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Abstract: This paper presents a dual-mode DC-DC buck converter including a load-dependent,
efficiency-controllable scheme to support multi-purpose IoT applications. For light-load applications,
a selectable adaptive on-time pulse frequency modulation (PFM) control is proposed to achieve
optimum power efficiency by selecting the optimum switching frequency according to the load
current, thereby reducing unnecessary switching losses. When the inductor peak current value or
converter output voltage ripple are considered in some applications, its on-time can be adjusted
further. In heavy-load applications, a conventional pulse width modulation (PWM) control scheme is
adopted, and its gate driver is structured to reduce dynamic current, preventing the current from
shooting through the power switch. A proposed dual-mode buck converter prototype is fabricated
in a 180 nm CMOS process, achieving its measured maximum efficiency of 95.7% and power density
of 0.83 W/mm2.

Keywords: load-dependent efficiency control; selectable adaptive on-time; pulse frequency module;
pulse width modulation; DC-DC buck converter

1. Introduction

DC-DC converters for Internet of Things (IoT) or portable applications have provided
energy-input interfaces from lithium-ion batteries, next-generation batteries, or various
harvesting sources [1,2]. For supporting different kinds of load stages, their efficiency
specifications over a wide load range are important, as various functional blocks can be
individually turned on or off. Considering portability, their area and power density perfor-
mance are also important in accordance with trends in miniaturization of IoT devices [3–6].
A variety of DC-DC converters, which are efficient over a wide range of load currents, have
been developed to maximize the usage time of batteries with limited capacity [7–11].

Pulse frequency modulation (PFM) control has been widely studied to achieve high
efficiency under light-load conditions [8,12,13], which are important in IoT environments.
As the load current decreases, the switching period increases, and the output voltage
ripple becomes bigger. It is also not easy to filter out electromagnetic interference (EMI)
noises since its switching frequency varies. Higher efficiency is achieved by reducing
switching losses that dominate overall losses in light-load conditions. PFM control under
light-load conditions has been implemented in a variety of ways. Hysteretic voltage-mode
control [14–17] requires only a few sub-circuits within a small area, whose implementation
is relatively simple. The controller detects the output voltage ripple, and the switching reg-
ulation is performed depending on the time when the output voltage reaches the maximum
or minimum set by the designer. Therefore, a stable regulator would lead to a large output
voltage ripple. Hysteretic current mode control [18–20] has the advantage of being able to
generate a smaller output voltage ripple. However, hysteretic control of both voltage-mode
and current-mode has inherent problems of varying the switching frequency according to
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input voltage, output voltage, and load current. Constant on-time control [21–23] can also
be implemented in PFM within a small area under light-load conditions, but the problem of
switching frequency variability still remains. Therefore, adaptive on-time control [24–28]
has been utilized to improve EMI problems due to switching frequency variation. It al-
leviates the problem of switching frequency variability by using a simple sensing circuit,
which requires additional area and power consumption.

The pulse width modulation (PWM) control method is still popular under heavy-load
conditions, which gives better EMI performance than the PFM. A disadvantage of the
voltage-mode PWM control method [12,29] is its complicated compensation circuit design,
but it has a simple feedback loop structure that utilizes a single voltage control loop with
high noise immunity. An advantage of the current-mode PWM control method [30,31]
is its fast transient response speed, but it requires one more current control loop. Thus,
it requires additional area and power consumption to support the current sensor and
compensation ramp circuit.

A dual-mode control method to include both the PWM and the PFM has been pre-
viously reported [30,32]. It adopts the conventional PWM control method for heavy-load
conditions. In light-load conditions, the PFM control method is adopted or modified to be
suitable for application. In [33], a voltage-mode, ripple-based PFM control is introduced,
where the voltage ripple for output regulation is relatively large. Its inductor peak current
and converter output voltage ripple cannot be controlled for specific applications, and it is
also difficult to control the EMI problem. Unnecessary switching leads to efficiency loss
under a wide range of light-load conditions. In [34], the inductor peak current was limited
to a certain value, and complex inductor current sensor circuits were burdensome together
with additional current consumption. In these PFM controls where switching operations
are dependent on the inductor peak current value, their converter efficiency cannot be
optimized in a wide range of light-load conditions.

Therefore, this paper presents a PWM/PFM dual-mode DC-DC buck converter with
a load-dependent, efficiency-controllable scheme that could be applied to various IoT
applications. In light-load conditions, a selectable adaptive on-time control is proposed
to improve the adaptive on-time control method. That is, it provides optimal power
efficiency by selecting the optimal switching frequency depending on various light-load
current conditions. When the inductor peak current or converter output voltage ripple are
considered, it can be adjusted further. In heavy-load conditions, the converter operates
as the voltage-mode PWM control with a fixed switching frequency of 1 MHz. Its gate
driver includes a non-overlap pre-driving structure to reduce dynamic current losses. It not
only prevents the current from shooting through the power switches, but it also reduces
unnecessary dynamic power loss inside the driver. Section 2 describes the proposed dual-
mode DC-DC converter structure and operation, and Section 3 shows its experimental
results including functional verifications. Finally, the conclusions are drawn in Section 4.

2. Proposed Dual-Mode Buck Converter
2.1. Conventional Buck Converter Structures

Figure 1 presents two conventional DC-DC buck converter control methods for the
adaptive on-time controlled PFM converter [24,35] and the voltage-mode PWM DC-DC
buck converter [36–38]. In Figure 1a, the PFM buck converter operates with the adaptive
on-time control scheme. When the converter output voltage (VOUT) goes down, the output
feedback voltage (VFB) follows. When VFB is lower than the reference voltage (VREF),
the comparator output increases, and the following adaptive on-time generator and control
logic turn on the high-side switch with enough energy via a driver. After the controlled
on-time by the adaptive generator has elapsed, the high-side switch is turned off. Then,
after sufficient dead time to prevent current from shooting through the power switch,
the low-side switch is turned on via the driver. Then, if the inductor current decreases
and crosses zero, the zero-current detect (ZCD) detects this instance and turns off the
low-side switch. In this case, it creates an intentional dead time condition where both the
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high-side switch and the low-side switch are turned off. Then, as this cyclic operation is
repeated continuously, the average converter output value approaches a desired converter
output value. In this adaptive on-time controlled buck converter, the problem of switching
frequency variability is alleviated, relaxing the EMI problem. The peak inductor current
and the converter output ripple voltage can also be kept relatively constant compared to
other PFM methods even under varying conditions of input voltage, output voltage, and
load current. Since there is no need for complicated current sensing circuits, the power
dissipation and the area are relatively small.
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Figure 1. Conventional DC-DC buck converters: (a) adaptive on-time controlled pulse frequency
modulation (PFM) converter and (b) voltage-mode pulse width modulation (PWM) converter.

Regarding the voltage-mode PWM converter in Figure 1b, VFB is amplified by an
error amplifier with respect to VREF. Its amplified voltage is compared to a ramp generator
output voltage in a compensating comparator. Pulse width information proportional to the
comparison value is used as duty cycle information to turn on the high-side switch at a
constant switching frequency. After the duty time, the high-side switch is turned off and the
down-side switch is turned on with dead time components suitable for non-overlapping
switching. If the current through the inductor during this down-side switching operation
crosses zero, it creates the ZCD state where both the high-side switch and the low-side
switch are turned off. Through this iterative loop operation, the average output value gets
close to a desired value. Since the switching frequency is constant, the EMI problem is
relaxed. The output voltage ripple is relatively small, and its transient response is fast.
However, the lower the load current is, the lower the efficiency is.

2.2. Proposed Dual-Mode Buck Converter Structure

A PFM/PWM dual-mode buck converter was designed to obtain high efficiency
under a wide range of load current conditions, as shown in Figure 2. It adopts a voltage-
mode PWM (VPWM) control loop for the heavy-load condition and an adaptive on-time
PFM control loop for the light-load condition. The adaptive on-time PFM control is
improved to provide further adaptive optimization through a proposed selectable adaptive
on-time scheme. The VPWM is designed to improve its efficiency through a proposed
non-overlapping gate-driving circuit.
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2.3. Selectable Adaptive On-Time PFM Control

When the output load current becomes lower than a certain level, it is difficult for
the VPWM buck converter operation to achieve high efficiency. Therefore, for efficient
power delivery, better efficiency is achieved by using a PFM control rather than the VPWM.
Conventional adaptive on-time controlled buck converters show high efficiency under
light-load conditions. Their peak inductor current and output ripple voltage can be kept
relatively constant, and less switching frequency variability relaxes the EMI. However, it is
not easy to maintain optimal efficiency over a wide light-load range. Additionally, since its
peak inductor current and converter output voltage ripple are fixed or predesigned, one
designed converter may not be used in other applications that need to limit the maximum
inductor current or output voltage ripple.

The proposed selectable adaptive on-time control scheme can adjust the on-time
according to the required efficiency, peak inductor current, and output voltage ripple
specification under light-load conditions. Figure 3a,b shows the buck converter with the
proposed PFM control, and Figure 3c details the proposed selectable adaptive on-time
generator. In Figure 3c, adaptive on-time control generates an adaptive current proportional
to the difference between the input voltage and the output feedback voltage through the
adaptive on-time generator. The adaptive current is generated by R1, C0, the amplifier,
and MN1. The generated adaptive current is used to generate a ramp waveform through a
current mirror. When the high-side switch of the converter is turned on, the VGATE.P signal
is deactivated. The generated adaptive current charges the C1 capacitor through the current
mirror, which increases its voltage over time. If it reaches a reference voltage of VREF2, the
high-side switch of the converter is turned off. Then, the VGATE.P signal is activated and
C1 is discharged. Through its iterative operation, the C1 voltage follows a ramp shape.
The on-time corresponds to the time when the C1 voltage is charged, which is proportional
to the VREF2. The proposed selectable adaptive on-time controller controls the VREF2 and
the high-side switch on-time (Ton) of the converter by adjusting the 2-bit digital-to-analog
converter (DAC) inside the adaptive on-time generator. The adaptive on-time generator
increases the on-time by increasing the VREF2. The on-time is proportional to VREF2.
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Figure 3. PFM buck converter with proposed selectable adaptive on-time control: (a) buck converter
structure, (b) selectable adaptive on-time controller, and (c) selectable adaptive on-time generator.

The selectable adaptive on-time control is intended to operate at an on-time dependent
switching frequency that derives optimum efficiency depending on the load current. The
proposed adaptive on-time generator controls the on-time by adjusting the internal 2-
bit DAC. As the on-time increases, the switching frequency decreases. The switching
frequency is inversely proportional to the square of the on-time as shown in Figure 4a.
Figure 5 illustrates that an optimal switching frequency to derive the optimum efficiency
varies with the load current, where FPWM is the PWM switching frequency under heavy-
load conditions and FPFM is the PFM switching frequency under light-load conditions.
Under sufficient light-load conditions, the smaller the load current, the smaller the optimal
switching frequency. The proposed selectable adaptive on-time control method increases
the on-time value as the load current value decreases under light-load conditions. Then,
the increased on-time reduces the switching frequency, and it reduces switching losses
further, achieving the optimum efficiency.
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The selectable adaptive on-time control can control the inductor peak current or the
output voltage ripple where the values are important in IoT applications. The proposed
adaptive on-time generator adjusts the on-time by adjusting the internal 2-bit DAC. As
the on-time increases, the inductor peak current increases. The inductor peak current is
proportional to the on-time as shown in Figure 4b. Assuming a sufficiently low output
current condition, the periodic operation of the converter takes a long time to discharge
the energy charged in the capacitor (Cout) of the converter. The time used to discharge the
energy becomes dominant in the switching cycle. In this case, as the on-time increases, the
output voltage ripple increases. The output voltage ripple is proportional to the square
of the on-time as shown in Figure 4c. Therefore, the selectable adaptive on-time control
scheme can control the on-time. In Figure 4, the converter can adjust the light-load efficiency,
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inductor peak current, and output voltage ripple to meet the needs of multi-purpose IoT
applications through on-time adjustment.
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2.4. Voltage-Mode PWM Control with Non-Overlapping Gate Driving

VPWM control for heavy-load conditions is implemented by utilizing two improved
sub-circuits. The first circuit is an enhanced gate driver. The proposed gate driver reduces
dynamic current consumption at the end of the driver as well as prevents current from
shooting through the power switch. The second circuit is an error amplifier structure that
adopts the constant-transconductance rail-to-rail operational amplifier structure, which
works reliably for the entire input voltage range. These improvements can increase opera-
tional stability in a start process and a load transient response under heavy-load current
conditions. Figure 6 shows a schematic diagram of a conventional gate driver and the
proposed gate driver. The conventional gate driver treats duty-modulated pulses from
the PWM control circuit through the dead-time controller (DTC), and it generates two
non-overlapping clock signals with dead time, which drive the high-side and low-side
power switches through tapering-based drive buffers. It is also intended to prevent the
current from shooting through the power switch.
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Figure 7 presents the proposed nonoverlapping gate driver operations applied to
the high-side switch and the low-side switch of the buck converter. It is used together
with the DTC, but it has its own non-overlap feedback structure inside the driver. In the
conventional tapered buffer-based gate driver, the dynamic current at the output stage
increases as it passes through buffer stages. The buffer at the end of the switch driver
has a large amount of dynamic current with enough energy to drive the power switch.
The proposed gate driver not only prevents the current from shooting through the power
switch, but it also reduces dynamic current loss at the driver’s end stage. The proposed
gate driver for the low-side switch has the same structure as that of the high-side driver.
The difference is when the ZCD circuit detects the instance when the inductor current
becomes zero, there is an auxiliary switch to momentarily open the low-side switch. At the
moment the ZCD signal changes from low to high, the phase of the CLK2 signal coming
into the gate driver’s input is reversed. After a short delay time, the EN (enable) signal is
activated, and the auxiliary switch is turned on in a short time to open the low-side switch.
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Figure 7. Circuit implementation of the proposed gate driver with reduced dynamic current: (a) gate
driver for the high-side switch, (b) gate driver for the low-side switch.

Figure 8 shows the control signal state of the proposed gate drivers for the high-
side switch and the low-side switch under continuous conduction mode (CCM) and
discontinuous conduction mode (DCM) conditions. In the CCM condition where the load
current is sufficiently high, periodic switching of the converter is performed by operation
of phase 1 (Φ1.CCM) and phase 2 (Φ2.CCM). In phase 1, the high-side switch is turned on
when each CLK signal is inputted to the gate driver, and the final output of the gate driver
is low. If the low-side switch is turned on after a short dead time, the final output stage of
the gate driver becomes high. In DCM conditions where the load current is close to zero,
periodic switching of the converter is performed by operation of phase 1 (Φ1.DCM), phase 2
(Φ2.DCM), and phase 3 (Φ3.DCM). The operation of phase 1 and phase 2 is the same as under
the CCM condition. During phase 2 operation, if the ZCD circuit detects that the inductor
current crosses zero, both the high-side switch and the low-side switch open, which is
phase 3.
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circuit mode (DCM) conditions.

Figure 9 shows the timing diagram of the proposed gate driver under CCM and DCM
conditions. In the CCM condition, gate drivers for the high-side switch and low-side
switch perform phase 1 and phase 2 periodic operation as illustrated in Figure 9a. Similar
to the CLK signal for the DTC circuit, CLK1 for the high side and CLK2 for the low side
are configured to have a non-overlapping characteristic. Non-overlapping delay times at
the rising and falling edges of the CLK1 and CLK2 signals correspond to tdc1 and tdc2,
respectively. In the driver for the high-side switch, the signal that controls the last-stage
buffer through its own internal non-overlapping feedback structure in the gate driver
corresponds to V.G.PP and V.G.PN. Non-overlapping delay times at the falling and rising
edges of V.G.PP and V.G.PN correspond to tdp1 and tdp2, respectively. Non-overlapping
delay times at the falling and rising edges of V.G.NP and V.G.NN in the driver for the low-
side switch correspond to tdn1 and tdn2, respectively. Non-overlapping delay times at the
rising and falling edges of the final driver outputs (VGATE.P, VGATE.N) correspond to Td1
and Td2, respectively. The proposed gate driver prevents dynamic current loss by applying
the optimal dead time to the final stage of the gate driver. In addition, it prevents current
from shooting through the power switch.

In the DCM condition, each gate driver operates periodically in phase 1, phase 2, and
phase 3 as described in Figure 9b. The operation in the transition from phase 1 to phase 2
is the same as that in the CCM condition. With the high-side switch off and the low-side
switch on, the current amount flowing through the inductor gradually decreases. When
the inductor current crosses zero (Tclk1), the phase of the signal path to CLK2 is reversed.
After a short delay time, at the timing moment of Ten1, the EN signal changes from low to
high, which turns on the auxiliary switch in a short time and then turns off the low-side
switch (phase 3). In the process of switching from phase 3 to phase 1, if the VGATE.P signal
changes from low to high (Tclk2, Ten2), the output signal of the ZCD circuit changes from
high to low. The phase of the signal path to CLK2 returns to its original state. At the same
time, the EN signal changes from high to low, and the auxiliary switch is turned off.

Figure 10 shows the VPWM controller, which is composed of a comparator, a ramp
generator, and a type-III compensator including an error amplifier (EA), R1, R2, R3, C1, C2,
and C3. It also shows circuit implementation of the constant-transconductance rail-to-rail
operational amplifier. In the normal state of the converter, the common-mode levels of two
inputs in the error amplifier are equally biased to the reference voltage VREF. In the soft
start process, while the positive input voltage of the error amplifier increases smoothly
from zero to VREF, the negative input should be kept at the same common-mode. Under
normal converter operation, the negative input of the error amplifier temporarily fluctuates
in transient responses, and conventional amplifiers might go into undesired states in the
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case of instantaneous rising or falling responses of the load current. Therefore, this work
adopted the rail-to-rail amplifier structure to maintain constant transconductance over a
wide input voltage, and its resulting operation became stable even in cases of overshooting
or undershooting.
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3. Experimental Results

A proposed dual-mode buck converter prototype was fabricated in a 180 nm CMOS
process, and its proposed schemes were experimentally verified. Figure 11 shows its chip
microphotograph whose core area was 0.47 mm × 0.85 mm. The buck converter utilized
4.7 µH inductor and 33 µF capacitor off-chip components. The proposed dual-mode DC-
DC buck converter operation was functionally verified with an input voltage of 4.4 V as
the load current was varied, and its measured waveforms including converter output
voltage (VOUT) and inductor current (IIND) are given in Figure 12. As the load current
was swept from 80 mA to 5 mA, PWM–PFM mode transition occurred from 20 mA to
10 mA. The PWM mode transitioned from CCM to DCM as the load current decreased.
In the case of PFM with 10 mA and 5 mA load currents, the inductor peak current and
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output voltage ripple remained constant, but the switching frequency decreased as the
load current decreased.
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Figure 13a shows the measured line regulation characteristic of the proposed buck
converter when the converter input voltage was swept from 3.6 V to 5.5 V by 0.1 V unit
steps under 40 mA load current. The output voltage, whose nominal value was 3.3 V,
changed from 3.282 V to 3.306 V, resulting in the output line regulation of 8.888 mV/V.
Figure 13b shows the measured load regulation characteristic when the load current was
swept from 0 to 100 mA by 10 mA unit steps under 4.4 V converter input. The output
voltage, whose nominal value was also 3.3 V, changed from 3.321 V to 3.262 V, resulting in
the output load regulation of 0.59 mV/mA. Figure 14 shows the comparison of dynamic
current between the conventional gate driver and the proposed non-overlapping gate
driver, which were applied to both the high-side switch (HSW) and the low-side switch
(LSW) of the buck converter with variable input voltage. The measured amount of dynamic
current in the proposed gate driver was smaller than that of the conventional gate driver.
As the converter input voltage increased, the improvement became prominent, and the
maximum reduction in dynamic current was 17.82% in the LSW with 4.8 V input.
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Figure 15 shows the measured conversion efficiency over the load currents with
3.6 V input. When the load-current value was more than 15 mA, it was recognized as
the heavy-load condition, and the converter activated the VPWM control. When the
load-current value was less than 15 mA, it was recognized as the light-load condition,
and the proposed selectable adaptive on-time PFM control was activated. A maximum
efficiency of 95.7% was achieved with the VPWM control at a maximum load-current of
100 mA. As the load-current decreased, the efficiency gradually decreased. At around
15 mA load current, the PWM efficiency and PFM efficiency crossed over at approximately
80%. At a load current less than 15 mA, the converter operation changed into the proposed
selectable adaptive on-time PFM control, where PFM(S1), PFM(S2), PFM(S3), and PFM(S4)
are selected cases of its on-time adjustments. Their on-time relationship was Ton(PFM.S4)
> Ton(PFM.S3) > Ton(PFM.S2) > Ton(PFM.S1). Their switching frequency relationship
was Fsw(PFM.S4) < Fsw(PFM.S3) < Fsw(PFM.S2) < Fsw(PFM.S1). The optimum efficiency
was further optimized through fine adaptive operation, which selected PFM(S1) in the t1
section, PFM(S2) in the t2 section, PFM(S3) in the t3 section, and PFM(S4) in the t4 section.
The performance summary and comparison of the proposed dual-mode buck converter
compared to previous buck converters are shown in Table 1. The proposed buck converter
achieved 95.7% maximum efficiency and 0.83 W/mm2 power density.
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4. Conclusions

A dual-mode DC-DC buck converter including a load-dependent, efficiency-
controllable scheme was proposed to cope with various IoT applications. For the dual-mode
operation, PFM for light-load conditions was designed to have a proposed selectable adap-
tive on-time control scheme. The PWM structure was utilized for heavy-load conditions,
and its driver efficiency was improved by using the proposed non-overlapping driving
circuit to reduce dynamic current consumption. Through silicon prototype fabrication
and experimental testing, the proposed PFM mode was verified to have four kinds of
selectable on-time controls, which would provide finely optimized efficiency depending
on light-load conditions. The PWM for the heavy-load condition was designed to have a
reduced dynamic-current gate driver circuit, reducing its peak dynamic current by 17.82%.
This designed DC-DC buck converter demonstrated a measured maximum efficiency of
95.7% and power density of 0.83 W/mm2.
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