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Abstract: Sand production is a complex phenomenon caused by the erosion of borehole walls during
the extraction of hydrocarbons. In this paper, the sanding process in a typical Thick-Walled Hollow
Cylinder (TWHC) test is numerically simulated. The main objective of the study is to model the
particulate mechanism of sand production in granular assemblies with different bonding conditions
and examine the effects of parameters such as stress level and cavity size on the sanding model. Due
to the discrete nature of sand particles, the Discrete Element Method (DEM) is chosen to model solid
particles, and the Lattice-Boltzmann Method (LBM) is implemented to simulate fluid flow through
the solid particulate medium. A computer program is developed using the Immersed Moving
Boundary (IMB) approach to couple the two methods and model fluid–solid interactions. After the
program is validated, the simulations were conducted on 2D models representing cross-sections of
TWHC samples under radial fluid flow. The results show that the developed program is able to
capture complicated stages of sand production already observed in experiments. The program also
proves to be a promising tool in the parametric study of sand production. It successfully simulates
different aspects of the sanding phenomenon, including the scale effect, the extension of failure zones
in samples under incremental stress, and the stress relaxation during rapid particle erosion.

Keywords: sand production; particle erosion; fluid–solid interaction; bond contact model; radial
flow; discrete element method; lattice–Boltzmann method; immersed moving boundary approach

1. Introduction

Sand production, also known as sanding, is an undesirable complex phenomenon [1]
affecting the oil industry worldwide. It can be summarized as the separation and erosion
of grain particles from the wellbore wall, along with the extraction of hydrocarbons.
Redistribution of in-situ stress or the increased effective stress (in a depleting reservoir)
leads to the failure of weak rock around the wellbore [2–6]. Consequently, some parts of the
rock are disintegrated and may dislocate and enter the extraction well as a result of flow-
induced hydrodynamic forces. Unconsolidated or weakly-consolidated sandstones, which
comprise almost 70% of the oil and gas reserves, are susceptible to sand production [7–10].
In addition to causing damage to equipment and facilities [11], sand production also
threatens the wellbore stability or might even lead to formation collapse [12,13]. Thus, it is
necessary to expand our understanding of sand production and its key parameters to deal
with this problem and limit its adverse effects efficiently [14–16].

Many experimental studies have been conducted to investigate the sand production
mechanism. Regarding unconsolidated sands, primary sand production studies associated
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the onset of the sand production process with the instability of the sand arch formed near
the extraction hole [17,18]. Tippie and Kohlhaas [19] conducted a laboratory study on
the effect of flow rate on the arch formation and concluded that the sand arch formation
is dependent on fluid flow rate and initial arch size. They also found a new stable (and
commonly larger) arch is usually formed after the initial sand arch instability due to
excessive flowrate. Yim et al. [20] investigated the effect of fluid pressure, outlet size, and
shape of sand particles on the stability of the sand arch. They reported that parameters
such as the ratio of grain diameters to cavity size, grain size distribution, and the sand
particles’ angularity have a significant effect on the stability of the sand arches.

To study sand production in weakly-consolidated sandstones, Tronvoll et al. [21–25]
conducted a series of experimental-numerical studies on the stability of the cylindrical
cavities. Thick-Walled Hollow Cylinder (TWHC) samples were used in the experiments to
mimic field sandstone around boreholes. They found that although mechanical instability
is mainly responsible for sand production, the role of hydromechanical instability and fluid
flow increases as the strength of sandstone decreases, and the sanding behavior gets more
complicated for ultra-weak samples. They also reported that the sand initiation strongly
relies on the Uniaxial Compressive Strength (UCS) of the samples, while it is independent
of fluid flow conditions. In a similar study, Papamichos et al. [26] explored the effects of
stress level and fluid flow on sand production in weak sandstones and found that increased
applied stress leads to higher sanding rate and more produced sand. Papamichos [27,28]
conducted further studies on the effect of perforation size, sample strength, and stress
anisotropy on sand production. He reported that the cavity enlargement decreases the
sand initiation stress, whereas stronger samples show higher sand initiation stress. Similar
parameters were studied by Fattahpour et al. [2,3]. They recognized five distinct sand pro-
duction stages in their experiments, including sand initiation, transient, semi-continuous,
continuous, and catastrophic sand production. According to Fattahpour et al. [2], the stress
level is responsible for each sanding stage, and as the stress level increases, higher sand
volumes are produced. They also reported that stronger rocks are more sensitive to cavity
enlargement than weaker ones. To study the effect of stress conditions and fluid flow on
sanding, Younessi et al. [29] conducted a series of sand production tests using a true-triaxial
stress cell. They argued that the shape of failure zones around the borehole is a function of
stress anisotropy. They also observed that the sandstone yield occurs prior to the onset of
sand production, and with the increase of stress level, the amount of produced sand and
the yield zone dimensions around the borehole increase.

The experimental studies of sand production face some difficulties that restrict their
application. The limited dimensions of laboratory equipment and the subsequent small
samples usually used in experiments might affect the accuracy of test results [29]. Ex-
periments using larger samples are expensive and more challenging to implement [15].
Numerical simulation is a cost-effective alternative for laboratory experiments to study
sand production [13]. Due to the particulate mechanism of the sand production process, the
Discrete Element Method (DEM) is a suitable approach to model the sanding phenomenon.
In these models it is essential to accurately incorporate the impact of fluid flow into the
interaction of solid elements modeled in DEM formulations [14].

A continuum-discrete approach was used in the first attempts for the DEM-based
simulation of sand production [30–35]. In this approach, solid particles are modeled using
DEM, yet the fluid is considered a continuum whose behavior depends on macroscopic
parameters such as permeability through semi-empirical Equations. More recently, Climent
et al. [36] developed a 3D model to study the effect of fluid flow and in situ stresses on the
sanding process with limited stress and fluid conditions. They observed that the hydrostatic
fluid (at the no-flow condition) reduces the amount of produced sand as it acts as a damper
decelerating the eroding particles. A similar study was conducted by Cui et al. [37],
where special attention was paid to the evolution of porosity and permeability in the
porous media.
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Following the pioneering works of Cook et al. [38,39], many researchers have used a fully
discrete approach to numerically study sand production with more accuracy [1,40,41]. In this
approach, both solid and fluid phases are treated as discrete particles, and consequently, the
results are independent of macro parameters such as permeability. Similar to Cook et al. [39],
Han and Cundall [41] employed the Immersed Moving Boundary (IMB) method (which
will be explained in Section 2.3.1) to couple the Lattice-Boltzmann Method (LBM) with
DEM. They modeled the stabilization and collapse of sand arches in a perforation cavity
subjected to various fluid pressures, trying to simulate the episodic sand production of
unbonded particles in 2D. Their results showed that the expected collapse and reformation
of sand arches near the cavity could be qualitatively captured using coupled DEM-LBM.
In another study, Wang et al. [1] investigated transient sand production using a similar
approach with cemented particles. Bond models were used to simulate the cementation
between particles. They could successfully model the enlargement of the tensile failed zone
around the wellbore cavity and the erosion of particles in this zone due to fluid drag forces.

Although sand production has been studied extensively, the complexity and the im-
portance of this phenomenon calls for more research. The main goal of this study is to
simulate the sanding mechanism of a conventional TWHC test in 2D and to simulate
the model’s loading and fluid conditions similar to the ones present in the TWHC sam-
ples. Special attention is paid to explore the interaction between the key parameters in
sand production and to capture the different stages of this process previously found in
experimental results. For this purpose, a cross-section of the hollow cylinder, in the form
of a ring-shaped porous medium, is modeled while subjected to radial flow. Full-sized
samples are modeled to prevent the disruption of radial flow and acknowledge that the
DEM medium is not perfectly homogenous [36,37]. Since the particulate nature of sand
production has significant responsibility in its complication, solid particles in the current
study are modeled using DEM. To accurately capture the dynamics of the fluid flowing
through particulate porous media, LBM is chosen as the fluid solver. The IMB method,
proven to be reliable by previous studies [1,41], is chosen to couple the two numerical
approaches and model the fluid–solid interaction. An in-house computer program is
developed to simulate sand production in both unconsolidated and weakly-consolidated
media, in which a simple bond model reproduces the effect of cementitious materials. In
the developed program, the solid particles are modeled as polygons with arbitrary shape,
enabling the program to consider various (thus more realistic) shapes for solid particles.
However, particle shape in the sand production process is not studied in this paper and
will be tackled in future research. After the program validation using multiple benchmark
and qualitative tests, the sand production simulations are finally undertaken, including a
series of parametric studies.

As mentioned, the novelty of the study mostly lies in the improvements applied
to the numerical modeling of sand production, including (a) particulate modeling of
both solid and fluid phases (to capture the complicated mechanics of the sandstone and
eliminate the use of complex parameters such as permeability), (b) modeling full-sized
ring-shaped samples (in contrast to half-sized or wedge-shaped ones), (c) modeling radial
flow (similar to the actual fluid flow direction in the TWHC test), (d) considering the effect
of inter-particle cementation (to enable the developed program to study sand production
in weakly-consolidated sandstones as well as unconsolidated ones), and (e) using angular
shapes for solid particles (to resemble the increased interlocking of actual irregular-shaped
sand particles).

This paper is organized into five sections. After introducing the problem in this
section, the methodology and the basis of the approaches used in the current study are
provided in Section 2. In Section 3, the developed program is validated through diverse
benchmark tests. After that, Section 4 covers the modeling procedure and the results of
the sand production simulations. The results confer the model’s capability to capture
different stages of sand production. They cover the effect of multiple parameters on
sanding results, including stress level, bond strength, and cavity size, compared with the
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published experimental data. Finally, Section 5 is devoted to draw the main conclusions
and suggest topics for future studies.

2. Methodology
2.1. Bonded Discrete Element Method

Discrete Element Method (DEM) was first introduced in 1971 [42] to model the behav-
ior of distinct particles in granular environments. In this method, a set of sequential cycles
must be performed at time-steps to track particles’ movements and mechanical interac-
tion over time. At each time-step, after finding the particles in contact, the inter-particle
interaction is modeled by force-displacement relations at each contact. Then, for each
particle, total forces and moments are calculated, and after that, the particles’ movement
and rotation are updated using Newton’s second law.

In the current study, an in-house computer program called “BDL2D” was developed
to conduct simulations using coupled DEM-LBM on bonded particle assemblies. The
DEM module of the program is originated from the computer code “POLY” introduced
by Mirghasemi et al. [43] to simulate the mechanical behavior of granular assemblies
using polygonal particles. The DEM module was modified in the current computer pro-
gram so that it can model inter-particle bonds to mimic the effect of cementation between
particles. Same as the original code, “BDL2D” uses linear contact law as described by
Mirghasemi et al. [43]. Other instances of the development and application of the orig-
inal code are the simulation of particle breakage [44,45], the effect of inherent/induced
anisotropy on the behavior of granular materials [46–49], and instability of saturated
granular materials [50].

The inter-particle bond in the current computer program, in essence, is a modified
contact model between initially contacting particles (at the instant of bond creation). A
relatively simple bond model similar to the approach originally proposed by Jiang et al. [51]
was used. It is found that this model can efficiently capture the primary mechanical
behavior of bonded particles [52,53]. The model adds a bond element into the existing
contact model with only tensile and shear resistances. The rolling resistance of bonds is
neglected since its value is arguably negligible if the size of the bonds is small enough
compared to the particle size [51]. The bonds break irrecoverably once the tensile or shear
forces exceed the corresponding strength of the bonds. When in tension, the bond provides
an attractive contact force primarily equal to the product of normal stiffness and normal
displacement, reaching the tensile bond strength, RNB, at its peak value. Once the bond
is broken due to excessive tension, the attractive contact force abruptly drops from RNB
to zero. The shear bond contact model behaves somewhat differently. The contact shear
force increases linearly with the shear displacement until its peak value, RSB. In the case of
shear bond breakage because of excessive shear force, the strength of the contact abruptly
drops to the residual frictional strength (defined by the Mohr–Coulomb criterion). The
approach is explained in detail by Jiang et al. [51,52]. It is befitting to note that in the
current study, for simplicity, the normal and shear bond strength values were assumed to
be equal (RNB = RSB).

2.2. LBM

The Lattice-Boltzmann Method (LBM) is a simplified numerical solver for Computa-
tional Fluid Dynamics (CFD), simulating fluid flows using a particulate approach. The
time-step computational mechanism of LBM makes this approach a suitable coupling
match for DEM. Furthermore, the particulate nature of LBM enables it to incorporate com-
plicated solid boundaries more easily. Even compared to other particle-based fluid solvers
(such as smoothed particle hydrodynamics [54]), LBM is more mature in dealing with
complex boundaries [55]. This advantage makes LBM an attractive approach for accurately
modeling fluid flow through porous media [56] as the fluid “naturally” flows through the
medium pores [57], without a need for complicated parameters such as permeability of the
porous medium.
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In LBM, the fluid flow is divided into fictitious particles forming a uniform square-
shaped grid. The flow propagates through the grid, one node at a time-step and collides
with other flow particles along the way. These “streaming” and “collision” steps simulate
the macroscopic behavior of the fluid flow. In general, the virtual fluid particles have
infinite degrees of freedom. However, for simplification, a reduced number of degrees
of freedom is considered and the particle momentum is discretized. It means that the
emission of these particles occurs only in specific directions regarding the regular square
grid network. Figure 1 shows an example of lattice network and the unit velocity vectors
(ei) for each node in this network, representing the degrees of freedom of the fluid particles.
This figure is related to a nine-speed network in two dimensions, called D2Q9, a commonly
used velocity set in 2D models.
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Figure 1. Discretization of the computational fluid field into h × h (h is lattice spacing) square lattices
using D2Q9 velocity set (nine velocities in 2D).

As shown in Figure 1, h is “lattice spacing”, the uniform size of the lattice cells
throughout the fluid model. The discrete-velocity distribution function fi(x, t), often called
the “particle populations”, represents the density of particles with the same velocity at
position x and time t. In essence, the particle population fi is the proportion of fluid
particles in a lattice node, moving along the ith direction of the node [58]. Accordingly, the
macroscopic fluid density (ρ) can be calculated as:

ρ = ∑ fi. (1)

The LB equation can be formulated as:

fi(x + ei∆t, t + ∆t) = fi(x, t) + Ωi(x, t), (2)

in which, ∆t is the LBM time-step. According to Equation (2), particles of fi(x, t) move
with unit velocity ei to an adjacent point x + ei∆t at the next time-step (t + ∆t). During
this propagation, the particles are also affected by the collision operator Ωi, which models
the particle collisions by redistributing particles among the populations at each site [58].
There are many different collision operators and the simplest yet most well-known one is
introduced by Bhatnagar, Gross, and Krook [56], abbreviated to BGK. This operator uses a
single relaxation time, which basically means that it relaxes the populations toward the
equilibrium distribution f eq

i at a rate determined by the relaxation time τ. Equation (3)
shows the BGK collision operator:

Ωi(x, t) = −∆t
τ
( fi(x, t)− f eq

i (x, t)). (3)

After combining Equations (2) and (3), the LB equation with single-relaxation-time
approximation can be expressed as:

fi(x + ei∆t, t + ∆t)− fi(x, t) = −∆t
τ
( fi(x, t)− f eq

i (x, t)). (4)
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The equilibrium distribution function is a function of the direction index (i) and can
be represented as:

f eq
i = ωiρ

[
1 + 3

ei.u
c2 +

9
2
(ei.u)

2

c4 − 3
2

u2

c2

]
, (5)

where ωi are the weighting factors specific to the chosen velocity set. For the D2Q9 velocity
set used in this study, ωi are defined as:

ωi =


4
9 i = 5, 6, 7, 8
1
9 i = 5, 6, 7, 8
1

36 i = 5, 6, 7, 8
, (6)

and c is the lattice speed, defined as c = h/∆t. The fluid velocity u, used in Equation (5),
can be calculated as:

u =
1
ρ

8

∑
i=0

fiei. (7)

To calculate the fluid pressure at any fluid node, Equation (8) can be used:

P = c2
s ρ, (8)

where cs is the speed of sound in fluid and can be calculated based on the lattice speed as:
cs = c/

√
3. Kinematic viscosity is another macroscopic quantity of the fluid and can be

formulated as:

ν =
1
3
(τ − 1

2
)

h2

∆t
. (9)

The LBM originally treats the fluid as weakly compressible [58]. Equation (8) clearly
shows that a pressure difference between two fluid nodes is originated from a density
difference between them. However, a suitable parameter selection for the LBM model
would limit the so-called compressibility errors. To be more precise, if the computational
Mach number is kept small enough (Ma << 1), the error is negligible. Practically, a fluid
flow with Ma ≤ 0.1 is assumed to be incompressible [59]. The computational Mach number
in LBM models can be calculated as [60,61]:

Ma =
umax

cs
, (10)

where umax is the maximum fluid velocity throughout the model. In the present study,
great attention was paid to the value of the Mach number to satisfy the previous fluid
compressibility limit in all coupled models.

2.3. DEM-LBM Coupling Scheme

As already mentioned, the accuracy of particulate models of sand production highly
depends on the proper incorporation of fluid–solid interaction. Therefore, it is necessary to
apply the flow-induced drag force to the motion calculation of solid particles and, in turn,
consider the effect of particle motion on the behavior of fluid flow [37]. To conduct this
“coupled” scheme, one needs to accurately: (1) Identify the fluid–solid interfaces and (2)
calculate the hydrodynamic forces and moments acting on the particles. Once these values
are calculated, they are exported to the DEM module as fluid-induced input data. Then,
they are added to solid contact forces, and after that, the combined forces and moments
lead to the determination of the new position of solid particles.

When moving solid objects exist in the model, especially with high-velocity, the
hydrodynamic forces computed from the simple bounce-back rule (explained in [58]) suffer
from severe oscillations. To deal with this problem, researchers proposed more advanced
coupling schemes, such as the Immersed Boundary Method (IBM) and the Immersed
Moving Boundary (IMB) method. One should pay attention to the difference between the
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IBM and the IMB method as the former is proposed by Peskin in 1977 [62], while Noble
and Torczynski introduced the latter in 1998 [63]. The IMB method is sometimes called the
Partially Saturated Method (PSM) to avoid confusion [64]. Wang et al. [60] made a thorough
comparison between IBM and IMB. They concluded that while the two approaches lead
to similar results in some cases, IMB is substantially more accurate when fluid velocity or
particle movement is large (e.g., when sand production is modeled). They also reported
that IMB is more computationally efficient than IBM. In the following section, the IMB
method used in the current study is explained in detail.

2.3.1. Immersed Moving Boundary (IMB) Method

The IMB method uses a modified LB equation. In this method, the standard collision
operator of LBM is altered by adding an additional collision term, Ωs

i . This new term is
used to approximate the complex solid boundaries on lattice nodes so that the boundaries
of solid particles are smoothly represented in the regular grid network. This representation
is characterized based on a parameter called solid ratio, introduced for each computational
lattice cell as shown in Figure 2. This parameter is defined as the area occupied by a solid
phase, Asc (the hatched area in Figure 2), to the total cell area (γ = Asc/h2).
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Figure 2. The definition of solid ratio parameter, γ, in the Immersed Moving Boundary (IMB) method.

The modified LB equation is given by [63]:

fi(x + ei∆t, t + ∆t)− fi(x, t) = −∆t
τ
(1− B)( fi(x, t)− f eq

i (x, t)) + BΩs
i , (11)

where B is a weighting function depending on the local solid ratio parameter:

B =
γ(τ − 1/2)

(1− γ) + (τ − 1/2)
. (12)
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According to Equation (12), for a pure fluid node, γ = 0 and B = 0. On the contrary,
at its peak, for a pure solid node, γ = 1 and then B = 1. The additional collision term is
given by Cook [38] as:

Ωs
i = f−i(x, t)− fi(x, t) + f eq

i (ρ, us)− f eq
−i(ρ, u), (13)

where subscript −i denotes the opposite direction of i, u is the local fluid velocity, and us is
the velocity of the particle at each solid node, evaluated as a combination of transition and
rotation [61]. Finally, total hydrodynamic forces and moment exerted on a solid particle
which is mapped over n lattice nodes can be respectively computed as:

FH =
h2

∆t
(∑

n
(Bn∑

i
Ωs

i ei)), (14)

TH =
h2

∆t
(∑

n
(xn − xc)× (Bn∑

i
Ωs

i ei)), (15)

where xn and xc are the coordinates of lattice node n and the mass center of the solid
particle, respectively.

In 2D models of fluid flow through dense particulate media, there is a major issue
regarding the pore water flow path. In these conditions, the flow paths are blocked by
contacted solid particles, making it difficult for fluid to flow through the media. The
hydraulic radius concept was introduced to numerically solve this problem and facilitate
fluid flow through adjacent particles in the 2D DEM-LBM models [35]. The hydraulic radius
is the virtual radius of a particle in the LBM calculations, smaller than the mechanical
(real) radius of the particle. The hydraulic radius multiplier is defined as the ratio of the
hydraulic radius to the real particle radius. It should be noted that the hydraulic radius is
only applied in LBM (fluid-part) calculations, and the DEM (solid-part) model uses the
mechanical (real) radius of the particle [1,40,65,66].

2.3.2. Subcycling Time Integration

Since the LBM time-step is greater than that of DEM in the simulations, subcycling
time integration is used to couple the two methods. As proposed by Owen et al. [61], the
authors reduced the DEM time-step so that the LBM time-step is an integer product of it:

Nsub = CEILING(
∆tLB

∆t0,DE
), (16)

∆tDE =
∆tLB
Nsub

, (17)

where Nsub, ∆t0,DE, ∆tDE, and ∆tLB are the time-steps’ ratio rounded up to the nearest
integer, initial DEM time-step, final (reduced) DEM time-step, and the LBM time-step,
respectively. In the subcycling approach, each LBM cycle includes some DEM cycles during
which the hydrodynamic forces and moments remain unchanged. It is suggested that Nsub
should be limited to small values [59] so that the LBM calculation ideally updates before
solid boundaries cross through more than one lattice cell [61]. In the simulations in the
current study, the subcycling scheme led to promising results where Nsub < 10.

3. Model Validation

Having developed the computer program based on the described computational
methodology, the authors conducted a series of tests covering various aspects of the
program. The purpose of these tests is to validate the program and to examine its accuracy
in each area.
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3.1. Poisseuile Flow

One of the most famous benchmark tests for CFD modeling is Poiseuille channel
flow. It considers the steady laminar flow between two parallel plates, from inlet to outlet,
perpendicular to the plates. Poiseuille flow can be driven by velocity, pressure difference
(gradient), or body force (such as gravity). The parallel plates are wall boundaries enforcing
a so called “no-slip” boundary condition at their interface with the fluid. Thus, the fluid
velocity at the walls is zero while it reaches its maximum in the middle of the channel.
Besides simplicity, the popularity of Poiseuille flow as a CFD validation tool is mostly
because it has a closed-form solution. As illustrated in Figure 3, the parabolic velocity
profile for a pressure-driven Poiseuille flow is given by [56]:

ux(y) =
a

2ρν
(

∆P
L

)y(1− y
a
), (18)

where ∆P
L , ρ, ν, and a are the pressure gradient, fluid density, fluid kinematic viscosity, and

channel width, respectively.
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Figure 3. Schematic diagram of a pressure-driven Poiseuille channel flow with velocity profile ux. a
and L are width and length of the channel. p0 is the outlet pressure, and ∆p is the pressure difference
(between inlet and outlet) inducing the fluid flow.

Here, a pressure-driven Poiseuille channel flow (as shown in Figure 3) with the
parameters listed in Table 1 is modeled, and the results are compared with the analytical
results from Equation (18). Note that the value of pressure difference is opted to result in a
Reynolds number of 1.

Table 1. Parameters used in the Poiseuille channel flow model.

Channel
Width, a (m)

Channel
Length, L (m)

Fluid Density,
ρ (kg/m3)

Fluid Kinematic
Viscosity, ν (m2/s)

Pressure
Difference, ∆P (Pa)

0.1 0.1 803 3× 10−5 5.78× 10−3

The horizontal velocity of fluid across the channel is computed for three different
lattice spacings using the developed code, and the results are compared with analytical
values in Figure 4. The relative error in calculating maximum fluid velocity (in the centerline
of the channel, i.e., y = a/2) is 9.61%, 3.77%, and 0.23% for h = 5, 2, and 1 mm, respectively.
Thus, as expected, the finer the lattice mesh, the closer the numerical results to the analytical
ones [41]. The results show that fluid behavior (in the absence of solid particles) is accurately
simulated in the developed code, especially when h < 5 mm.
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Figure 4. Simulation results for pressure-driven Poiseuille flow by using different lattice spacings in
comparison to the analytical results, when Reynolds number equals one (Re = 1).

3.2. Single Particle Sedimentation

The sedimentation of a circular particle in a confined channel has been studied as a
validation case for many numerical methods. Hu et al. [67] and Wu and Shu [68] studied
this problem using an arbitrary Lagrangian–Eulerian finite element method and implicit
IBM-LBM, respectively. Wu et al. [69] also modeled the same problem using coupled
DEM-LBM with multiple boundary schemes, including the IMB method.

A similar problem, the sedimentation process of a single solid particle in a fluid-filled
vertical container under its gravity is simulated using the developed program, and the
results are compared with the studies mentioned earlier. The geometry of the container
and the initial location of the particle is demonstrated in Figure 5. All four boundaries
of the square-shaped container are no-slip walls imposing the simple bounce-back rule
to the fluid particles. Similar characteristics are considered for the model to maintain
comparability with the previous studies. The fluid density, kinematic viscosity, and particle
density are 1000 kg/m3, 1× 10−5 m2/s, and 1250 kg/m3, respectively. A lattice spacing of
h = 0.1 mm is used and the relaxation time is set to τ = 0.65. As the developed computer
program (BDL2D) can only model polygon solid particles, a 20-sided regular polygon as a
pseudo-circular particle is introduced in the model to resemble the circular one. The reason
for using a regular polygon with multiple sides is its geometrical resemblance to a circle.
The polygon dimensions were chosen to be inscribed in the corresponding circle with 2.5
mm diameter, same as the settling particle in Wu et al. [69].
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Figure 6 shows the results of the sedimentation model for vertical position and velocity
of the settling particle compared to the results of previous numerical studies. The current
results are in perfect accordance with the previously published data and almost coincide
with the results of Wu et al. [69]. According to Figure 6b, the vertical velocity of the settling
particle increases until it reaches its terminal velocity at time ~0.4 s and remains constant
afterward. Figure 6a supports this perception as the diagram’s slope does not change for
time > 0.4 s until the particle reaches the bottom of the container. It can also be inferred
that the difference between the geometry of the 20-sided polygon and the circle with the
same diameter has a negligible impact on the sedimentation results. It is also approved
that while the developed program cannot simulate particles with curved surfaces, the
hydromechanical behavior of these particles can be reasonably captured using regular
n-sided polygons. It is understandable that the higher the n, the more accurate the results
are. At least for simple hydromechanical models (such as single-particle sedimentation),
the movement of the circular particle movement can be simulated by using a regular
20-sided polygon.
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Figure 6. Variation of: (a) Vertical position and (b) vertical velocity of the settling particle with time.

3.3. Bonding Effects on Particulate Assembly

In this section, to ensure that the developed program can capture the general behavior
of bonded granular assemblies, the effect of bond presence between particles is investigated
by conducting a series of DEM tests. These tests simulate biaxial experiments on dry
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specimens with different bonding conditions, carried out in different steps, as graphically
shown in Figure 7. These steps are described in detail as follows:

1. Particle generation: The desired number of polygon particles are randomly placed
in a circular assembly. In this step, the particles have no overlap, and the number of
generated particles with each specific size follows the given particle-size distribution.

2. Initial compaction: A stress-controlled isotropic compaction is applied on boundary
particles. The boundary stress is maintained until the desired planar void ratio is
achieved. It might be challenging to form loose homogeneous models with high
values of void ratio. Relatively loose models can be formed if high values of inter-
particle friction coefficient and considerable damping are considered while small
boundary stresses are applied during the initial compaction. Conversely, if dense
particle assemblies are to be modeled, negligible damping and zero friction coefficient
should be considered.

3. Bond generation: If cemented particles are to be simulated in the assembly, bonds are
created at all existing contacts at the beginning of this step (as explained in Section 2.1).

4. Confining stress: In this step, the particle assembly is subjected to given isotropic
boundary stress. The intergranular friction coefficient and damping constants should
be restored to common values at the beginning of this step.

5. Deviatoric stress: When the variation of the planar void ratio with loading cycles
becomes negligible during confinement, the last step of the biaxial test can be initiated.
In this step, while maintaining the confining boundary stress of the previous loading
step, a compressive displacement is applied vertically at a uniform rate, increasing the
vertical stress of the assembly. The test continues until the particle assembly reaches
high vertical strains.
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Figure 7. Biaxial test steps: (a) Particle generation; (b) initial compaction, bonding, and confining stress; (c) deviatoric stress step.

In the current biaxial studies, 2000 octagonal (regular eight-sided polygon) particles
with relatively uniform sizes are generated. Compared to circular particles used in previous
numerical studies, the particles’ octagonal shape can mimic the increased interlocking
of actual irregular-shaped sand particles as most of the grains in natural sandstones are
angular [3]. On the other hand, the roundness of octagonal particles helps avoid induced
anisotropy in the model [46]. The particle diameters range from 3.56 to 2.14 mm. The
particle size distribution of the particle assembly is demonstrated in Figure 8. To reduce
the number of DEM particles and, therefore, the computation cost, the sand particle sizes
in the experimental study of Younessi et al. [29] are magnified by a factor of 5. The planar
void ratio of the particle assembly is 0.20 after the initial compaction. The boundary stress
at the initial compaction step was 12.5 kPa. The stress was kept constant during the bond
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generation step when three different bond strengths (50, 500, and 5000 N) were applied
to particle contacts of three sets of models. After that, each set of bonded models and
unbonded particle assembly were subjected to 50 and 100 kPa isotropic stresses during the
confining stress step. Each model is then subjected to deviatoric stress caused by vertical
compression, and their stress–strain behaviors are recorded. Table 2 shows the DEM
parameters used in the simulation of biaxial tests. The particles’ stiffnesses are somewhat
higher than the corresponding values in similar studies, mostly to avoid excessive overlaps
between particles [70].
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Figure 8. The particle size distribution of the models used in the current numerical (DEM) simulations
in comparison with the physical models in the experimental study of Younessi et al. [29].

Table 2. DEM parameters used in the simulation of solid particles assembly.

Density of Solid
Particles (kg/m3)

Inter-Particle
Friction Coefficient

Normal/Shear Contact
Stiffness (MN/m)

Bond Strength
(N)

3000 0.6 200 0, 50, 500, 5000

The simulation results of biaxial tests are shown in Figure 9 in terms of the deviatoric
stress versus axial strain (in-plane vertical direction) and the volumetric versus axial
strain. The results are provided for the models with different bonding strengths (for
brevity, the results of the 50N-bond model are not presented) for two confining stresses
of 50 and 100 kPa. The results of the unbonded model are also provided as a reference.
Both stress–strain and volumetric behavior of bonded models agree with the findings of
previous experimental [71–73] and numerical studies [51–53]. It can be observed that the
developed model successfully captures the main features of the behavior of cemented
soils, including enhanced strength [74–76], more brittle stress–strain behavior, and a more
dilative volumetric response [71–73], which are all more pronounced when more cement
contents (corresponding to stronger bonds [51,52]) are present in the sample [72].

According to Figure 9a,c, in accordance with the experimental results [71], bonded
models in this study show brittle behavior, which amplifies with the increase of bond
strength (associated with cement content) and alleviates as the confining stress grows.
It is also observed that, understandably, at relatively high strains where considerable
numbers of bonds in bonded models are expected to be broken, the curves corresponding
to different models with different bonding conditions converge. Therefore, as seen in
Figure 9a,c, bonding has little influence on the residual strength, yet the bonded models
show slightly higher residual strength than the unbonded ones [73,77,78].
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Figure 9. Biaxial test results of the models with different bond strengths subjected to (a,b) 50 kPa confining stress; (c,d)
100 kPa confining stress.

The more dilative behavior of bonded models is evident in Figure 9b,d, especially at
high axial strains. This behavior is mostly due to the rotation of bonded particle clusters
formed after some of the inter-particle bonds are broken. Wang and Leung [72] presented a
detailed description of dilative behavior in loose bonded granulates. However, compared
with the uncemented model, bonded models initially show more contractive behavior,
which is more noticeable in Figure 9d, where the confining stress is increased to 100 kPa.
This extra contraction was also observed in experimental studies of Schnaid et al. [71]
and Wang and Leung [72]. It is noted that even in models with high bond strengths
(corresponding to highly cemented assemblies), the mentioned initial compression is
followed by a considerable dilation which, as mentioned, enhances with the increase of
bond strength.

4. Numerical Simulation and Results
4.1. Modeling Procedure

The modeling process for sand production tests starts with the first three steps of the
modeling procedure presented in Section 3.2 using the same octagonal particles. After
the bond generation, an inner cavity (central hole) with a given diameter was drilled by
removing particles, the center of which was located inside the cavity. Both bond generation
and drilling steps are conducted under a small constant confining stress of 12.5 kPa (similar
to [51–53,77,79]). On the one hand, this confining stress ensures a small overlap between
contacting particles so that inter-particle bonds can be easily created. On the other hand,
its small value prevents the excessive displacements of particles adjacent to the freshly-
drilled inner cavity, which were previously in contact with the removed particles. The
bond strengths used in sand production tests are similar to bonds used in Section 3.2. The
properties of models used in these simulations are presented in Table 3. The various cavity
(hole) diameters used in this study are within the common range of perforations used in
experimental studies [2,3,28,29]. The inner hole radius is constant during the simulation.
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The outer radius of the assembly is almost equal to 60 mm so that: (1) The desired numbers
of particles (2000 particles) can be generated, and (2) the ratio of outer to inner model
radius stays in a typical range found in previous studies [2,3,23,28,29].

Table 3. The properties of models used in the sand production test simulation.

Model Name Inner Cavity
Diameter (mm)

Initial Void
Ratio

Bond
Strength (N)

Uniaxial Compressive
Strength, UCS (kPa)

UH15 15

0.20

- -
UH20 20
B1H15 15

50 10.65B1H20 20
B2H15 15

500 47.29B2H20 20
B3H15 15

5000 87.79B3H20 20

After the cavity is formed, a TWHC test is simulated on the model. Similar to the
typical procedure used in many experimental studies [2,3,27,80], the test simulation consists
of the incremental increase of confining stress in multiple steps, and each step is followed
by an inward fluid flow with variable pressure gradients. Complex fluid open boundaries
(inlets and outlets) are avoided as they are defined by straight boundaries. The flow inlets
are modeled as square-shaped boundaries slightly smaller than the inner cavity. The flow
outlets also form a square with dimensions slightly larger than the initial outer diameter of
the particle assembly. A similar approach was employed by Zhao et al. [81] to simulate
radial flow in 2D ring-shaped samples. Figure 10 shows the model characteristics, including
geometry, loading conditions, and fluid boundaries in sand production numerical models.
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production tests.

In the sanding simulation, the values of applied confining stresses start from 50 kPa
and then increase in steps. Each of these steps lasts for two million DEM computation cycles.



Energies 2021, 14, 906 16 of 32

During each step, an inward flow is induced by an increasing pressure difference (between
inlets and outlets) from zero to 6 kPa. Figure 11 shows the loading and fluid pressure
conditions of the models during the simulation schematically. The applied confining stress
increases until catastrophic sanding occurs in all models.
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The LBM parameters used in the simulation of the fluid flow are presented in Table 4.
The values of fluid density and viscosity are chosen to mimic a light viscous fluid (similar
to [29]). Great care was employed in choosing the value of lattice spacing (h); a small value
of h leads to higher modeling resolution, yet it drastically increases the computational
cost. It is suggested that, to secure the accuracy of the simulation in 2D coupled models,
the diameter of the smallest particle should cover at least ten fluid lattice cells [1,66].
Accordingly, in the current study, the ratio of particle diameter to grid spacing is slightly
higher than 10 (Dmin(= 2.14mm)/h(= 0.2mm) = 10.7 > 10). Lower ratios are also used
in some studies [41]. The hydraulic radius multiplier is assumed to be 0.8 as it results
in permeability values closest to the estimated ones from the empirical Kozeny–Carman
equation [82].

Table 4. Lattice-Boltzmann Method (LBM) parameters used for the fluid simulation in sand production tests.

Fluid Density,
ρf (kg/m3)

Kinematic
Viscosity, ν (m2/s)

Lattice Spacing,
h (mm)

Inlet/Outlet Pressure
Difference, ∆P (kPa)

Relaxation Time
Parameter, τ

Hydraulic Radius
Multiplier

803 3E-5 0.20 0–6 0.521 0.8

During the sanding simulation, loose particles around the inner cavity may dislocate
and move towards the inner hole. If the center of any particle is located inside the cavity, it
is assumed to be eroded and is deleted from the assembly. The produced (deleted) particles
are monitored accurately throughout the modeling process.

4.2. Modeling Results and Discussion

The results of the DEM-LBM numerical study are presented in two categories. First, the
ability of the developed program to model different sand production stages (corresponding
to various sanding types) is investigated. Thus, the variation of numbers of produced
particles with stress level and fluid pressure is studied for selected stress intervals and the
numerical results are compared with previous experimental results. Second, the parametric
study results are presented, covering the effect of the stress level, bond strength, and hole
diameter on the sand production model. The results are then compared with experimental,
analytical, and numerical results of previous studies.

4.2.1. Sand Production Stages

Many previous studies divided the sand production process into multiple stages with
distinct characteristics from each other. These stages are mainly characterized by the com-
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bined impact of stress level and fluid flow on sanding results. The first one is sand initiation
(or sand occurrence) at which, the particle production starts but is usually suppressed
soon after a small volume of particles is eroded. Since this stage is not affected by fluid
flow, it is believed to be purely mechanical [23]. After the sand initiation, the sanding type
alters with the stress level. It also increases the quantity of produced particles, starting
from small amounts in sand initiation to large amounts in the end-stage catastrophic sand
production. In the current study, different sanding stages are determined based on the
definitions presented by Fattahpour et al. [2]:

1. Sand initiation: In this stage, the first particles are eroded from the assembly as
they enter the inner cavity. The effect of fluid flow on this stage and the number of
produced particles is negligible.

2. Transient sand production: In relatively higher stress levels, the number of produced
particles occasionally undergoes sudden (but small) increases when fluid pressure
changes. This particle production subsequently stops when the fluid pressure is kept
constant for a while.

3. Semi-continuous production: As the stress level increases, the fluid flow casts more
impact on the sanding procedure. In this stage, fluid-induced erosion becomes
influential, and there are some increases of produced particles even when fluid
pressure is constant.

4. Continuous production: At higher stress levels, particles are easily eroded at a rela-
tively constant rate.

5. Catastrophic sanding: Further increase in stress level leads to the rapid erosion of
many particles known as catastrophic sand production. The most common symptoms
of catastrophic sanding reported in the literature are the production of a large amount
of sand followed by a reduction in radial stress, a considerable decrease in the cavity
dimension or blockage of the inner hole [29].

Since the inner hole diameter is assumed to be constant, the borehole choking could
not be modeled in the current study. Thus, rapid erosion of numerous particles and the
subsequent severe reduction of internal stress, also known as stress relaxation [83] (the
difference between applied and averaged assembly stress), indicate catastrophic sanding
in the present model.

By focusing on the sanding time histories of models, it is possible to follow the
evolution of sanding process under varying applied confining stress. Selected parts of
the results are depicted in Figure 12. The variation of fluid pressure difference (between
inlet and outlet) is also shown in these figures, implying that it gradually increases from
zero to 6 kPa in four steps for each stress level. In Figure 12a, three sanding stages are
recognized for the B1H20 model, including sand initiation (red square), semi-continuous,
and catastrophic sand production (red circle). As expected, after the sand initiation at
small stress levels (50 kPa), few particles are produced and the sanding stopped until the
stress level increased to 100 kPa. At this stress level, the number of produced particles is
affected by the change of fluid pressure; however, the sanding rate is not constant. These
characteristics denote the semi-continuous sanding. It is evident that at the end of the
simulation, as the sanding process approaches catastrophic sand production, the difference
between applied stress and averaged assembly stress increases. As mentioned before,
rapid particle erosion followed by considerable stress reduction signifies catastrophic sand
production. In Figure 12b, also three distinctive sanding stages can be detected for the
B1H15 model when the confining stress varies between 300 and 600 kPa. As can be seen in
this figure, at relatively low stress (300 kPa), a “burst” of produced sand is visible when the
fluid pressure increases from 4.5 to 6 kPa, followed by suppressed production of particles,
which denotes transient sanding. By the increase of stress to 500 kPa, considerable numbers
of particles are produced. The variable sanding rate and the clear impact of fluid flow on
the sanding regime (especially when fluid pressure increases from 1.5 to 3 kPa) imply the
semi-continuous sand production. Although the rapid erosion of particles at this stage
causes a reduction in averaged assembly stress, this stress reduction is controlled when
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the particle erosion is suppressed afterward. Finally, when the stress level increases to
600 kPa, rapid particle erosion restarts and as a result, severe stress reduction occurs,
leading to catastrophic sand production (red circle). Figure 12c presents similar results for
the B3H20 model when the confining stress varies between 500 and 800 kPa. According to
this figure, when the stress level is between 500 and 700 kPa, some particles are produced at
a relatively constant rate, implying continuous sand production. However, further increase
of stress level to 800 kPa results in substantial stress reduction and the abrupt production
of numerous particles, leading to catastrophic sand production (not shown in the figure).
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It can be argued that the developed model can simulate different stages of sanding,
previously observed in experimental studies. It is worth mentioning that not all models
endure all sanding stages. During the simulation, from initiation to catastrophic sanding,
different models might undergo different stages of sand production. For example, in our
study, B3 models did not show any signs of transient sanding. However, the key features
of different sanding stages, including the impact of stress level and the changing role of
fluid flow in the sand production process, are captured. The observed stress reduction
during rapid particle production was also reported in both previous experimental [2]
and numerical [83] studies. The stress reduction is most notable when a sudden burst
of sanding occurs or when particles are eroded rapidly, usually leading to catastrophic
sand production.

4.2.2. Parametric Study on the Effect of Stress Level

As previously outlined in Figure 12, the stress level affects the amount of produced
particles and presumably alters the sanding stage. Figure 13 investigates the effect of stress
level on sanding in greater detail for models with small (Figure 13a) and large (Figure 13b)
cavities. It depicts the variation of the number of produced particles with stress levels
for different models, from the onset of the sanding process (red squares) to the end-stage
catastrophic sanding (red circles). The zoom-in plots show the magnified results close to
the sand initiation. It is evident that for all models, as expected, the number of produced
particles increases with the increase of applied confining stress.
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It is also evident that, in most models (except for B2H15 and B3H15), stress levels
causing sand initiation are relatively similar. Thus, initially, diagrams related to models
with different strengths or cavity sizes are close together. Nevertheless, as the stress
level increases, the curves tend to diverge. This behavior is explained by the effect of
stress concentration in physical models [2]. By focusing on the nature of sand initiation
in particulate media, another explanation for this behavior in the current study can be
presented. Usually, the first eroded sand particles indicating the onset of sand production
are relatively loose particles at the edge of the borehole. In weakly-bonded models, the
inter-particle bonds of these loose particles are broken at small stresses in the early stages
of loading and can easily be washed out by the fluid flow. Consequently, sand initiation
in weak models occurs at small stress levels and as a result, sanding diagrams are close
together. However, after the erosion of looser particles, the sanding process is greatly
affected by factors such as cavity size and the strength of inter-particle bonds. It should be
noted that, as earlier mentioned, stronger models with small cavities (B2H15 and B3H15)
show contradictory behavior, which will be explained in Section 4.2.4.

Furthermore, it can be observed in Figure 13 that, for a given hole diameter, with
the increase of bond strength, the number of produced sand decreases. Additionally,
from the comparison of Figure 13a with Figure 13b, it can be deduced that, for a given
stress level and bond strength, models with larger cavities experience a more severe sand
production and produce more particles. The sand initiation and catastrophic sanding in
models with larger hole diameters also occur at smaller stress levels. The effect of bond
strength and hole diameter on the sand production model are studied in more detail later
in Sections 4.2.3 and 4.2.4, respectively.

Moreover, in most models, after the initial burst corresponding to the onset of sand
production, the diagrams flatten, indicating that the sanding process is paused. This
temporary sanding interruption is mostly due to the combined effect of residual inter-
particle bonds and the formation of a stable sand arch. These sand arches help control the
particle erosion, and the sand production is minimized as long as the arches are stable.
There are two exceptions regarding the two cases of UH20 and B1H20 where, on the one
hand, the inter-particle bonds are absent or weak, and on the other hand, the large size of
the cavity prevents the formation of stable sand arches. Consequently, catastrophic sanding
occurs shortly after the sand initiation in these weak models (red and yellow dashed lines
in Figure 13b).

To better understand the sanding process in unbonded models, different snapshots
of the sanding process in the UH15 model are shown in Figure 14. The process shown
in this figure can somehow be generalized for all unbonded models (with small inner
cavities), where the only mechanism preventing sand production is the frictional behavior
of particles in sand arches. First, Figure 14a demonstrates the UH15 model and its stable
sand arch at the end of a loading step (confining stress = 400 kPa). As the next loading
step begins, the stress level increases (confining stress = 500 kPa), leading to the collapse of
the sand arch (Figure 14b). Afterward, according to Figure 14c, the sanding rate increases
as more particles are washed out of the assembly. The sanding rate decreases as a new
stable arch starts to form (Figure 14d), and the sand production finally stops after the arch
is formed (Figure 14e). This process is in agreement with the previous experimental [19]
and numerical [41] observations.

As already mentioned, the results show that in models with larger hole diameters, the
sand arch could not recover after the collapse due to the large cavity size. Younessi et al. [29]
pointed out that the limited size of the samples might be another reason that the samples
with large cavities were unable to form a new stable arch.
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Figure 14. Snapshots of a closeup view of sand production process in UH15 model at different
time-steps: (a) initial stable arch; (b) sand arch collapse; (c) sand production; (d) formation of new
sand arch; (e) cessation of sand production. Vectors show fluid flow velocity direction and magnitude.
Grey (filled) octagons represent virtual particles with hydraulic radii (as introduced in Section 2.3.1)
and larger hollow octagons represent real particles with mechanical radii (actual dimensions).
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4.2.3. Parametric Study on the Effect of Bond Strength

During sand production tests, the inter-particle bonds in bonded models tend to break
with the increase of stress level. At first, the bonds of the particles adjacent to the inner
cavity are broken, and as the test progresses, with the increase of stress level, farther bonds
break. Based on the distribution of broken bonds, similar to the suggestion of Perkins and
Weingarten [84], the model area can be divided into different zones shown in Figure 15.
In this figure, Rin, Rt, Rs, and Rout are the radius of the inner cavity, tensile yield zone,
shear yield zone, and the outer radius (circumference) of the particle assembly, respectively.
Figure 15 suggests that the tensile failure of the inter-particle bonds is more common in
areas near the cavity (tensile yield zone), while the shear bond failures often occur in farther
areas (shear yield zone). Additionally, it is generally accepted that there is an intact region
in which no bond is broken. However, the intact zone tends to shrink as the bond breakage
progresses (and Rs gets larger) due to increased stress levels.
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Figure 15. Schematic diagram of zones surrounding a spherical cavity and the definition of the radius
of each zone.

The variation of yield zone dimensions with stress level is displayed in Figure 16
for models with different bond strengths. Due to the discrete nature of the models in
the current study, the identification of the yield zones’ radii is not straightforward. In
the present model, the radii of shear and tensile yield zones are defined as the average
distance of the shear and tensile broken bonds to the center of the assembly, respectively.
According to Figure 16, as anticipated, the radius of the shear yield zone in all cases
surpasses that of the tensile yield zone. It means that most bonds in the vicinity of the
inner hole break due to excessive tensile force, while most of the shear-type bond breakage
occurs in areas farther from the cavity. Thus, the general shape of the yield zones suggested
in Figure 15 is approved. It can also be inferred from Figure 16 that as the bond strength
in the assembly increases, the stress level triggering bond breakage increases, and the
yield zones (both tensile and shear) become smaller. In other words, in stronger models,
bond breakage does not occur until confining stress reaches high values (Figure 16c), and
consequently, fewer particles are produced, as already witnessed in Figure 13. On the
contrary, in weaker models, a large portion of the bonds break in the first loading steps
(Figure 16a). As predicted by Perkins and Weingarten [84], at high stress levels, the shear
failure zones expand to the outer boundary of the models, leading to the production of
large quantities of particles (i.e., catastrophic sand production). The trend of yield zones
radii versus stress level is consistent with the results of the previous experimental [29]
and numerical [1] studies where it was observed that the bond breakage first appears at
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the edge of the cavity and then propagates towards the model’s external boundaries. It
means that the dimensions of the yielded zones around the borehole increase with stress
level, as suggested in Figure 16. The outer radius of the particle assembly (Rout) is not
exactly constant during the simulation and slightly changes as the applied confining stress
increases or considerable erosion occurs. However, for simplicity, as it merely represents
an upper bound for the radii of the yield zones, the limited variation of Rout is ignored and
considered to be constant (∼=60 mm).
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Figure 16. Variation of tensile and shear yield zone radii along with confining stress for: (a) B1H15
model; (b) B2H15 model; and (c) B3H15 model.

Although some researchers suggested that the catastrophic sanding happens when
the entire sample is yielded [29,84], the results of this study suggest otherwise for strong
models. As shown in Figure 16a,b, the radius of the shear failure zone approaches the
model radius, Rout, at the end of the simulation. However, in models with stronger bonds
(Figure 16c), even at high stress levels corresponding to catastrophic sand production, the
shear failure zone does not expand to the outer radius. It means that, even during rapid
erosion of the particles near the cavity, distant bonds stay intact in such models. Thus,
it can be concluded that if strong bonds are present in the assembly, catastrophic sand
production occurs before the breakage of all bonds. Tronvoll and Fjaer [23] reported the
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same observation that, while the weak materials are totally plastified during catastrophic
sanding, the surrounding zone remains relatively intact in stronger materials.

Figure 17 illustrates the late-time bonding condition of particles before the occurrence
of catastrophic sanding for the same models used in Figure 16. The color of particles in
this figure denotes their bonding condition as the lighter colors denote more broken bonds.
The distribution of broken bonds confirms that the particles adjacent to the inner cavity
are most susceptible to bond breakage. Additionally, following the results of Tronvoll
and Fjaer [23], it concurs that in stronger models, such as B3H15 (Figure 17c), even under
high stress levels leading to catastrophic sanding, many bonds survive, and the yield
zones do not propagate to the circumference of the model. The expansion of failure zones
under different loading conditions and the effect of flow rate on these zones need further
investigations that are not in the scope of the present paper.
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particles with a large number of broken bonds (more than half of initial bonds). White particles are purely frictional with no
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4.2.4. Parametric Study on the Effect of Cavity Size

As briefly mentioned in Section 4.2.2, the inner hole diameter (cavity size) affects the
sand production results. Figure 18 addresses this effect in greater detail, where the influence
of cavity size on sand production is evident. In this figure, the variations of the number of
produced particles with computational cycles are shown for models with different bond
strengths. Selected parts of this figure were already presented in Figure 12. According to
Figure 18, for given bond strength and stress level, models with larger cavities produce
much more particles than the ones with smaller cavities. The results suggest that the hole
diameter might also affect the sanding stage in the model. For example, in the unbonded
model with a small hole (UH15), the sanding is controlled after a limited sand production
by forming a sand arch that remains stable until the model reaches high stress levels
(400 kPa). In contrast, as previously presented in Figure 13, in the unbonded model with
a large hole (UH20), the formation of a stable sand arch is prevented, and, subsequently,
sand production continues at an increasing rate until catastrophic sanding occurs.
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Figure 18. No. of produced sand vs number of computational cycles for models with: (a) Unbonded
particles; (b) 50 N bonds; (c) 500 N bonds; and (d) 5000 N bonds.

The impacts of the cavity size and model strength on the stress level causing catas-
trophic sanding (or simply, catastrophic stress) is shown in Figure 19. The horizontal axis
in this figure denotes the normalized uniaxial compressive strength (UCS), the ratio of the
UCS of each model to that of the weakest ones, i.e., B1 models (UCS = UCS/UCSmin=
UCS/UCSB1). The vertical axis in Figure 19 is the catastrophic stress ratio, defined as the
ratio of the catastrophic stress for each model to the corresponding value of the weakest one.
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The results of the current study (Figure 19a) are compared to the experimental results of
Fattahpour et al. [2] (Figure 19b), showing that the combined effect of compressive strength
and hole diameter of the samples observed experimentally is qualitatively reproduced. It
is evident that models with a smaller cavity and higher UCS require higher stress for catas-
trophic sanding. As suggested by Fattahpour et al. [2], the variations of the stress levels
with UCS are almost linear, yet non-linear correlations are also proposed [24]. Although the
results indicate that the stress levels leading to catastrophic sanding are proportionate to
the strength of the particle assembly, the slope of the corresponding trendlines is different
for models with various hole diameters. Figure 19 infers that in the current study, consistent
with the experimental results, the larger the cavity size, the lower the trendline’s slope,
which appeared as the divergence of catastrophic sanding lines with the increase of UCS.
It can be concluded that stronger models with larger cavity sizes are more susceptible to
catastrophic sand production. In other words, while weaker models show less sensitivity to
the hole enlargement, enlarging the cavities in stronger models decreases the catastrophic
stress levels considerably [2].
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Figure 19. Variation of catastrophic sanding stress level with sample strength in: (a) The current study; and (b) the
experimental study of Fattahpour et al. [2].

Similarly, the variations of the stress levels causing sand initiation (or simply, initiation
stress) with sample strength for models with different hole sizes are provided in Figure 20.
This figure’s vertical axis is the initiation stress ratio, defined as the ratio of stress, in-
ducing the onset of sanding for each model to the corresponding value of the weakest
one. The current study results for initiation stress (Figure 20a) comply with the general
trend witnessed in the experimental studies. In stronger models with higher UCS, sand
production is delayed and occurs at higher stress levels. However, unlike the current study,
Fattahpour et al. [2] reported that the stress level of sand initiation is almost independent of
the hole diameter. This disagreement was somewhat expected since it originates most likely
from the limitations of the 2D numerical model used in this study. Fattahpour et al. [2]
explained that, due to the stress concentration at the end of their sample boreholes, sanding
is initiated at low stress levels. As a result, in their study, samples with similar strength had
the same initiation stress, independent of the hole diameter (Figure 20b). Inevitably, this
3D effect could not be simulated in the current model, leading to considerable variation of
initiation stress with hole diameter (Figure 20a). Still, in our simulations, initiation stress
levels are similar for different hole sizes in weak models. In other words, the sand initiation
diagrams for different hole sizes (green and blue lines in Figure 20a) converge when UCS
approaches unity.
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Figure 20. Variation of sand initiation stress level with sample strength in: (a) The current study; and (b) the experimental
study of Fattahpour et al. [2].

As previously mentioned, the stress concentration at the end of the boreholes in physi-
cal models with “half-length” boreholes is assumed to be responsible for the independence
of sand initiation stress from the hole diameter. Half-length boreholes are smaller than
the samples and only extend to half of the sample length, used to simulate the conditions
of the end part of the perforations in oilfield boreholes [3,23]. It is expected that, in the
presence of “full-length” boreholes (with the same length as the samples), sand initiation
stress should vary with the hole diameter. The full-length boreholes have been used in
the experimental studies of Papamichos et al. [28], whereby, due to the uniformity of the
sample along its length, no considerable stress concentration was present. As expected,
they found that the borehole failure stress (corresponding to the sand initiation stress [8,27])
increases with decreasing the hole diameter. This impact is addressed as the “scale effect”
in many other studies [10,20,27,85,86]. Garolera et al. [10] argued that the cavity failure
stress in smaller holes might be more than three times of failure stress in larger ones. It is
reported that parameters such as sandstone stiffness also affect the scale effect [27].

A closer look at Figure 20 reveals that, although the values of sand initiation stress for
the H15 models are overestimated, the H20 models (with larger cavities) show promising
results quantitatively, comparable with the experimental data [2,27]. More specifically,
the ratio of the initiation stress to UCS for H20 models is almost 2.08, which is close to
the corresponding ratios reported by Papamichos [27] (~1.81) and Fattahpour et al. [2]
(~2.12). This accuracy is somewhat lost if the hole diameter decreases. Nevertheless, it
is still comparable with the experimental results qualitatively as the current model can
predict the general effect of the cavity size on sand initiation stress and its proportionality
to the UCS. As mentioned, the impact of the sample stiffness on the scale effect might be a
source of overestimation in the initiation stress of the current models with small cavities.

In contradiction with failure theories indicating that borehole rock should fail when the
applied confining stress equals 0.5 UCS, experimental results reported that sand production
occurs at much higher stress levels. As mentioned in Section 4.2.2, it is argued that the
high apparent strength of TWHC samples is due to the erosion resistance of yielded zones
resulted from the sample internal friction [2]. From the particulate point of view, it can be
said that although some of the bonds are broken in zones near the cavity, the remaining
bonds and the inter-particle friction prevent the erosion of the particles. Figure 21 shows a
particulate view of the B1H15 model, as an example, before the onset of sand production
(under 50 kPa confining stress). The lighter-color particles in this figure correspond to the
particles whose bonds are broken, and the black particles are intact (without any broken
bond). As shown Figure 21, before any particle is eroded from the assembly, many bonds
near the cavity are broken; however, the assembly still manages to stay stable and resist the
sand production. Should the stress level increase, the sanding initiates since more bonds
break due to excessive loading. Consequently, some particles become loose enough for the
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fluid flow to be washed out of the assembly into the inner hole. Younessi et al. [29] also
reported that the onset of sanding does not coincide with yielding, as the residual strength
between the sand grains prevents the erosion of grains.
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purely frictional with no remaining bonds.

5. Conclusions

In this paper, the sand production process was simulated in 2D particulate models
using an in-house DEM-LBM computer program. Similar to TWHC laboratory samples,
the models were subjected to confining stress and radial fluid flow. The main results
obtained from numerical simulations on models with different stress levels, fluid pressures,
inter-particle bond strengths, and inner cavity sizes are as follows:

• Different stages of sand production reported by experimental studies (sand initiation,
transient, semi-continuous, continuous, and catastrophic sanding) are successfully
simulated. It means that the growing impact of fluid flow on sand production is ap-
propriately captured as the stress level increases during the sand production process.

• The stress level has a considerable effect on the sanding mechanism. An increase in the
stress level increases the number of produced particles and alters the sanding stage.
The stress level is also responsible for the bond breakage and the formation of yield
zones around the inner cavity of the models. The higher the stress, the more bonds
break. The bond breakage starts from the particles close to the cavity and propagates
as the loading continues. Consequently, yield zones extend to the circumference of
the model, while the radius of the shear yield zone always exceeds that of the tensile
yield zone.

• The strength of inter-particle bonds also affect the sanding results. The increase of bond
strength limits the number of produced particles and delays the catastrophic sanding.

• The cavity size (hole diameter) has a significant effect on sand production. A relatively
small increase in hole diameter (from 15 to 20 mm) at a given stress level can lead to the
erosion of much more particles and catastrophic sanding. Additionally, in models with
larger cavities, the stress levels triggering sand initiation and catastrophic sanding
are smaller. The effect of hole enlargement on the stress level leading to catastrophic
sanding is more pronounced in stronger models (with higher inter-particle bond
strength) than weaker ones.

• While expected qualitatively, the predicted sand initiation stress (the stress causing the
onset of sand production) in models with large cavities are quantitatively comparable
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to experimental data. However, sand initiation stress in models with smaller cavities
is overestimated in the numerical simulations.

• The catastrophic stress level (the stress causing the catastrophic sand production)
does not necessarily correspond to the general failure of the model. In stronger
models, catastrophic sanding occurs when the yield zones are not extended to the
outer boundaries (outer radius) of the model, and many bonds are still intact.

The results prove that the current 2D model offers valuable insight into the sand pro-
duction process. Although the developed program is capable of modeling complex angular
particle shapes, the effect of particle shape on the sanding process is not investigated in
this article. Exploring the role of particle shape in sand production should be the subject of
future work.
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