T. Charcoal Production of Rubber Wood (Hevea brasilliensis) in Dome Kiln of S-93 Model (in Bahasa Indonesia).

J. Penelit. Has. Hutan 1995, 13, 37–44. [CrossRef]
71. Wibowo, S. Characteristics of Bio-Oil from Sengon (Paraserianthes falcataria L. Nielsen) Sawdust by Slow Pyrolysis Process

(in Bahasa Indonesia). J. Penelit. Has. Hutan 2013, 31, 258–270. [CrossRef]
72. Hendrawan, Y.; Sajidah, N.; Umam, C.; Fauzy, M.R.; Wibisono, Y.; Hawa, L.C. Effect of Carbonization Temperature Variations

and Activator Agent Types on Activated Carbon Characteristics of Sengon Wood Waste (Paraserianthes falcataria (L.) Nielsen).
IOP Conf. Ser. Earth Envrion. Sci. 2019, 239, 012006. [CrossRef]

73. Nugrahaningtyas, K.D.; Prasetyorini, E. Local Wood’s Bio-Oil Upgrading Using Non-Sulfided (Co, Mo)/USY Catalyst. IOP Conf.
Ser. Mater. Sci. Eng. 2019, 578, 012012. [CrossRef]

74. Mazlan, M.A.F.; Uemura, Y.; Yusup, S. Fast Pyrolysis of Rubber Wood Sawdust via a Fluidized Bed Pyrolyzer: The Effect of
Fluidization Gas Velocity. Sindh Univ. Res. J. (Sci. Ser.) 2016, 48, 9–16.

75. Gupta, G.K.; Gupta, P.K.; Mondal, M.K. Experimental Process Parameters Optimization and In-Depth Product Characterizations
for Teak Sawdust Pyrolysis. Waste Manag. 2019, 87, 499–511. [CrossRef]

76. Putra, H.; Damanhuri, E.; Dewi, K.; Pasek, A.D. Production of Coal-Like Solid Fuel from Albizia chinensis Sawdust Via Wet
Torrefaction Process. J. Ecol. Eng. 2020, 21, 183–190. [CrossRef]

77. Fryda, L.; Visser, R. Biochar for Soil Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis. Agriculture 2015,
5, 1076–1115. [CrossRef]

78. Rajapaksha, A.U.; Mohan, D.; Igalavithana, A.D.; Lee, S.S.; Ok, Y.S. Definitions and Fundamentals of Biochar. In Biochar:
Production, Characterization, and Applications; Ok, Y.S., Uchimiya, S.M., Chang, S.X., Bolan, N., Eds.; Urbanization, Industrialization,
and the Environment; CRC Press: Boca Raton, FL, USA, 2016; pp. 4–16. ISBN 978-1-4822-4230-0.

79. Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management: Science and Technology; Earthscan: London, UK; Sterling, VA,
USA, 2009; ISBN 978-1-84407-658-1.

80. Suthar, R.; Wang, C.; Nunes, M.; Chen, J.; Sargent, S.; Bucklin, R.; Gao, B. Bamboo Biochar Pyrolyzed at Low Temperature
Improves Tomato Plant Growth and Fruit Quality. Agriculture 2018, 8, 153. [CrossRef]

81. Biederman, L.A.; Harpole, W.S. Biochar and Its Effects on Plant Productivity and Nutrient Cycling: A Meta-Analysis. GCB Bioen-
ergy 2013, 5, 202–214. [CrossRef]

82. Sheng, Y.; Zhu, L. Biochar Alters Microbial Community and Carbon Sequestration Potential across Different Soil PH.
Sci. Total Environ. 2018, 622–623, 1391–1399. [CrossRef] [PubMed]

83. Sánchez-Monedero, M.A.; Cayuela, M.L.; Sánchez-García, M.; Vandecasteele, B.; D’Hose, T.; López, G.; Martínez-Gaitán, C.;
Kuikman, P.J.; Sinicco, T.; Mondini, C. Agronomic Evaluation of Biochar, Compost and Biochar-Blended Compost across Different
Cropping Systems: Perspective from the European Project FERTIPLUS. Agronomy 2019, 9, 225. [CrossRef]

84. Alotaibi, K.; Schoenau, J. Application of Two Bioenergy Byproducts with Contrasting Carbon Availability to a Prairie Soil:
Three-Year Crop Response and Changes in Soil Biological and Chemical Properties. Agronomy 2016, 6, 13. [CrossRef]

85. Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic Values of Greenwaste Biochar as a Soil Amendment.
Soil Res. 2007, 45, 629. [CrossRef]

86. Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to Improve Soil Fertility. A Review.
Agron. Sustain. Dev. 2016, 36, 36. [CrossRef]

87. Jain, A.; Jayaraman, S.; Ulaganathan, M.; Balasubramanian, R.; Aravindan, V.; Srinivasan, M.P.; Madhavi, S. Highly Meso-
porous Carbon from Teak Wood Sawdust as Prospective Electrode for the Construction of High Energy Li-Ion Capacitors.
Electrochim. Acta 2017, 228, 131–138. [CrossRef]

88. Antolini, E. Graphene as a New Carbon Support for Low-Temperature Fuel Cell Catalysts. Appl. Catal. B Environ. 2012, 123–124,
52–68. [CrossRef]

http://doi.org/10.1016/S0146-6380(99)00120-5
http://doi.org/10.1088/1742-6596/622/1/012054
http://doi.org/10.1088/1742-6596/1217/1/012055
http://doi.org/10.15376/biores.9.4.6350-6360
http://doi.org/10.20886/jphh.1995.13.1.37-44
http://doi.org/10.20886/jphh.2013.31.4.258-270
http://doi.org/10.1088/1755-1315/239/1/012006
http://doi.org/10.1088/1757-899X/578/1/012012
http://doi.org/10.1016/j.wasman.2019.02.035
http://doi.org/10.12911/22998993/123502
http://doi.org/10.3390/agriculture5041076
http://doi.org/10.3390/agriculture8100153
http://doi.org/10.1111/gcbb.12037
http://doi.org/10.1016/j.scitotenv.2017.11.337
http://www.ncbi.nlm.nih.gov/pubmed/29890604
http://doi.org/10.3390/agronomy9050225
http://doi.org/10.3390/agronomy6010013
http://doi.org/10.1071/SR07109
http://doi.org/10.1007/s13593-016-0372-z
http://doi.org/10.1016/j.electacta.2017.01.060
http://doi.org/10.1016/j.apcatb.2012.04.022


Energies 2021, 14, 1407 23 of 25

89. Sudarsono, W.; Wong, W.Y.; Loh, K.S.; Majlan, E.H.; Syarif, N.; Kok, K.Y.; Yunus, R.M.; Lim, K.L. High Performance Iron-Based
Oxygen Reduction Catalyst Supported on Sengon Wood-Derived Reduced Graphene Oxide in Acidic Medium. IOP Conf. Ser.
Earth Environ. Sci. 2020, 463, 012060. [CrossRef]

90. Sudarsono, W.; Wong, W.Y.; Loh, K.S.; Majlan, E.H.; Syarif, N.; Kok, K.; Yunus, R.M.; Lim, K.L. Noble-free Oxygen Reduction
Reaction Catalyst Supported on Sengon Wood (Paraserianthes falcataria L.) Derived Reduced Graphene Oxide for Fuel Cell
Application. Int. J. Energy Res. 2020, 44, 1761–1774. [CrossRef]

91. Sudarsono, W.; Wong, W.Y.; Loh, K.S.; Majlan, E.H.; Syarif, N.; Kok, K.-Y.; Yunus, R.M.; Lim, K.L.; Hamada, I. Sengon Wood-
Derived RGO Supported Fe-Based Electrocatalyst with Stabilized Graphitic N-Bond for Oxygen Reduction Reaction in Acidic
Medium. Int. J. Hydrogen Energy 2020, 45, 23237–23253. [CrossRef]

92. Oasmaa, A.; Czernik, S. Fuel Oil Quality of Biomass Pyrolysis Oils: State of the Art for the End Users. Energy Fuels 1999, 13,
914–921. [CrossRef]

93. Oasmaa, A.; Solantausta, Y.; Arpiainen, V.; Kuoppala, E.; Sipilä, K. Fast Pyrolysis Bio-Oils from Wood and Agricultural Residues.
Energy Fuels 2010, 24, 1380–1388. [CrossRef]

94. Parray, R.A.; Bhattacharya, T.K. Fuel Properties of Ethanol-Diesel Blends for Use as Engine Fuel. Int. J. Sci. Res. 2015, 4, 2443–2446.
95. Zhang, Q.; Chang, J.; Wang, T.; Xu, Y. Review of Biomass Pyrolysis Oil Properties and Upgrading Research. Energy Convers. Manag.

2007, 48, 87–92. [CrossRef]
96. Chiaramonti, D.; Oasmaa, A.; Solantausta, Y. Power Generation Using Fast Pyrolysis Liquids from Biomass. Renew. Sustain.

Energy Rev. 2007, 11, 1056–1086. [CrossRef]
97. Oasmaa, A.; Kytö, M.; Sipilä, K. Pyrolysis Oil Combustion Tests in an Industrial Boiler. In Progress in Thermochemical Biomass

Conversion; Blackwell Science: Oxford, UK, 2001; Volume 2, pp. 1468–1481.
98. Bertoli, C.; Calabria, R.; D’Alessio, J.; Giacomo, N.D.; Lazzaro, M.; Massoli, P.; Moccia, V. Diesel Engines Fueled by Wood Pyrolysis

Oil: Feasibility and Perspectives. In Proceedings of the 5th International Conference Internal Combustion Engines, Naples, Italy,
23–27 September 2001; p. 41.

99. Bridgwater, A.V. Review of Fast Pyrolysis of Biomass and Product Upgrading. Biomass Bioenergy 2012, 38, 68–94. [CrossRef]
100. Lehto, J.; Oasmaa, A.; Solantausta, Y.; Kytö, M.; Chiaramonti, D. Fuel Oil Quality and Combustion of Fast Pyrolysis Bio-Oils; VTT:

Espoo, Finland, 2013; ISBN 978-951-38-7930-3.
101. Solantausta, Y.; Nylund, N.-O.; Westerholm, M.; Koljonen, T.; Oasmaa, A. Wood-Pyrolysis Oil as Fuel in a Diesel-Power Plant.

Bioresour. Technol. 1993, 46, 177–188. [CrossRef]
102. Shihadeh, A.; Hochgreb, S. Diesel Engine Combustion of Biomass Pyrolysis Oils. Energy Fuels 2000, 14, 260–274. [CrossRef]
103. Haryanto, A.; Fernando, S.; Murali, N.; Adhikari, S. Current Status of Hydrogen Production Techniques by Steam Reforming of

Ethanol: A Review. Energy Fuels 2005, 19, 2098–2106. [CrossRef]
104. Iliopoulou, E.F.; Triantafyllidis, K.S.; Lappas, A.A. Overview of Catalytic Upgrading of Biomass Pyrolysis Vapors toward the

Production of Fuels and High-Value Chemicals. Wires Energy Environ. 2019, 8, e322. [CrossRef]
105. Leng, L.; Li, H.; Yuan, X.; Zhou, W.; Huang, H. Bio-Oil Upgrading by Emulsification/Microemulsification: A Review. Energy

2018, 161, 214–232. [CrossRef]
106. Chong, Y.Y.; Thangalazhy-Gopakumar, S.; Ng, H.K.; Ganesan, P.B.; Gan, S.; Lee, L.Y.; Manickavel, V.S.A.R.; Ong, C.M.;

Al Hinai, H.S. Emulsification of Bio-Oil and Diesel. Chem. Eng. Trans. 2017, 56, 1801–1806. [CrossRef]
107. Zhang, S.; Yang, X.; Zhang, H.; Chu, C.; Zheng, K.; Ju, M.; Liu, L. Liquefaction of Biomass and Upgrading of Bio-Oil: A Review.

Molecules 2019, 24, 2250. [CrossRef]
108. Paenpong, C.; Inthidech, S.; Pattiya, A. Effect of Filter Media Size, Mass Flow Rate and Filtration Stage Number in a Moving-Bed

Granular Filter on the Yield and Properties of Bio-Oil from Fast Pyrolysis of Biomass. Bioresour. Technol. 2013, 139, 34–42.
[CrossRef]

109. Krutof, A.; Hawboldt, K.A. Upgrading of Biomass Sourced Pyrolysis Oil Review: Focus on Co-Pyrolysis and Vapour Upgrading
during Pyrolysis. Biomass Convers. Biorefin. 2018, 8, 775–787. [CrossRef]

110. Pidtasang, B.; Udomsap, P.; Sukkasi, S.; Chollacoop, N.; Pattiya, A. Influence of Alcohol Addition on Properties of Bio-Oil
Produced from Fast Pyrolysis of Eucalyptus Bark in a Free-Fall Reactor. J. Ind. Eng. Chem. 2013, 19, 1851–1857. [CrossRef]

111. Mei, Y.; Chai, M.; Shen, C.; Liu, B.; Liu, R. Effect of Methanol Addition on Properties and Aging Reaction Mechanism of Bio-Oil
during Storage. Fuel 2019, 244, 499–507. [CrossRef]

112. McVey, M.; Elkasabi, Y.; Ciolkosz, D. Separation of BTX Chemicals from Biomass Pyrolysis Oils via Continuous Flash Distillation.
Biomass Convers. Biorefin. 2020, 10, 15–23. [CrossRef]

113. Vispute, T.P.; Huber, G.W. Production of Hydrogen, Alkanes and Polyols by Aqueous Phase Processing of Wood-Derived
Pyrolysis Oils. Green Chem. 2009, 11, 1433. [CrossRef]

114. Liao, H.T.; Ye, X.N.; Lu, Q.; Dong, C.Q. Overview of Bio-Oil Upgrading via Catalytic Cracking. AMR 2013, 827, 25–29. [CrossRef]
115. Nokkosmäki, M.I.; Kuoppala, E.T.; Leppämäki, E.A.; Krause, A.O.I. Catalytic Conversion of Biomass Pyrolysis Vapours with Zinc

Oxide. J. Anal. Appl. Pyrolysis 2000, 55, 119–131. [CrossRef]
116. Venderbosch, R.H.; Heeres, H.J. Pyrolysis Oil Stabilisation by Catalytic Hydrotreatment. In Biofuel’s Engineering Process Technology;

Dos Santos Bernardes, M.A., Ed.; InTech: London, UK, 2011; ISBN 978-953-307-480-1.
117. Zhang, X.; Wang, T.; Ma, L.; Zhang, Q.; Jiang, T. Hydrotreatment of Bio-Oil over Ni-Based Catalyst. Bioresour. Technol. 2013, 127,

306–311. [CrossRef] [PubMed]

http://doi.org/10.1088/1755-1315/463/1/012060
http://doi.org/10.1002/er.5015
http://doi.org/10.1016/j.ijhydene.2020.05.158
http://doi.org/10.1021/ef980272b
http://doi.org/10.1021/ef901107f
http://doi.org/10.1016/j.enconman.2006.05.010
http://doi.org/10.1016/j.rser.2005.07.008
http://doi.org/10.1016/j.biombioe.2011.01.048
http://doi.org/10.1016/0960-8524(93)90071-I
http://doi.org/10.1021/ef990044x
http://doi.org/10.1021/ef0500538
http://doi.org/10.1002/wene.322
http://doi.org/10.1016/j.energy.2018.07.117
http://doi.org/10.3303/CET1756301
http://doi.org/10.3390/molecules24122250
http://doi.org/10.1016/j.biortech.2013.03.200
http://doi.org/10.1007/s13399-018-0326-6
http://doi.org/10.1016/j.jiec.2013.02.031
http://doi.org/10.1016/j.fuel.2019.02.012
http://doi.org/10.1007/s13399-019-00409-1
http://doi.org/10.1039/b912522c
http://doi.org/10.4028/www.scientific.net/AMR.827.25
http://doi.org/10.1016/S0165-2370(99)00071-6
http://doi.org/10.1016/j.biortech.2012.07.119
http://www.ncbi.nlm.nih.gov/pubmed/23138057


Energies 2021, 14, 1407 24 of 25

118. Zhang, A.; Tang, J.; Lie, J.; He, Y.; Xiao, Z. Study on the Preparation of Biohydrocarbon Fuel by Catalytic Hydrogenation of Swida
wilsoniana Pyrolysis Products. Adv. Mater. Sci. Eng. 2020, 2020, 3569125. [CrossRef]

119. Li, X.; Chen, G.; Liu, C.; Ma, W.; Yan, B.; Zhang, J. Hydrodeoxygenation of Lignin-Derived Bio-Oil Using Molecular Sieves
Supported Metal Catalysts: A Critical Review. Renew. Sustain. Energy Rev. 2017, 71, 296–308. [CrossRef]

120. Sanna, A.; Vispute, T.P.; Huber, G.W. Hydrodeoxygenation of the Aqueous Fraction of Bio-Oil with Ru/C and Pt/C Catalysts.
Appl. Catal. B Environ. 2015, 165, 446–456. [CrossRef]

121. Schmitt, C.C.; Raffelt, K.; Zimina, A.; Krause, B.; Otto, T.; Rapp, M.; Grunwaldt, J.-D.; Dahmen, N. Hydrotreatment of Fast
Pyrolysis Bio-Oil Fractions Over Nickel-Based Catalyst. Top. Catal. 2018, 61, 1769–1782. [CrossRef]

122. Wu, C.; Huang, Q.; Sui, M.; Yan, Y.; Wang, F. Hydrogen Production via Catalytic Steam Reforming of Fast Pyrolysis Bio-Oil in a
Two-Stage Fixed Bed Reactor System. Fuel Process. Technol. 2008, 89, 1306–1316. [CrossRef]

123. Lan, P.; Xu, Q.; Zhou, M.; Lan, L.; Zhang, S.; Yan, Y. Catalytic Steam Reforming of Fast Pyrolysis Bio-Oil in Fixed Bed and
Fluidized Bed Reactors. Chem. Eng. Technol. 2010, 33, 2021–2028. [CrossRef]

124. Pan, Y.; Wang, Z.; Kan, T.; Zhu, X.; Li, Q. Hydrogen Production by Catalytic Steam Reforming of Bio-Oil, Naphtha and CH4 over
C12A7-Mg Catalyst. Chin. J. Chem. Phys. 2006, 19, 190–192. [CrossRef]

125. Pawar, A.; Panwar, N.L.; Salvi, B.L. Comprehensive Review on Pyrolytic Oil Production, Upgrading and Its Utilization. J. Mater.
Cycles Waste Manag. 2020, 22, 1712–1722. [CrossRef]

126. Yang, H.; Yao, J.; Chen, G.; Ma, W.; Yan, B.; Qi, Y. Overview of Upgrading of Pyrolysis Oil of Biomass. Energy Procedia 2014, 61,
1306–1309. [CrossRef]

127. Siedlecki, M.; De Jong, W.; Verkooijen, A.H.M. Fluidized Bed Gasification as a Mature And Reliable Technology for the Production
of Bio-Syngas and Applied in the Production of Liquid Transportation Fuels—A Review. Energies 2011, 4, 389–434. [CrossRef]

128. Baratieri, M.; Baggio, P.; Bosio, B.; Grigiante, M.; Longo, G.A. The Use of Biomass Syngas in IC Engines and CCGT Plants:
A Comparative Analysis. Appl. Therm. Eng. 2009, 29, 3309–3318. [CrossRef]

129. Zhang, D.; Zhu, M.; Zhang, Z.; Wu, J. Combined Heat and Power (CHP) Generation Using Gas Engines Fueled with Pyrolysis
Gases. In Handbook of Clean Energy Systems; Yan, J., Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2015; pp. 1–17. ISBN
978-1-118-99197-8.

130. Hagos, F.Y.; Aziz, A.R.A.; Sulaiman, S.A. Trends of Syngas as a Fuel in Internal Combustion Engines. Adv. Mech. Eng. 2014, 6,
401587. [CrossRef]

131. Hossain, A.K.; Davies, P.A. Pyrolysis Liquids and Gases as Alternative Fuels in Internal Combustion Engines—A Review.
Renew. Sustain. Energy Rev. 2013, 21, 165–189. [CrossRef]

132. Abidin, Z.; Jauhari, A.; Afriza, M.H. Potential Assessment and Development Concession Charcoal Wood in the Ranggang Luar
Village, Takisung Sub District, Tanah Laut, South Kalimantan (in Bahasa Indonesia). J. Hutan Trop. 2018, 6, 108–115. [CrossRef]

133. Sulistyo, J.; Marsoem, S.N.; Kholik, A.; Wibowo, M.N. Proses Pengarangan Dari Tungku/Dapur Pengarang Konvensional Dan
Permanen Di Wonosari, Gunungkidul. In Proceedings of the Proseding Seminar Nasional Masyarakat Peneliti Kayu Indonesia XX;
MAPEKI (Masyarakat Peneliti Kayu Indonesia): Bali, Indonesia, 2017; pp. 206–216.

134. Tirono, M.; Sabit, A. Efek Suhu Pada Proses Pengarangan Terhadap Nilai Kalor Arang Tempurung Kelapa (Coconut Shell
Carchoal). J. Neutrino 2011, 3, 143–152.

135. Salim, R. The Quality and Characteristics of Teak (Tectona grandis) Charcoal Made by Mixed Carbonisation in Drum Kiln (in Bahasa
Indonesia). J. Ris. Ind. Has. Hutan 2016, 8, 53–64. [CrossRef]

136. Iskandar, H.; Santosa, K.D. Panduan Singkat Cara Pembuatan Arang Kayu Alternatif Pemanfaatan Limbah Kayu Oleh Masyarakat;
CIFOR (Center for International Forestry Research): Bogor, Indonesia, 2005; ISBN 979-3361-85-9.

137. Rochmayanto, Y. The Potency of Stump of Acacia crassicarpa and Economic Utilization as the Raw Materials Charcoal Resources.
J. Penelit. Hutan Tanam. 2012, 9, 9–18. [CrossRef]

138. Yandri, P. Consumer Preferences for Coconut Shell Charcoal in Suburban Indonesia. Int. Res. J. Bus. Stud. 2013, VI, 121–132.
[CrossRef]

139. World Integrated Trade Solution, (WITS). Indonesia Wood; Charcoal (Including Shell or Nut Charcoal), Whether or Not
Agglomerated Exports by Country in 2019. Available online: https://wits.worldbank.org/trade/comtrade/en/country/IDN/
year/2019/tradeflow/Exports/partner/ALL/product/440200 (accessed on 11 February 2021).

140. Zion Market Research. Global Biochar Market Size Expected to Reach $585.0 Million by 2020. Available online:
http://www.globenewswire.com/news-release/2017/06/06/1008630/0/en/Global-Biochar-Market-Size-Expected-to-
Reach-585-0-Million-by-2020.html (accessed on 24 February 2021).

141. Acumen Research and Consulting. USD 15 Mn Biochar Market Size Expected to Reach between 2014–2023 Says Acumen Research
and Consulting Experts. Available online: http://www.globenewswire.com/news-release/2017/11/29/1210264/0/en/USD-15
-Mn-Biochar-Market-Size-Expected-to-Reach-between-2014-2023-Says-Acumen-Research-and-Consulting-Experts.html (ac-
cessed on 24 February 2021).

142. IMARC Group. Biochar Market Size, Share, Price Trends and Forecast 2020–2025. Available online: https://www.imarcgroup.
com/biochar-market (accessed on 24 February 2021).

143. Grand View Research Biochar Market Size Worth $3.1 Billion By 2025, CAGR: 13.2%. Available online: https://www.
grandviewresearch.com/press-release/global-biochar-market (accessed on 24 February 2021).

144. Chen, W.; Meng, J.; Han, X.; Lan, Y.; Zhang, W. Past, Present, and Future of Biochar. Biochar 2019, 1, 75–87. [CrossRef]

http://doi.org/10.1155/2020/3569125
http://doi.org/10.1016/j.rser.2016.12.057
http://doi.org/10.1016/j.apcatb.2014.10.013
http://doi.org/10.1007/s11244-018-1009-z
http://doi.org/10.1016/j.fuproc.2008.05.018
http://doi.org/10.1002/ceat.201000169
http://doi.org/10.1360/cjcp2006.19(3).190.3
http://doi.org/10.1007/s10163-020-01063-w
http://doi.org/10.1016/j.egypro.2014.11.1087
http://doi.org/10.3390/en4030389
http://doi.org/10.1016/j.applthermaleng.2009.05.003
http://doi.org/10.1155/2014/401587
http://doi.org/10.1016/j.rser.2012.12.031
http://doi.org/10.20527/jht.v6i2.5398
http://doi.org/10.24111/jrihh.v8i2.2113
http://doi.org/10.20886/jpht.2012.9.1.9-18
http://doi.org/10.21632/irjbs.6.2.121-132
https://wits.worldbank.org/trade/comtrade/en/country/IDN/year/2019/tradeflow/Exports/partner/ALL/product/440200
https://wits.worldbank.org/trade/comtrade/en/country/IDN/year/2019/tradeflow/Exports/partner/ALL/product/440200
http://www.globenewswire.com/news-release/2017/06/06/1008630/0/en/Global-Biochar-Market-Size-Expected-to-Reach-585-0-Million-by-2020.html
http://www.globenewswire.com/news-release/2017/06/06/1008630/0/en/Global-Biochar-Market-Size-Expected-to-Reach-585-0-Million-by-2020.html
http://www.globenewswire.com/news-release/2017/11/29/1210264/0/en/USD-15-Mn-Biochar-Market-Size-Expected-to-Reach-between-2014-2023-Says-Acumen-Research-and-Consulting-Experts.html
http://www.globenewswire.com/news-release/2017/11/29/1210264/0/en/USD-15-Mn-Biochar-Market-Size-Expected-to-Reach-between-2014-2023-Says-Acumen-Research-and-Consulting-Experts.html
https://www.imarcgroup.com/biochar-market
https://www.imarcgroup.com/biochar-market
https://www.grandviewresearch.com/press-release/global-biochar-market
https://www.grandviewresearch.com/press-release/global-biochar-market
http://doi.org/10.1007/s42773-019-00008-3


Energies 2021, 14, 1407 25 of 25

145. Scholz, S.B.; Sembres, T.; Roberts, K.; Whitman, T.; Wilson, K.; Lehmann, J. Biochar Systems for Smallholders in Developing Countries:
Leveraging Current Knowledge and Exploring Future Potential for Climate-Smart Agriculture; The World Bank: Washington, DC, USA,
2014; ISBN 978-0-8213-9525-7.

146. Wu, S.; Zhang, Y.; Tan, Q.; Sun, X.; Wei, W.; Hu, C. Biochar Is Superior to Lime in Improving Acidic Soil Properties and Fruit
Quality of Satsuma Mandarin. Sci. Total Environ. 2020, 714, 136722. [CrossRef] [PubMed]

147. Ippolito, J.A.; Cui, L.; Novak, J.M.; Johnson, M.G. Biochar for Mine-Land Reclamation. In Biochar from Biomass and Waste; Elsevier:
Amsterdam, The Netherlands, 2019; pp. 75–90. ISBN 978-0-12-811729-3.

148. Liu, J. The Application of Biochar as a Soil Amendment in Land Reclamation. Master’s Thesis, University of Alberta, Alberta, AB,
Canada, 2015.

149. Maftu’ah, E.; Nursyamsi, D. Effect of Biochar on Peat Soil Fertility and NPK Uptake by Corn. Agrivita J. Agric. Sci. 2019, 41, 64–73.
[CrossRef]

150. Norwegian Geotechnical Institute. Biochar on Acidic Agricultural Lands in Indonesia and Malaysia; Norwegian Research Council:
Oslo, Norway, 2014.

151. Berek, A.K. The Potential of Biochar as an Acid Soil Amendment to Support Indonesian Food and Energy Security—A Review.
Pertanika J. Trop. Agric. Sci. 2019, 42, 745–759.

152. Juhrian, J.; Yusran, F.H.; Wahdah, R.; Priatmadi, B.J. The Effect of Biochar, Lime, and Compost on The Properties of Acid Sulphate
Soil. J. Wetl. Environ. Manag. 2020, 8, 129–140. [CrossRef]

153. Sukarman, S.; Gani, R.A.; Asmarhansyah, A. Tin Mining Process and Its Effects on Soils in Bangka Belitung Islands Province,
Indonesia. Sains Tanah J. Soil Sci. Agroclimatol. 2020, 17, 180. [CrossRef]

154. President of The Republic of Indonesia. Regulation of The Government of Indonesia No.12/2014 on the Types and Rates of Non-Tax State
Revenues Applicable at the Indonesia Ministry of Forestry; Minister of Justice and Human Rights, The Republic of Indonesia: Jakarta,
Indonesia, 2014.

155. Jirka, S.; Tomlinson, T. State of the Biochar Industry 2014: A Survey of Commercial Activity in the Biochar Sector; International Biochar
Initiative (IBI): New York, NY, USA, 2015; p. 77.

http://doi.org/10.1016/j.scitotenv.2020.136722
http://www.ncbi.nlm.nih.gov/pubmed/31991273
http://doi.org/10.17503/agrivita.v41i1.854
http://doi.org/10.20527/jwem.v8i2.249
http://doi.org/10.20961/stjssa.v17i2.37606

	Introduction 
	Potential Wood Wastes for Indonesia 
	Wood Waste of Forest Harvesting 
	Wood Waste from Wood Processing Industry 

	Wood Wastes Pyrolysis 
	Application of Pyrolysis Products 
	Biochar 
	Soil Amendment 
	Other Encouraging Applications 

	Bio-Oil 
	Fuels 
	Chemicals 

	Gas 

	Pyrolysis in Indonesia: State-of-the-Art 
	Box Furnace 
	Dome Furnace 
	Kiln Furnace 
	Drum Furnace 

	Market Potential for Charcoal 
	Prospect and Constraint for Charcoal Industries 
	Conclusions 
	References

