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Abstract: This paper presents control strategies to activate energy flexibility for zones with radiant
heating systems in response to changes in electricity prices. The focus is on zones with radiant floor
heating systems for which the hydronic pipes are located deep in the concrete and, therefore, there
is a significant thermal lag. A perimeter zone test-room equipped with a hydronic radiant floor
system in an environmental chamber is used as a case study. A low order thermal network model for
the perimeter zone, validated with experimental measurements, is utilized to study various control
strategies in response to changes in the electrical grid price signal, including short term (nearly
reactive) changes of the order of 10–15 min notice. An index is utilized to quantify the building
energy flexibility with the focus on peak demand reduction for specific periods of time when the
electricity prices are higher than usual. It is shown that the developed control strategies can aid
greatly in enhancing the zone energy flexibility and minimizing the cost of electricity and up to 100%
reduction in peak power demand and energy consumption is attained during the high-price and
peak-demand periods, while maintaining acceptable comfort conditions.

Keywords: energy flexibility; low order model; radiant floor heating

1. Introduction

The world-wide demand for electricity is expected to double by 2050 [1] and the
electricity demand in the building sector is projected to increase by 70% [2]. Demand re-
sponse (DR) management of buildings has a significant role in the interaction between the
supply side and demand side. Demand response involves modifying the client’s electricity
consumption through incentive-based dynamic pricing techniques [3–6]. Due to recent
global efforts on reducing greenhouse gas emissions, world-wide adoption and integration
of renewable energy sources (RES) has been increasing at an accelerated pace. For example,
the total installed capacity for PV at the end of 2019 reached 627 GW with 115 GW of PV in-
stalled in 2019 only [7] and the total global installed capacity for wind reached 651 GW with
60.4 GW installed in 2019 [8]. The trend is anticipated to go on, since several countries have
ambitious targets and are thriving to increase the RES share in energy system. The Renew-
able Energy Directive requires the European Union to satisfy minimum 32% of its total en-
ergy demands with renewables by 2030 (https://eur-lex.europa.eu/eli/dir/2018/2001/oj
(accessed on 20 January 2021)), while Germany aiming to fulfil minimum 80% of its overall
electricity demand via renewable energies by 2050 [9]. Some countries like Denmark,
plan to cover 100% of their energy demand with renewables [10]. In Quebec, commercial
and institutional buildings represent approximately 18% of the total energy consumption,
of which 37% is from natural gas and 57% from hydro-electricity [11]. In order to reduce
GHG emissions and thanks to being surrounded by about 500,000 lakes and 4500 rivers (
https://www.hydroquebec.com/about/our-energy.html (accessed on 20 January 2021)),
a shift from natural gas to hydroelectricity as the major source of energy has been observed
in recent years. Consequently, the electricity demand has been increasing significantly,
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notably during the heating period in winter and diurnal demand peaks are spotted in the
morning and evening which are putting much pressure on the electrical grid to satisfy the
peak power demand due to space heating on extreme cold days. Thus, more and more RES
including solar panels and wind turbines are being considered for integration into the grid.

However, incorporating the highly variable RES into existing grids is a significant
challenge. A consequence of electricity production by renewables on electricity prices
is that in areas with a relatively high expected output from renewables, there is a much
higher tendency to have more fluctuating prices than areas with lower renewables pene-
tration [12]. In addition to the centralized plants, RES are also expanding in a distributed
manner, as well as distributed storage systems (such as thermal storage systems, battery
storage, etc.). The flexibility to cope with the discrepancy between consumption and
generation can come from either the supply side (through the use of conventional power
plants or storage) [13–16] or from the demand side [17–20]. The energy flexible buildings
(EFB) concept was introduced by IEA EBC Annex 67 [18]. The building energy flexibility as
defined by annex 67 is “the ability to manage building demand and generation according
to local climate conditions, user needs, and energy network requirements” [21]. Charac-
terizing buildings energy flexibility is challenging since it involves various aspects, and it
is strongly dependent on the boundary conditions and assessment methods [19]. Hence,
energy flexibility quantification in buildings is one of the high-interest topics in current
research [22–26].

Model predictive control is one of the key approaches in activating the energy flexibil-
ity that can be offered by the building especially when considering the storage in building
elements and thermal lag to meet smart grid needs. MPC utilizes a mathematical model of
the building to predict its future behavior. Considering these predictions, MPC determines
the optimal control actions based on a defined objective while considering thermal com-
fort and other considered constraints, and weather forecasts in a systematic and flexible
way. Although there is an abundance of research work and pilot projects for MPC [27–30],
the transfer of this technology to the building market is still in its early stages. One chal-
lenge in the building sector is that MPC is still relatively new and the sector generally
considers satisfactory comfort conditions in buildings a priority [31]. Moreover, models are
backbone of MPC and uniqueness of every building that requires customized modeling
which is another major challenge that increases the engineering time and cost when apply-
ing model-based control strategies [32]. Therefore, there is a preference towards simple
and low-order models when developing models for MPC. Low-order control-oriented
models have several advantages compared to detailed models [33]. They are faster to create
with limited available information about the building [34]. They are easier to calibrate
and model parameters can be adjusted in real-time. The model resolution can be chosen
depending on the objectives, control variables, etc. A methodology to develop a low-order
control-oriented model for zones with radiant floor heating system is presented in the
following sections.

Radiant floor heating systems have been receiving considerable attention due to
the multiple advantages they offer such as improved thermal comfort in buildings and
suitability for other related applications in cold climates. Hydronic radiant heating can
utilize low temperature renewable energy heat sources including geothermal or solar-
source heat pumps (water temperature as low as 35 ◦C) and provide significant flexibility
to smart grids by storing energy and shifting heating demand [26]. In both cases heat
pumps operate with electricity. The operation of these systems can be optimized by
applying predictive control and further the energy costs can be reduced by optimizing their
interaction with smart grids by utilizing the flexibility in their demand profiles. Due to the
large thermal mass of the concrete floor, there is time lag between the heat supply of the
radiant floor and the indoor temperature response, which could be up to several hours,
depending on the pipe depth and thermal capacitance of the concrete floor. This inherent
delay makes radiant floor heating system a suitable candidate for MPC. The focus of this
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paper is on zones equipped with high mass radiant systems (pipes buried deep in concrete)
and such case study is used which is introduced in the following sections.

Research Gap and Contribution

There have been several recent studies on different flexibility services that build-
ings can provide such as reducing peak loads and shifting peak demand through utiliza-
tion of thermal mass [35–38], storage in batteries [39], charging of electric vehicles [40],
and scheduling of the HVAC system utilization [21]. However, the current building energy
flexibility literature is limited to few studies on control strategies that considers the electric-
ity price prediction of the following days [41,42] and specifically, there is a limited number
of such studies for buildings equipped with radiant floor heating systems. Additionally,
no previous study was found on the short-notice changes in price signal and the strate-
gies to deal with such situations in buildings. This is an important scenario that occurs
when power grid faces unexpected load balances and buildings as the largest electricity
consumers play a significant role in those situations. Hence, utilities such as Hydro-Quebec
are looking for solutions and strategies to deal with such critical situations. This article is
contributing towards increasing knowledge and presenting energy flexibility strategies for
buildings with radiant floor heating systems.

2. Building Energy Flexibility Index (BEFI)

A quantitative assessment of the energy flexibility provided by structural thermal
energy storage is essential to large scale deployment of thermal mass as in an active
demand response (ADR) context. The available storage capacity expresses the amount of
energy that can be added to the structure’s thermal energy storage (STES) during a specific
event. Therefore, the heat that can be stored within a dwelling not only depends upon the
thermal properties of the building fabric, but also on the properties and actual use of the
heating and ventilation systems [43]. Four performance indicators or characteristics for
ADR are defined and quantification methods for the ADR potential of structural thermal
storage are presented by Reynders et al. [22] that are mainly focused on the energy that
is reduced/increased over a certain period. Here, an index is applied which is explicitly
based on power (Watts) reduction/increase.

A building energy flexibility index (BEFI) is defined by Athienitis et al. [44] as the average
amount of power (kW) that can be increased or decreased relative to a reference power profile
(Qref, the “as-usual operation”) by the building during a certain period of time (Dt):

BEFI(Dt) =

∫ t+Dt
t Qrefdt−

∫ t+Dt
t Qflexdt

Dt
(1)

The schematic below in Figure 1 illustrates the BEFI concept. The grey area during the
period Dt is the numerator of Equation (1) and shows the difference between the flexible
and the reference heating loads.

The BEFI could be predicted continuously with a certain accuracy/uncertainty de-
pending on the configuration and duration length. Generally, the shorter the duration,
the less the uncertainty is expected. Another factor to consider is the time of activa-
tion. For some grid needs, activation time must be within seconds and must be totally
autonomous. For others, it can be different and may rely on communication protocols,
but once the signal is received by the building, BAS response must be automated. Then,
for some others, the need may be planned half a day in advance and the building can be
designed and operated to maximize its flexibility during the period of need with potential
significant financial benefits in terms of reduced operational costs. In this paper, the BEFI
is calculated with dynamic tariffs and a floor heating system.
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Figure 1. Schematic illustration of Building Energy Flexibility Index (BEFI).

3. Modeling of Thermal Zones with Radiant Floor Systems

The modeling approach used for this study is based on the low-order lumped-
parameter thermal network models which have been shown to be practical for control
studies and especially model predictive control [33,45]. This approach is generally valid
when Biot number is less than 0.1. In this approach the thermal mass under consideration
(radiant floor concrete slab) is discretized into a number of control volumes. Each of the
discretized control volumes is represented by a node and considered to be isothermal.
Each of the nodes, has a lumped thermal capacitance connected to it and thermal conduc-
tances connecting it to adjacent nodes. Considering the time interval p and time step ∆t,
the general form of the explicit finite-difference model for the nodes with a lumped thermal
capacitance can be stated as

Ti,p+1 = Ti,p +
∆t
Ci

(
Qi + ∑

j

Tj,p − Ti,p

Ri,j

)
(2)

where Ti,p represents the temperature of node “i” at time step “p”, Tj,p represents tem-
perature of node “j” at time step “p”, Ci is the thermal capacitance of node “i”, Ri,j is the
thermal resistance between nodes i and j and Qi is the heat source at node i.

A model with fewer parameters facilitates setting up the initial conditions which is a
key parameter for control studies [33]. When the details of the construction are not known,
a low order grey box modelling approach is practical and can be developed and calibrated
by means of real time data from the building. The models must be accurate enough
to provide reliable information but also flexible enough for quick and computationally
efficient decision-making [46,47], especially in reaction to electric grid’s short notices on
the change of the price signals.

An important part of a model for zones with radiant floor heating system is the
radiative and convective heat transfer which are naturally nonlinear processes. However,
the respective heat transfer coefficients are typically linearized so that the system energy
balance equations can be solved with linear algebra techniques and represented with a
linear thermal network. In the case of radiant floor heating, this linearization generally
introduces less error for the for long-wave radiation heat transfer (hr) than the convection
heat exchange between the radiant floor surface and room air (hcf) [48]. For example, in the
case of radiant floor heating where usually the floor is hotter than the air and the heat flow
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is upward hcf is in the order of 3 W/(m2K) while for a cold floor and warmer air it is in the
order of 1 W/(m2K). For heat flow upwards, hcf can be calculated as [49]:

hc f (t) = 1.52(Tf loor(t)− Tair(t))
1/3 (3)

where Tfloor is the floor surface temperature and Tair is the zone air temperature.
Therefore, usually certain amount of calibration for the convection heat exchange

between the radiant floor and room air is required for a model especially when considering
the low order models.

It is demonstrated in the following section, that a well calibrated second-order model,
for which the thermal network is shown in Figure 2, can accurately capture the most
important thermal dynamics of a zone with a radiant floor heating system. Figure 2 also
shows the boundary conditions for the model. Tg is the ground temperature, hc and hr
are the convective and radiative heat transfer coefficients, respectively, and Rinf is the
infiltration thermal resistance.
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In the above thermal network for the case study (Perimeter Zone Test Cell (PZTC)),
the hydronic pipes are located at the bottom of the slab and there is a large thermal mass
above the pipes that causes significant thermal lag. There can be cases where pipes are
placed in the middle of the slab in which case the thermal dynamics will be different. There
can also be a case where the location of the pipes is not exactly known, and data from the
building automation system can be utilized to calibrate the model.

4. Case Study: Perimeter Zone Test Cell (PZTC)

The Solar Simulator-Environmental Chamber (SSEC) laboratory is an experimental
facility located at Concordia University in downtown Montreal, Canada. This facility
allows accurate and repeatable testing of solar systems and advanced building envelopes
under standard test conditions with simulated solar radiation and indoor plus outdoor
conditions. The temperature test range of the environmental chamber is −40 ◦C to +50 ◦C.
Two solar simulators (large-scale and mobile) are designed to emulate solar radiation to
test solar systems such as PV and PV/T modules, solar air collectors, solar water collectors
and building-integrated solar systems.

The perimeter zone test cell (PZTC) (case study) is a 3 m × 3 m × 3 m room placed
inside the solar simulator/environmental chamber laboratory and it contains a radiant
floor heating/cooling system. The side and back walls and ceiling consists of 10 cm of
insulation with thermal resistance of 5.64 m2K/W. The front wall is a photovoltaic/thermal
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solar test façade with 0.88 m2K/W thermal resistance which was not in operation during
the experiment. The floor is made of an approximately 8 cm thick concrete slab, with the
piping at the bottom of the concrete and insulation of 7.4 m2K/W under the slab. Thermal
properties of the concrete are shown in Table 1.

Table 1. Thermal properties of concrete.

Properties

Thermal conductivity 1.7 W/(m.K)
Specific heat 800 J/(kg.K)

Density 2010 kg/m3

The pipes of the radiant floor system are made of conventional cross-linked polyethy-
lene (PEX) and have an external diameter of 1.75 cm. The pipes are installed in a foam
matrix of insulating material that also facilitates keeping them in place. The pipes are
spaced at 15 cm. Figure 3 shows the piping configuration of the radiant floor before the
concrete was poured (left), during pouring of concrete and final look of the radiant floor
slab (right).
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A mechanical room provides controlled flow rate of the fluid (propylene-glycol and
water mixture) for the radiant floor. The schematic of the environmental chamber and
PZTC is shown in Figure 4.
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A second-order model, for which the thermal network was shown in Figure 2, was de-
veloped for the PZTC (Bi ≈ 0.065 < 0.1). The floor convective heat transfer can vary
significantly depending on the temperature difference between the floor surface tem-
perature and the air in the zone. Therefore, an objective function is defined to find the
effective values of hcf so that the floor surface temperature calculated from the simulations
(Tfloor, simulated) matches with experiment (Tfloor, measured) as accurately as possible. Therefore,
the objective function is defined as

MinJ = ‖Tf loor,simulated − Tf loor,measured‖ (4)

Optimization was done in MATLAB using fmincon function which uses the simplex
algorithm. The optimization result is shown in Figure 5. As observed, a well calibrated
second-order model, for which the thermal network shown in Figure 2, can capture thermal
dynamics of a zone that contains radiant floor heating system with a good accuracy and
the maximum error between the model and the measurements is about 0.45 ◦C. However,
for the majority of the time the model error is less than 0.1 ◦C.
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This validated model is used in the following sections to study optimal control strate-
gies while dealing with different price signals from the grid. The strategies to deal with the
various penalty signals presented in the following sections of this paper are divided into
two main categories which are: 1. Predictive strategies with short notice in the order of
10 to 15 mins; 2. Predictive strategies with a prediction horizon of about 1–2 days.

It should be noted that in Quebec two peak demand periods are observed in a day
during the heating season which are typically in the morning from 6 to 9 a.m. and in the
evening from 4 to 8 p.m. Therefore, the price of the electricity can be different and higher
during these periods compared to other times of the day as part of a potential dynamic
tariff structure intended to motivate reduced demand for electricity during these periods.
The price signals that are assumed and utilized in the following sections are created based
on those typical peak demand periods in Quebec.

5. Control Strategies with a Short Notice

In this section thermal response of the radiant floor in reaction to a sudden change
in the grid price signal is presented. The control of the radiant floor heating is based on
the floor surface temperature since it provides a much smoother heating load profile due
to the thermal mass of the floor compared to controlling the zone air temperature which



Energies 2021, 14, 1195 8 of 19

has a very low thermal capacity and hence it causes lots of fluctuations in the heating load.
The heating is controlled through proportional control as

Qaux(t) = Kp(Tsp(t)− Tf loor(t)) (5)

where Tsp = floor surface temperature setpoint, Tfloor = floor surface temperature, and Kp is
the proportional constant equal to 900 W/◦C. The maximum heating output is limited to
the size of the system which is 2.7 kW.

The ambient temperature profile considered is shown in Figure 6. The ambient
temperature changes between −7 ◦C and −18 ◦C with the mean value of about −12 ◦C—a
relatively cold day in Quebec when high demand for electric space heating is expected.
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Figure 6. Ambient temperature profile.

Figure 7 shows the heating load, floor surface temperature and zone air temperature
for maintaining a constant floor surface temperature of 24 ◦C which is considered the
reference surface temperature here. The results shown in Figure 5 is for a day when the
electricity price remains constant for the whole day at the reference value which is assumed
to be $10 per kW for power.

As can be observed from Figure 7, when the floor surface temperature is kept around
24 ◦C, the zone air temperature stays between 18 ◦C and 20 ◦C which is within the typical
indoor air temperature comfort range (18–24 ◦C) for occupants [50] and the operative
temperature also stays within the same range.

Figure 8 shows the short-notice predictive (almost reactive) behavior to sudden in-
crease, from 10 $/kW to 20 $/kW, in the price signal for a period of 3.5 h (hours between
30 and 33.5) which is the typical morning peak demand period in Quebec (6–9 a.m.). It is
assumed that the price of energy (kWh) is constant and only the power (kW) price is
changing. The simplest strategy to deal with this sudden increase in the price signal is
to turn off the heating system. It can be observed that due to shutdown of the heating
system during that the period, the floor surface temperature (red line) falls to 22.2 ◦C
and air temperature (purple line) to 18 ◦C. Considering the typical comfort boundaries of
18–24 ◦C for the zone air temperature, the air temperature is at the lower threshold of the
comfort boundary. It can be calculated that the BEFI would be roughly about 400 W for
3.5 h. The floor surface temperature is also shown for the case with non-linear convective
heat transfer coefficient between floor surface and air temperature (hcf). As observed, there
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is no significant difference between the two curves, thus confirming that assuming a linear
convective coefficient is an acceptable approximation.
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Figure 7. Reference conditions and power price for floor surface temperature setpoint of 24 ◦C.
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Figure 8. Reactive response to sudden increase in the price signal.

Figure 9 shows another increase in the price signal during the evening on the same
day. This second increase is during the evening peak demand hours (4–8 p.m.) in Quebec
during winter. As observed, since the second increase event happens when the zone air
temperature was higher compared to the first event and generally the system was at a
higher state of charge, the air temperature drops to 18.5 ◦C at lowest and the building can
offer the average BEFI of 400 W for 4 h during this period. The operative temperature stays
between 19.5 ◦C and 21 ◦C.
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Figure 9. Reactive responses to sudden increase in the price signal.

The intermittent nature of renewable energy sources increases the necessity for backup
power to deal with the unexpected swings in power production. Therefore, change in the
price signal can be more frequent and the price signal from the grid can vary every hour
during the day depending on the availability of electricity from renewable energy sources,
weather conditions, emergency events, etc. For example, the dynamic price signal for the
following 48 h may look like the profile shown in Figure 10. As can be observed from
Figure 10, the price signal is changing frequently during the day and if we consider the
$10 per kW as the normal, reference operating price signal, there are some periods with
price signals higher, as well as lower than the reference.
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It should be noted that a short notice (10–15 min or shorter) of a price change from the
grid can also be received. The following control strategy is presented for these situations.
First let us categorize the upcoming hour price signal into two categories:

1. Price signal lower than the normal reference operating price signal that is: P(t) < Preference
In this case since the price signal is lower than reference then we can just keep the
heating control as usual and operating in the reference case (Qaux,ref) for which the
details were explained in equation (5). Therefore, the heating during the low-price
period, Qaux,low-price, is inserted as

Qaux,low−price(t) = Qaux,re f (t) = Kp(Tsp(t)− Tf loor(t)) (6)

2. Price signals higher than the normal reference operating price signal: P(t) > Preference In
this case the strategy will be to keep the floor surface temperature at 24 ◦C; however,
the heating load will be a fraction of the reference heating and this fraction gets
smaller as the price increases. Therefore, the strategy is defined as

Qaux,high−price(t) =
(

Pre f erence/P(t)
)
× Kp(Tsp(t)− Tf loor(t)) (7)

where Preference is the reference price and P(t) is the price at time t. Figure 11 shows
the application of this strategy to the thermal zone:
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Figure 11. Application of the nearly reactive strategy to deal with the changing price signal.

As can be observed, during the high price signal periods, whenever necessary, the heat-
ing load was turned on as a fraction of the reference heating load to keep the floor surface
temperature near the setpoint hence reducing the amount of heating power and reducing
the cost.

Figure 12 shows the comparison between the reference heating load and the flexible
heating load from the strategy above. It can be observed how the above strategy decreases
the heating load during the high price periods. As mentioned earlier, BEFI is the amount
of power (W) that the building can reduce (or increase) during certain periods of time.
Therefore, BEFI during high price signal is the difference between the two curves which is
shown by the area covered with the grey arrows.
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Figure 12. BEFI during high price signal periods.

6. Predictive control strategies with longer prediction horizons

When the prediction of the upcoming days for weather as well the grid price signals
are available, the system can be operated in order to minimize the power and/or energy
consumption during the high price signal period. In this section the predictive strategies
for the price signals given in the previous sections are presented.

Here, the aim is to find a setpoint for the floor surface temperature proportional
controller so that the surface temperature stays within the comfort range with 29 ◦C as
maximum based on the ASHRAE standard [50]. The objective function is defined as

minimize J = ∑ Psig×Qaux → so that : 23 ◦C ≤ Tf loor ≤ 29 ◦C (8)

where Psig is the value of the price signal at every time step. Considering the above range
for the floor surface temperature, the operative temperature (Top) stays between 19 ◦C
and 25 ◦C. Optimization was done in MATLAB using fmincon function which uses the
simplex algorithm.

Figure 13 shows the results for the first price signal. As observed, the optimized
floor surface temperature setpoint modulates the heating load of the floor in a way to
keep the floor surface temperature very close to the minimum of 23 ◦C during the periods
with reference price signal but as we get closer to the high price signal period, it starts
preheating the floor slab by increasing the setpoint as high as 26 ◦C. Therefore, as observed,
the heating load is zero during the high price period. The cost for whole period is $18.60.
Now if no optimization was performed and the reference strategy (Figure 7) was used
without considering the change in the price, then the total cost would be $20.70. Therefore,
a decrease of more than 10% in the cost is observed.

Next, if another price signal was in the forecast in which two periods of high price are
expected during the next 48 h, then a new setpoint found from the optimization is applied
as shown in Figure 14.
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Figure 14. Predictive strategy for price signal #2.

As can be observed from both Figures 13 and 14, the setpoint performs in such a way
that the zone is heated up until just before the high price periods and then the setpoint is
relatively low during that period so that due the thermal mass of the radiant floor concrete
slab, the surface temperature does not drop below that setpoint and therefore, no heating
is needed. The cost for the whole period is about $19, and compared to using reference
strategy (cost = $22), a decrease of 13.63% in the cost is observed.

There can be more complicated price signals in the forecast as well. Figure 15 shows
the predictive strategy for the price signal that was introduced in the previous section
which changes almost every hour. Here, this price signal is known the day before from
the forecast.
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Figure 15. Predictive strategy for price signal #3.

As can be observed from Figure 15, the building is heated up during the low-price
period (until around 6 a.m.) and the setpoint is increased to the maximum upper threshold
for floor surface temperature which is 29 ◦C. Then, after 6 a.m., there is no heating during
the peak demand period (6–9 a.m.) and the warm slab thermal mass lets the heating be
turned off until hour 13. Then, the setpoint is again increased to 29 ◦C to preheat the
building and in order to minimize the heating during the afternoon peak demand hours
(4–8 p.m.). A similar trend is observed during the next day as well. The total cost with the
optimized setpoint is $18.80 compared to $24.12 with the reference strategy, resulting in a
decrease of 22% in cost.

Emergency and Non-Predicted Change in the Price Signal

Contingency or operating reserve is the amount of power that utility may call when
needed to face the loss of a generation unit or other unexpected load balance [51]. This re-
serve needs to be available typically within a ten-minute notification time, for a duration of
one hour. Therefore, the building automation system or smart thermostat should be able to
quantify the amount of power that it can decrease from its current consumption profile for
the following hour.

Figures 11–13 demonstrate the strategy when prediction of the weather as well as the
price signal is available. Figure 16 shows the BEFI during a contingency/emergency event
when the original predictive strategy before this event was based on the price signal #2
(Figure 14).

As observed, there is a sudden unexpected increase in the price signal between hours
33.5 and 35.5 (9:30–11:30 a.m.), and therefore the heating was turned off immediately.
As shown in Figure 16 turning off the heating during that period has little impact on the
floor surface and air temperatures. The BEFI which is the amount of power that is reduced
compared to the reference case (Figure 14) and is calculated on average as, BEFI = 270 W.
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The timing of the unexpected change in the price signal is also particularly important.
For example, if the unexpected change happens in a different hour that is closer to the
period with a high price, then it could be more challenging to deal with this sudden change.
As shown in Figure 17, if the sudden increase in price signal happens between hours
38.5 and 39.5, then the controller which is acting based on the predictions would not have
enough time to follow back the optimized setpoint profile and as the result, some heating
is observed during the predicted high price signal period as shown in Figure 17 with
black dashed circles. However, as can be observed from Figure 17, since the floor surface
temperature is already above the lower threshold of 23 ◦C, there is no need for heating.
Therefore, in this case the setpoint temperature can be modified for the period between
40 and 44 h and put at the lower threshold of 23 ◦C. This modification will enable zero
power consumption during that period as shown in Figure 18.
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7. Dynamic Pricing of Energy

There are certain situations in which the dynamic pricing is explicitly mentioned for
energy consumption (kWh) instead of power (kW). In this case the optimization must
be done for energy and the cost for energy (kWh) is minimized instead of power (kW).
The unit of the price signal will be cents per kWh (¢/kWh). Figure 19 shows the results.
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As observed from Figure 19, the heating works in a similar way to when it was used
to minimize the power consumption. The moving mean of the setpoint profile obtained
from the optimization is used since the optimized setpoint contains lots of spikes in the
temperature which consequently causes spikes in the heating loads and much on/off
cycling which is not practical. Therefore, as can be observed, when minimizing the cost of
power, the cost of energy is also minimized.
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8. Conclusions

The major contributions of this article can be listed as 1. a methodology to develop low-
order models for zones with high-mass radiant floor heating systems; 2. a method for short
notice predictive control in response to change in the grid price signal for zones with hy-
dronic floor heating systems; and 3. a method for day-ahead predictive control in response
to the change in the grid price signal for the zones with hydronic floor heating systems.

Optimal Control strategies in response to different price signals from the electricity
grid with short and long-term predictions were presented to enhance the energy flexibility
for a thermal zone equipped with a hydronic floor heating system and significant amount
of thermal mass. The flexibility achieved through the floor thermal mass is particularly
valuable in interaction with the smart grid to reduce the peak power demand significantly
during the critical periods. A methodology to create low order thermal network models
was presented and utilized to develop the thermal model of the zone. The model was
validated with experimental measurements and subsequently used to study the control
strategies. In general, in a building without much knowledge about the details of the
construction and zones, a grey-box model similar to the presented second order model
can be calibrated in real time by the building automation system to optimize the building
performance. Therefore, this modeling methodology can be applied in any location to any
zone equipped with a radiant floor heating system.

A method was presented to deal with a short notice price signal that changes every
hour during the day and for which the prices can be either higher or lower than the refer-
ence operating condition. It was observed that this method can reduce the cost of power
consumption while still ensuring the occupant comfort is not violated. Then, an optimiza-
tion methodology was introduced to minimize the cost function defined based on the
predicted price signal for the following days. The optimized floor surface temperature
setpoint was found for different price signals to minimize the cost of the heating power
(kW) as well as the energy (kWh). It was shown that the strategy can be modified if the
price signal prediction would not be as expected and sudden increase in the price happens
especially during the critical periods. The full implementation of the developed MPC
strategies to a real building will be the next step in the research.
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Abbreviations

Ai Area of surface represented by node i (m2)
BEFI Building energy flexibility index
Ci Thermal capacitance of node i(J/K)
k Thermal conductivity of materials (W/(m.k))
Kp Proportional control constant (W/◦C)
li Thickness of surface i (m)
Psig Price signal
Preference Reference price signal
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Qaux Auxiliary heating source (W)
Qi Source entering node i (W)
Qmax Maximum heating capacity (system size)
Qref Reference heating power profile (W)
Ri,j Thermal resistance between nodes i and j (m2K/W)
Rinf Infiltration thermal resistance (m2W/K)
RW Thermal resistance of walls (m2W/K)
Ti Temperature of node i (◦C)
Tsp Air setpoint temperature (◦C)
To Outdoor temperature (◦C)
Tfloor Floor surface temperature (◦C)
t Time
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