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Abstract: The dissemination of low-carbon technologies, such as urban photovoltaic distributed
generation, imposes new challenges to the operation of distribution grids. Distributed generation
may introduce significant net-load asymmetries between feeders in the course of the day, resulting
in higher losses. The dynamic reconfiguration of the grid could mitigate daily losses and be used
to minimize or defer the need for network reinforcement. Yet, dynamic reconfiguration has to be
carried out in near real-time in order to make use of the most updated load and generation forecast,
this way maximizing operational benefits. Given the need to quickly find and update reconfiguration
decisions, the computational complexity of the underlying optimal scheduling problem is studied in
this paper. The problem is formulated and the impact of sub-optimal solutions is illustrated using a
real medium-voltage distribution grid operated under a heavy generation scenario. The complexity
of the scheduling problem is discussed to conclude that its optimal solution is infeasible in practical
terms if relying upon classical computing. Quantum computing is finally proposed as a way to
handle this kind of problem in the future.

Keywords: low-carbon network; distributed photovoltaic generation; dynamic reconfiguration;
computational complexity; quantum computing; quantum annealing

1. Introduction

New preventive grid control paradigms that make use of information on disaggregated
net-load forecasts to estimate operational problems and anticipate potential opportunities
to improve such operation have recently attracted considerable attention from the electric
power industry. The new preventive capabilities of such control paradigms unleash
flexibility from the grid side, adding such flexibility to the demand side flexibility available
through load and generation responsive services [1]. Among such preventive control
capabilities, dynamic reconfiguration appears as a new automation technology capable
of both mitigating congestion and improving efficiency in networks operated under high
levels of renewables [2]. Such potential is quite easy to recognize when generation resources
are photovoltaic (PV) [3]. Yet, the challenges involved in optimal control for dynamic
reconfiguration are not minor, and many opportunities lie ahead for those who will be able
to tackle its full complexity.

In general, urban PV generation profiles do not match the load profiles of distribution
grids, both in temporal and in spatial terms, resulting in time and space asymmetries on
the network net load during the course of the day. As PV generation gets heavier over the
long term, these asymmetries will pose a new challenge to the operation of distribution
grids as they result in increased network losses and, at the limit, line current magnitude
overloads may happen.
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Using network optimization algorithms [4], the grid can be reconfigured such that it
dynamically adapts to its real-time net load profile [5]. The goal of the optimization problem
is to minimize network losses on the day-ahead period, given a starting network configura-
tion. Ideally, the optimal network reconfiguration would not have any time constraints to
undertake its switching operations (i.e., it would be immediately effective as a response
to a change in the load) and it would not have any limitation on the number of switching
operations when (instantly) changing from the current network configuration to the next
one. Thus, the network reconfiguration on a given time would be completely independent
from the previous network configuration, resulting on a simpler optimization problem.
Additionally, as the problem would be independent of future network configurations, there
would be no need to take into account load and PV generation forecast.

In real networks there are, however, constraints both on reconfiguration time and
completeness. Several factors contribute to the reconfiguration latency: delay on real-time
data collection of network load and PV generation; computation time taken to find an
optimal reconfiguration for the net load data; time taken to execute the network switching
operations. On the other hand, the number of switching operations is limited by the cost
of each operation in terms of switching equipment wearing and by the operational risk
on the network of each switching operation [6]. This limitation makes the reconfiguration
problem much more demanding in computational terms, since one has to find a limited
schedule of operations to be made over time that guarantees successive optimality stages
for the network when loaded based on available forecast. It is important to understand
how the computational complexity scales, since the computation time taken to find the
reconfiguration schedule may have a significant impact on the reconfiguration latency. This
is especially relevant when the obtained schedule contains switching operations that need
to be carried out immediately after forecast availability.

Literature is rich in optimization approaches to the static version of the reconfiguration
problem. The first report of such a problem for losses minimization dates back to 1975. Since
then, hundreds of works have addressed different versions of the static problem, tackling
different objectives and constraints with a variety of heuristic solution approaches, such
as using genetic algorithms [7,8], particle swarm optimization [9] and bacteria foraging
optimization [10]. A comprehensive survey of reconfiguration problems and solution
approaches can be found in [11].

Dynamic reconfiguration is not so well studied as an optimization problem, often
being addressed in the context of post-contingency system restoration only [12,13]. As
a restoration problem, optimization objectives are usually related to re-energizing the
isolated section of the grid as quickly as possible, limiting the scheduling to the sequencing
of the switching operations in time [14]. Self-healing has also been addressed as a dynamic
reconfiguration problem in the distribution system restoration context [15,16].

Since the full dynamic reconfiguration problem has been considered computationally
intractable, the approaches found in the literature treat this problem approximately, not
fully addressing its complexity. We believe that quantum computing offers the possibility
of handling this problem with its full complexity, enabling the computation of the optimal
solution. This paper is our first step in pursuing that goal. Its main contributions include:

• A new formulation of the optimal dynamic reconfiguration problem for losses mini-
mization;

• A quantification of problem complexity and how this complexity scales with the
number of switching operations and with the number of time steps (i.e., time span of
reconfiguration schedule multiplied by time resolution);

• An illustration of the benefits of finding the optimal dynamic reconfiguration solution
over a real network model;

• A discussion of the prospective use of quantum computing to address the complexity
of the full dynamic reconfiguration problem in the future.

This paper is organized as follows. After this Introduction, the reconfiguration prob-
lem is mathematically formulated in Section 2. Afterwards, an illustrative example of a
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solution for this problem is given in Section 3. In Section 4, the time complexity of the
problem is discussed and quantum computing is proposed as a means to tackle the problem
in useful time. Finally, Section 5 concludes the paper.

2. Problem Formulation

Let N and A be, respectively, the set of nodes and the set of arcs of a graph G of a
distribution network. For each node n ∈ N, its net load at a given time t is defined as

Sn(t) = SLOAD
n (t) + PPV

n (t) (1)

where SLOAD
n (t) is the consumers load aggregated on node n and PPV

n (t) is the total PV
generation injected on this node (a negative load value). This model assumes that no
reactive power is injected by PV producers.

Assuming that the distribution grid is always required to operate radially, the subset
T ⊆ A contains all the network arcs belonging to the operational spanning tree in a given
time. Thus, T completely represents a network configuration. Additionally, T ∈ ST(G)
where ST(G) is the set of all possible spanning trees of G.

Given the net load S(t) on all nodes and the network configuration T, a power-flow
analysis computes the current magnitude Im(S(t), T) on the operating arcs m ∈ T. The
total network active power losses at a given time are defined as

L(S(t), T) = ∑
m∈T

Rm I2
m(S(t), T) (2)

where Rm is the resistance of arc m.
In the following subsections several reconfiguration problems are formulated as

optimization problems. To determine each problem computation time, it is important to
understand how the time complexity of each problem scales. The search space of each
of these problems may include the network configurations space ST(G) and multiple
dimensions of time. We do not consider the scaling with the network size. To this end, we
will formulate problem complexity as the number of individual and independent network
configuration optimization runs (if the network configurations space is included in the
search space of the problem) or power-flow runs (otherwise) needed to solve the problem,
thus leaving the network size dependence to each network optimization or power-flow run.

2.1. Unrestricted Optimal Reconfiguration

As described in the Introduction, if there were no limitations on the number of
switching operations on the network, finding the optimal network configuration T∗ on a
given time would be independent of previous and future configurations. This optimization
problem would be stated as the minimization of total network losses on a given time t, as
defined by

T∗(t) = arg min
T∈ST(G)

L(S(t), T) . (3)

The time complexity of this problem is p configuration optimizations, where p is the
number of time steps on which t is given. Thus, this problem grows linearly with the
time resolution.

2.2. Optimal Static Configuration

If no switching operations are allowed during the day, the network must be operated
in a single static configuration. The optimal static configuration is the one that minimizes
the energy losses for the whole day, as defined by

T∗day = arg min
T∈ST(G)

∫
t∈TI

L(S(t), T)dt (4)
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where TI is the time interval considered for the optimization problem, i.e., the 24 h
day period.

Since there is a single network optimization for the whole day, the time complexity of
this problem is constant and equal to one configuration optimization.

2.3. Time-Bounded Linear Dynamic Reconfiguration

Let T + x represent the application of switching operation x on network configuration
T ∈ ST(G), and let T′ − x denote the reversion of switching operation x on configuration
T′ ∈ ST(G). The same notation will be used if x is replaced by the set or the sum of several
switching operations. A reconfiguration schedule between the initial configuration T I and
the final configuration TF contains the minimum set of switching operations O needed to
transform configuration T I into configuration TF, as given by

TF = T I + ∑
x∈O

x ≡ T I + O . (5)

A schedule with the same switching operations reverted would bring configuration
TF back to configuration T I :

T I = TF − ∑
x∈O

x ≡ TF −O . (6)

The set of switching operations O can also be defined as the difference between the
two configurations: O = TF − T I . Although O can be immediately determined from both
configurations, the same is not true for the optimal time for each switching operation.
A simple approach to this problem could be to restrict (3) to configurations T I , TF and
all configurations in between, resulting from the application of any subset of O in T I , as
given by

T∗(t) = arg min
T∈{T I+Q:Q∈P(O)}

L(S(t), T) (7)

where P(O) denotes the power set of O, i.e., the set of all subsets of O, including the empty
set and O itself. It is important to note that |P(O)| = 2|(O)|, which means that the search
space on every time point grows exponentially with the number of differences between T I

and TF. Although this approach restricts the schedule to a path between T I and TF, it does
not limit the number of switching operations since the path can be traversed backwards
and forward as S(t) changes over time.

To ensure that the path between T I and TF is always traversed forward, a single time
point inst(x) ∈ TI is assigned to each switching operation x ∈ O, where TI is the maximum
time interval for the schedule. Formally, O can be represented as an arbitrarily-ordered
sequence of Ok elements, where k = 1, ..., |O|. The time points for all switching operations
Ok can also be represented as a sequence with the same ordering: instk = inst(Ok). The
sequence pair (O, inst) completely defines a schedule. The optimal value for the switching
operations time is then given by

inst∗(T I , O) = arg min
inst∈TI|O|

∫
t∈TI

L
[
S(t), conf(T I , O, inst, t)

]
dt (8)

where conf(T I , O, inst, t) is the network configuration at time t with a schedule (O, inst)
starting at configuration T I , as defined by

conf(T I , O, inst, t) ≡ T I +
|O|

∑
k=1

{
Ok instk < t
∅ otherwise

. (9)

Note that the optimal schedule may not include all switching operations of O. The dis-
carded operations Ok will have their time points assigned to the end of TI:
instk = sup(TI).
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Since the set of switching operations to perform is already known, the search space
for this problem does not include the network configurations space ST(G). Thus, the time
complexity of this problem cannot be expressed as the number of network configuration
optimizations since no such optimization is made here. Instead, we express time com-
plexity for this problem as the number of power-flow computations, i.e., the number of
computations of L[S(t), conf]. Let p be the number of time steps within the maximum time
interval TI. Then, the search space TI|O| is discretized into p|O| points and the integral on (8)
becomes the summation of p computations of L. The time complexity for this problem is
then p|O|p = p|O|+1 power-flow computations.

The goal of a daily reconfiguration schedule is to always return, at a given time
of the day, to the same configuration (say, configuration T I) everyday. Thus, the daily
schedule path is cyclic but not necessarily the same every day since S(t) changes from
one day to the other. On a cyclic schedule between configurations T I and TF, if we also
impose that configuration TF occurs at another given time of the day, then this schedule
can be converted into two linear time-bounded schedules from T I to TF and from TF to T I

(reverting the switching operations on O) and solved by (8) as two independent problems.

2.4. Time-Unbounded Cyclic Dynamic Reconfiguration

The restriction of having configuration T I everyday at the same given time is necessary
to have a cyclic schedule, as we are interested in finding a daily schedule. Adding the
same restriction for configuration TF could severely constrain the problem, degrading
the optimality from the obtained schedule. Thus, we are interested in finding an optimal
schedule which does not impose any time constraint on configuration TF.

This problem can be formulated as the linear time-bounded problem of (8) but with
two important differences: the time interval for the schedule (TI) is now defined as a
complete 24 h period between the given configuration T I time from two consecutive days,
thus giving the time-unbounded nature; and each switching operation Ok now has two
time points—one to apply the operation (inst+k ) and the other to revert it (inst−k ), giving the
cyclic nature.

A constraint must be added to ensure that any reverted operation always occurs
after the original one: inst+k < inst−k , ∀k=1,...,|O|. The special case inst+k = inst−k = 0 is
allowed to indicate that the operation Ok was discarded from the optimal schedule (and
thus configuration TF is never reached in the schedule). Note that, even if all switching
operations in O are included in the schedule, configuration TF is only reached if all these
operations are active at some time of the schedule.

The sequence triplet (O, inst+, inst−) now defines the schedule. The optimal schedule
time points are given by

(inst+, inst−)∗(T I , O) = arg min
inst+∈TI|O|

inst−∈TI|O|
inst+k <inst−k

∨
inst+k =inst−k =0,∀k

∫
t∈TI

L
[
S(t), conf(T I , O, inst+, inst−, t)

]
dt (10)

where conf(T I , O, inst+, inst−, t) is now defined as

conf(T I , O, inst+, inst−, t) ≡ T I +
|O|

∑
k=1

{
Ok inst+k < t < inst−k
∅ otherwise

. (11)

As on the previous problem, the search space does not include the network configura-
tions space given that the set of switching operations is already known, so the problem
time complexity is given as the number of power-flow computations. Let p be the number
of time steps within the maximum time interval TI. Then, the time complexity for this

problem is p
(

1 + p(p−1)
2

)|O|
power-flow computations.
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2.5. Open Cyclic Dynamic Reconfiguration

In the previous dynamic reconfiguration problems, both configurations T I and
TF = T I + O had to be provided. As pointed out on previous section, configuration
T I and its time must be given in order to obtain a cyclic schedule. This configuration can
be obtained as the optimal configuration on its given time. The purpose of configuration
TF was to impose a limit in the number of switching operations on a cyclic schedule,
starting from configuration T I . As with configuration T I , configuration TF can be obtained
as the optimal configuration on some given time. In general, the number of differences
between both configurations is larger than the number of allowed switching operations
per day. Then, to limit the number of differences, only the most beneficial operations of TF

in terms of losses reduction on its fixed time are considered. Both actions of fixing a time to
optimize configuration TF and truncating the configuration may degrade the optimality of
the schedule.

It is possible to obtain an optimal schedule (O, inst+, inst−)∗ without providing a
configuration TF. Instead, it is enough to give the maximum number of daily switching
operations, m, along with configuration T I , as given by

(O, inst+, inst−)∗(T I , m) = arg min
O∈{TF−T I :TF∈ST(G)}

inst+∈TIm

inst−∈TIm

|O|=m
inst+k <inst−k

∨
inst+k =inst−k =0,∀k

∫
t∈TI

L
[
S(t), conf(T I , O, inst+, inst−, t)

]
dt . (12)

This problem can be formulated as a nested optimization problem, as follows:

(O, inst+, inst−)∗(T I , m) = arg min inst+∈TIm

inst−∈TIm

inst+k <inst−k
∨

inst+k =inst−k =0,∀k

arg minO∈{TF−T I :TF∈ST(G)}
|O|=m

∫
t∈TI L

[
S(t), conf(T I , O, inst+, inst−, t)

]
dt

 . (13)

The inner optimization problem represents a network configuration optimization pa-
rameterized for the inst+ and inst− time points which are found by the outer optimization
problem. The discretization of TI within the integral of the inner problem is now part of
the configuration optimization, so it is not considered in the time complexity. Again, let p
be the number of time steps within the maximum time interval TI. The time complexity for

this problem is
(

1 + p(p−1)
2

)m
configuration optimizations.

3. Solution Illustration

To illustrate the solution of a dynamic network reconfiguration problem, we use
a 15 kV distribution grid from a medium-sized city in Portugal (Figure 1). This grid
has a relatively dense urban center and a sparse rural area outside the city and it has
been chosen by the Portuguese distribution operator as a showcase for new smart grid
technologies. Most reconfiguration possibilities are at the center, since many alternative
links and switching devices are located there. Additionally, reconfiguration is mostly useful
at the center since most of the network load is concentrated there.

3.1. PV Generation Profile

A realistic scenario of heavy urban PV generation at the city center was built from
the information on the rooftop area of the city’s larger buildings, including universities,
museums, hospitals, schools, hotels, factories, warehouses, shopping malls, firefighters
and military barracks, for a total of about 180 thousand square meters. Building areas were
computed with QGIS software [17] using vector map data from OpenStreetMap [18].
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(a) (b)
Figure 1. The studied 15 kV distribution grid. The network arcs are colored by feeder circuit. (a) Complete network; the city
center is highlighted with the black rectangle. Note the scale on the lower right corner. (b) Detail of the highlighted city
center with the selected buildings for PV generation (green outline) and PV injection points on the grid (red dots). Images
obtained from DPlan—Distribution Planning and QGIS.

A single normalized PV generation profile M(t) was applied to all PV injection points
on the grid. The injected power on each of these nodes n was given by

PPV
n (t) = α RAn M(t) (14)

where α represents the peak PV generation power per unit of roof area (we used 200 Wp/m2)
and RAn is the roof area of the buildings selected for PV generation connected to node n.

The M(t) profile was modeled as a second-order polynomial fit over an average of
a representative set of real PV generation profiles on the city region region on the 31st of
August, 2013. Before being averaged, these profiles where normalized and time-shifted in
order to have their peaks time-aligned.

All real PV generation profiles used for this modeling had a time resolution of 15 min.
The peak of the M(t) profile is at 13:45.

3.2. Impact of PV Generation on Net Load Profile

The profiles used to represent load in the illustration are real data obtained from the
advanced metering infrastructure with a time resolution of 15 min. Net load profiles are
obtained by subtracting PV output to the real load profiles used. Table 1 lists the active
power peak value and peak time for all feeder circuits with PV generation. These feeder
circuits fall into two main categories: industrial areas, having a relatively flat load profile
and a large PV generation due to the large roof areas of industrial buildings; residential
areas, having a pronounced load peak at night and with lower PV generation associated
with smaller buildings (duck curves). In industrial circuits, the peak PV generation is
usually larger than its load, resulting in an active power flow inversion during the daytime.
In the other circuits, PV generation alleviate daytime load, but usually not in a magnitude
sufficient to invert active power. The overall result of the PV penetration in the city center
introduces severe asymmetries between feeder circuit loading.
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Table 1. Active power peak value and peak time for all feeder circuits with PV generation. The PV
generation peak is at 13:45. For residential feeder circuits, PV generation is, in general, not enough to
change the peak from the load alone case. For industrial feeder circuits, PV generation is, in general,
large enough to invert active power flow and even to create negative peaks with an absolute value
higher than load alone peaks. Data obtained from DPlan—Distribution Planning.

Feeder
Circuit PV Alone Peak Load Alone Peak Net Load + PV Peak

kW kW Time kW Time

1 −1014 2952 20:30 same as load alone
2 −2310 3071 19:15 same as load alone
3 −4460 3693 21:00 same as load alone
4 −986 2457 20:45 same as load alone
5 −5065 2089 12:00 −3099 13:45
6 −1134 1875 20:15 same as load alone
7 −9997 3406 01:00 −6682 13:45
8 −4660 2530 20:30 −2676 13:30
9 −803 2410 19:45 same as load alone

10 −928 1920 09:15 1804 20:00
11 −4908 1889 19:30 −3217 13:45

3.3. Static Optimal Network Configuration

The optimized network configuration for the net load profile at a particular time
is given by (3). Given the asynchronism between net load profiles introduced by PV
generation, the optimal configurations for the PV peak time and for the night load peak
time are very distinct. Figure 2 shows the losses profile obtained for two different optimal
configurations: one optimized at 13:45 and another optimized at 20:30. As expected, each
configuration performs better than the other in the vicinity of the period for which it was
optimized. This shows that none of these configurations alone would be optimal for the
whole day as a static configuration, and that a dynamic configuration that would swap
between the two configurations could bring significant benefits throughout the day.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour of the day

0

200

400

600

800

1000

1200

Po
we

r l
os

se
s [

kW
]

Static optimal network configuration losses profile
Optimal for 13:45
Optimal for 20:30

Figure 2. Losses profile for static network configurations. Data obtained from DPlan—Distribution Planning.

3.4. Dynamic Reconfiguration

As pointed out in Section 2, if there was no limitation on the number of switching
operations, the network could be optimized in each time of the day and reconfigured
successively from optimal to optimal in time. Since this limitation exists and the general
optimization problem is too hard to be addressed as such, our approach is to use the
optimal configurations for the PV peak time and for the night load peak time as the end-
point configurations of a partial reconfiguration path to be carried out during the day. The
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length of this path is the number of switching operations we are allowed to make while
transitioning from a daytime configuration to a night-time one, and the other way around
to close the daily cycle. Since these two configurations are very different, a complete path
between them may not be possible to undertake for being longer than the partial path we
are allowed to do. Thus, this partial path cannot reach both end-point configurations, but
it can reach one of them—the base configuration.

The best choice for the base configuration is the end-point configuration performing
better for the whole day. Figure 2 clearly shows that the night-time optimal configuration
is the best in terms of losses for the complete day. Additionally, the daytime optimal
configuration performs much worse at night-time (with losses 800 kW higher than the
other configuration) than the night-time optimal configuration does at PV peak time (with
losses 200 kW higher than the other configuration). As such, we chose the night-time
optimal configuration as the base configuration from which a reconfiguration path will be
found towards the daytime optimal configuration, but not reaching it, given the limitation
on the number of switching operations to perform.

The reconfiguration path from the base configuration (night-time) to a daytime con-
figuration is an ordered sequence of switching operations to be performed over the base
configuration. This path becomes a reconfiguration schedule when each switching op-
eration is assigned to a particular point in time. For this illustrative example, we con-
sidered only the three most beneficial switching operations at the PV peak time from all
the differences between the base configuration and the daytime optimal configuration.
Thus, the reconfiguration schedule to be found has, at most, three switching operations,
labeled 1, 2 and 3.

We then evaluated the losses profile for all eight possible subsets of these three opera-
tions (∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}) when performed over the base configuration.
Figure 3 shows these profiles on daytime period including both night-time to daytime
and daytime to night-time transition periods. The optimal network configuration at a
given time is the one with the lowest losses (excluding the PV peak optimal configuration
which is plotted on Figure 3 just as a reference). As the optimal configuration is changing
throughout the day, the reconfiguration schedule contains the switching operations, which
perform the change. The path of this daily schedule is:

Base 3−→ Base + 3 2−→ Base + 23 1−→ Base + 123 −1−→ Base + 23 −2−→ Base + 3 −3−→ Base
where the transition arrows indicate the switching operation done (positive values) or
reverted (negative values) on that transition.

3.5. Energy Losses Dependence on Reconfiguration Schedule

It is clear from Figure 3 that, among the possible configurations obtained with three
switching operations, the Base + 123 configuration remains the optimal configuration
during most of the PV generation period. That schedule could be simplified. The reconfigu-
ration could be modified to change the Base configuration onto the Base + 123 configuration
with fewer time steps (but with the same total number of switching operations—three). As
an example, with a single time step, all three switching operations could be undertaken at
the same time—the time where the Base losses profile intercepts the Base + 123 profile in
Figure 3. The search for simplified schedules would allow the problem to be formulated
in an easier way but the resulting schedules would increase energy losses—note that the
area under the corresponding profiles would be higher than the one obtained for the
optimal schedule.
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Optimal reconfiguration schedule during PV generation
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Figure 3. Losses profile for the considered network configurations. The optimal reconfiguration schedule encompasses
several of these configurations—the profile resulting from the optimal schedule of such configurations is plotted as a
solid line. The annotated points indicate the timing of each switching operation (1, 2 and 3). Negatively valued labels
(−1, −2 and −3) indicate the timing chosen to revert the operations annotated beforehand. Data obtained from DPlan—
Distribution Planning.

It is also clear from Figure 3 that, if we allow the inclusion of the PV peak optimal
configuration in a schedule instead of the Base + 123 configuration (removing the limit of
three switching operations), a reduction in energy losses would be expected. That would,
however, make the optimization problem more complex, rather than simplifying it.

Thus, the problem simplifications, either those that reduce the time-resolution of
switching, or those that reduce the number of switching decisions, contribute to deteriorate
energy losses. Table 2 shows the energy losses reduction found for the optimal schedule
presented in the previous section and for the alternative schedules mentioned in the above
discussion. The results are presented as a percentage of the energy losses obtained for the
static Base configuration.

Table 2. Energy losses reduction for each schedule compared with the static Base optimal configuration.

Reconfiguration Schedule Energy Losses Reduction [%]

Base all−→ PV peak optimal −all−−→ Base 16.33

Optimal schedule with switching operations 1,2,3 12.54

Base 2,3−→ Base + 23 1−→ Base + 123 −1−→ Base + 23 −2,−3−−−→ Base 12.52

Base 3−→ Base + 3 1,2−→ Base + 123 −1,−2−−−→ Base + 3 −3−→ Base 12.18

Base 1,2,3−−→ Base + 123 −1,−2,−3−−−−−→ Base 12.02

4. Problem Complexity and New Computation Paradigms

Table 3 summarizes the time complexity for the problems formulated in Section 2.
This complexity is stated as the number of network configuration optimizations or the
number of power-flow runs depending, respectively, on the search space of each problem,
including the network configurations space, or not. As expected, the problem with the
least restricted optimal reconfiguration, the open cyclic dynamic reconfiguration, is also the
most demanding in computational terms with O(p2m) network optimization runs. Thus,
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the complexity of this problem scales polynomially with the number of time steps p and
exponentially with the maximum number of switching operations m.

Table 3. Time complexity for the formulated problems, where p is the number of time steps, |O| is the
number of given switching operations (i.e., differences between two given network configurations)
and m is the maximum number of switching operations to be found.

Problem Time Complexity

Number of Operations Operation

Unrestricted optimal reconfiguration p optimization

Optimal static configuration 1 optimization

Time-bounded linear dynamic
reconfiguration p|O|+1 power-flow

Time-unbounded cyclic dynamic
reconfiguration p

(
1 + p(p−1)

2

)|O| power-flow

Open cyclic dynamic reconfiguration
(

1 + p(p−1)
2

)m
optimization

As an example, a time resolution on 15 min (as in the real data of the example
illustrated in Section 3) results in p = 96 time steps for the 24 h period. Considering at
most a single switching operation (m = 1), this problem already needs 4561 optimization
runs to be solved. Assuming a computation time for each network optimization of 10 s (a
typical value for a medium-sized network optimized on DPlan—Distribution Planning,
running on a 3 GHz desktop computer), the single-operation reconfiguration problem
needs 13 h to be completed. This means that the computation of the problem needs to
start 13 h ahead of the optimal time for the single switching operation using load and PV
forecast data. Although this is possible to achieve in practice, adding 13 h to the forecast
time span degrades the reliability of this forecast. Nevertheless, the single-operation
reconfiguration problem brings only a marginal energy losses reduction as Figure 3 shows
when comparing Base + 1 (the best single-operation configuration) and Base + 123 (the best
three operations configuration).

With a maximum of two switching operations, the problem would explode to 20.8 million
optimization runs, or more than 6 years of computation time, which is obviously infeasible.
In order to try to reduce time complexity, the number of time steps p may be decreased.
Table 4 shows the time complexity for some combinations of m and p. For three switching
operations, the computation time would be feasible with, at most, 6 time steps. If evenly
distributed over the 24 h, the time resolution with six time steps is 4 h. One could optimize
the locations of the six time steps by concentrating three on them on the night-time to
daytime transition period and the remaining three on the other transition period, but this
would still result in a poor time resolution, which would severely degrade the optimality
of the found schedule.

4.1. New Perspectives to Handle Problem Complexity

As illustrated previously, the exponential scaling of the problem complexity with
the number of switching operations renders the problem impossible to handle with more
than a single operation without degrading time resolution. Making the computation
parallel with multiple cores would not remove the exponential scaling of the problem since
the computation time speed-up would be, at most, linear with the number of cores, as
stated by Amdahl’s law. Thus, a new computation paradigm is needed to find an optimal
multiple-operation schedule.
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Table 4. Time complexity for the open cyclic dynamic reconfiguration problem for some combinations
of m and p.

Switching Operations Time Steps Time Complexity
m p Optimizations Computation Time

1 96 4561 13 h
1 48 1129 3 h
1 24 277 46 min
1 12 67 11 min

2 96 20.8 M 6 years
2 48 1.3 M 5 months
2 24 76,729 9 days
2 12 4489 12 h

3 12 300,763 35 days
3 6 4096 11 h

We propose the use of quantum computing to address this kind of problem [19,20].
Quantum computing has the potential to provide an exponential speed-up when compared
to classical computing [21]. This speed-up lies on the unique phenomena of quantum
superposition and quantum entanglement which enables the computation parallelization
with an exponential scaling with the quantum hardware size (i.e., the number of qubits—
quantum bits) as opposed to the linear scaling with the number of cores of classical computing.

Quantum computing is still in its infancy as we are in what is known as the NISQ era
(Noisy Intermediate-Scale Quantum) [22]. Being noisy, the nowadays quantum computers
are not as reliable as their classical counterparts, and being intermediate-scaled means
that there is a limit on the size of the problems that quantum computers are currently able
to handle. Nevertheless, quantum computers are getting larger and more reliable, and
thus more powerful. Due to this evolution, it is expected that quantum supremacy will be
reached in the future, when quantum computers will be able to solve problems which are
still unsolvable in classical computing [22].

Quantum computers can already deal with reduced versions of real reconfiguration
problems. These demonstration-sized projects can prove whether the original problem is
amenable to quantum computing and they may also provide an estimate for the scaling of
the limit of the problem size as a function of quantum hardware size and characteristics.

Quantum computing is divided in two main paradigms: quantum circuit (or gate)
model and quantum annealing. While the quantum circuit model is able to handle more
general quantum computation algorithms, quantum annealing has much more potential
for solving discrete optimization problems, such as the studied reconfiguration problem.
Thus, we will employ quantum annealing to handle this problem in our future work. As
part of that work, we will adapt the problem formulation we introduced in this paper into
a form that the quantum annealer can accept.

Quantum annealing is probabilistic in nature. A quantum annealer returns samples
from the problem search space following, approximately, a Boltzmann distribution. Thus,
the lower energy samples (i.e., lower cost solutions for the problem) are more likely than the
higher energy ones. Since we are dealing with probabilistic samples, there is no guarantee
of obtaining the global optimal solution on a given number of trials, but good enough
solutions can be obtained. The characterization of how good is the best returned solution
as a function of the number of trials (i.e., as a function of time) is crucial to make a fair
comparison with the existing classical methods. This characterization will also be part of
our future work.

The state of the art in quantum annealing is the D-Wave Advantage machine with
5000 qubits [23]. This machine is able to solve problems with up to 5000 binary variables
(with limitations in how the variables interact with each other). It also possible to use a
D-Wave hybrid solver service to handle larger problems or problems with a denser graph
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of variables interaction. This solver uses classical computation to assist quantum annealing
in order to overcome some current limitations of the latter.

5. Conclusions

In this paper, the problem of optimal dynamic reconfiguration of distribution grids
was formulated. The solution of the reconfiguration problem was illustrated on a real
network with real load data and a heavy PV generation scenario. The illustration showed
the potential benefits of optimal reconfiguration for losses reduction. It has also shown
how the complexity of the optimal reconfiguration problem scales with the number of can-
didate switching operations, rendering the problem infeasible in practical terms with just
three operations. To overcome practical infeasibility, new approaches based on quantum
annealing are discussed and proposed as realistic candidates to the effective solution of
the problem in the future. Our future work includes the reformulation of the problem for
quantum annealing and the characterization of the quantum annealer performance when
compared to existing classical methods.
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Nomenclature

conf(T I , O, inst, t)
Network configuration at time t with a linear schedule (O, inst)
starting at configuration T I

conf(T I , O, inst+, inst−, t)
Network configuration at time t with a cyclic schedule
(O, inst+, inst−) starting at configuration T I

G Network graph (N, A)
Im Electric current magnitude in operating arc m ∈ T
inst(x) Time instant of x, inst(x) ∈ TI

instk
Time instant of the k-element of O in a linear schedule,
instk = inst(Ok)

inst+k Time instant for applying the k-element of O in a cyclic schedule
inst−k Time instant for reverting the k-element of O in a cyclic schedule
inst∗ Optimal time instants for all switching operations in O
L Total network active power losses
m Maximum number of daily switching operations
M(t) Normalized PV generation profile

O Minimum set of switching operations needed to transform the initial
configuration into the final configuration

(O, inst) Linear reconfiguration schedule defined by the set of switching
operations O and their time instants inst

(O, inst+, inst−)
Cyclic reconfiguration schedule defined by the set of switching
operations O and their time instants inst+ and inst− for applying and
reverting the operations, respectively

p Number of time steps in the discretization of TI
PPV

n (t) PV generation injected on node n (a negative value) at time t
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Rm Resistance of arc m

RAn
Roof area of the buildings selected for PV generation connected to
node n

Sn(t) Net load of node n at time t
SLOAD

n (t) Consumers load of node n at time t
ST(G) Set of all possible spanning trees of G
T Set of arcs belonging to a spanning tree, T ⊆ A
T∗(t) Optimal network configuration for time t (a spanning tree)
TI Time interval considered for an optimization problem

x A network switching operation (a pair of an opening and a
closing branch)
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3. Nižetić, S.; Papadopoulos, A.; Tina, G.; Rosa-Clot, M. Hybrid energy scenarios for residential applications based on the heat pump
split air-conditioning units for operation in the Mediterranean climate conditions. Energy Build. 2017, 140, 110–120. [CrossRef]

4. Carvalho, P.M.S.; Ferreira, L.A.F.M. Large-Scale Network Optimization with Evolutionary Hybrid Algorithms: Ten Years’
Experience with the Electric Power Distribution Industry. In Computational Intelligence in Expensive Optimization Problems; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 325–343. [CrossRef]

5. Meng, X.; Zhang, L.; Cong, P.; Tang, W.; Zhang, X.; Yang, D. Dynamic reconfiguration of distribution network considering
scheduling of DG active power outputs. In Proceedings of the 2014 International Conference on Power System Technology,
Chengdu, China, 20–22 October 2014; pp. 1433–1439. [CrossRef]

6. Capitanescu, F.; Ochoa, L.F.; Margossian, H.; Hatziargyriou, N.D. Assessing the Potential of Network Reconfiguration to Improve
Distributed Generation Hosting Capacity in Active Distribution Systems. IEEE Trans. Power Syst. 2015, 30, 346–356. [CrossRef]
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