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Abstract: Demand Response (DR) provides an opportunity for customers to reduce their loads during
times of high prices and therefore to shave the peak loads. The power outputs of large-scale generator
units can be predicted and controlled easily; therefore, the pricing and reliability of conventional
power utilities can be assessed straightforwardly. However, the customer loads are very variable and
difficult to predict and control; therefore, the integration of DR might cause uncertainty issues on
pricing and reliability and is essential to be further investigated. A novel uncertainty model for load
reduction is proposed in this paper. The probability intensities of load reduction are first estimated
from the measured load reduction variations. A multi-state probability model is then proposed
for load reduction and the Markov process is used to calculate the state probabilities. A stochastic
analysis scheme using Monte Carlo simulation for pricing and reliability taking the DR uncertainty
into account is then investigated. Several cases are designed to compare the effects of DR uncertainty.
Simulation results show that the proposed uncertainty model can be integrated into conventional
economic dispatch to precisely evaluate the DR uncertainty on system operation and reliability.

Keywords: demand response; probability intensity; multi-state probability model; Markov process;
Monte Carlo simulation

1. Introduction

In conventional power systems, customer loads can respond to predetermined elec-
tricity prices and then adjust their load profiles to obtain economic benefits. The procedure
was treated as a Demand Side Management (DSM). Due to deregulation and energy effi-
ciency, power utilities confronted many new challenges such as suppressing the peak load,
increasing the off-peak load, reaching the regional power balance, improving the safety and
reliability of power system operation, etc. Demand Response (DR) provides an opportunity
for customers to reduce their loads, coupled with electricity, heat, and other energy, during
time slots of high prices and therefore to shave the peak loads. With DR, customers can
dynamically adjust their power consumption in response to real-time electricity prices and
transfer the power consumption into other time periods. The benefits of DR at least include
reducing the peak load, decreasing the number and costs of start-up/shut-down of thermal
power plants, enhancing the usage of unstable renewable energy, defer the investments of
new power plants and transmission lines, improving the reliability and security of system
operation and so on. Many papers have been published to investigate the definitions,
classifications, architectures, advantages, benefits, costs, etc. of different DR programs. For
example, ref. [1] investigated the reliability of DR resources. The potential advantages of
DR were also discussed. Ref. [2] represented the achievements and deployments of DR
and advanced metering in the United States. The definition and classification of DR and
the overview of DR in the electricity market were presented in [3]. Ref. [4] reviewed and
analyzed the trend of DR from six different topics and the characterization of the future
DR was obtained. A new performance-based method for characterizing and assessing the
resilience of multi-functional DR with the integrated energy system was proposed in [5].
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Energy management and planning in smart cities integrating DR was proposed in [6]. Base
on analysis and collection of DR and load scheduling, the possible realization form of load
scheduling in the future was designed in [7]. Taking the traditional DR in a power system
as a starting point, the fundamental theory, framework design, and potential estimation of
integrated DR in power systems were introduced in [8]. The current theoretical research
and application of integrated DR were also assessed. Ref. [9] explored the main industry
drivers of smart grid and DR and discussed different DR programs. A comprehensive
review of several DR techniques with specific focuses on pricing signals, optimization,
appliance scheduling was compared in [10]. The various applications of DR were explored
in [11]. The implementation and the potential opportunities for DR through environmental
protection were also investigated. The benefits and challenges to each market entity using
DR-as-a-service were represented in [12]. A case study was performed using the proposed
DR model and the results showed that DR curtailment were the most influencing factors
that impact the benefit of using DR-as-a-service. Ref. [13] presented a probabilistic model-
ing approach to minimize network’s overhead lines aging and maximize its reliability at
uncertainties by utilizing DR. Ref. [14] proposed the mathematical models and solution
schemes for different DR programs. The benefits of DR were also investigated. DR can be
divided into incentive-based and price-based categories [1–14]. Demand-side bidding is
one of the main schemes of an incentive-based category that individual customers, includ-
ing residential, commercial, and industrial users, can be aggregated to reduce their power
consumption during a settled economic transaction and share the benefits. The price-based
category includes the schemes of real-time price, critical-peak price, time-of-use price, etc.
that customers reduce their power consumption with respect to the formally predetermined
price variations. Hybrid DR are composed of incentive-based and price-based categories.

Some research focused on the technologies and challenges of integrating DR into
commercial and industrial customers [15,16]. The integration of renewable generation
resources, providing more flexibility for DR, were studied in [17,18]. An economic model
of DR interacting with renewable resources in markets was proposed in [17]. A dynamic
market mechanism that reaches the market equilibrium through continuous negotiations
between key market players and renewables was represented in [18]. DR can achieve many
advantages and make energy usage more effective and efficient; however, a higher level
of uncertainty in customer load behaviors should be investigated. The characteristics of
renewable generation resources are quite different from conventional generation units, they
also cause more uncertainty in DR; therefore, it is vital to study the pricing and reliability
of DR integrating with renewable generation resources. Only a few works paid attention
to DR with uncertainty [19–24]. Ref. [19] discussed the stochastic unit commitment with
uncertain DR. A stochastic DR representation was studied by scenarios and each scenario
corresponded to a price-elastic demand curve. The loss of load probability was then
calculated and compared. Ref. [20] proposed a computational framework to take the
clearing process uncertainties in the day-ahead electricity market with DR providers into
account. An economic dispatch based on the scenario approach was also represented. The
worst-case conditional value-at-risk theory with minimizing the worst-case cost caused by
a disaster for a community energy system considering DR uncertainty was proposed in [21].
Different risk preferences of natural hazards were also studied. Ref. [21] focused on the
community energy system and did not specifically investigate the uncertainty of renewable
energy resources in DR. A stochastic hybrid system model to capture DR continuous
dynamics and discrete events that arise from failures and repairs was proposed in [22]. The
DR probability that can support a certain amount of power during a time period can be
estimated by a probability-capacity-duration contour; however, the reliability assessment
of DR uncertainty did not study. Refs. [20–22] did not fully investigate the DR uncertainty
in system operation and reliability especially for the DR with renewable energy resources.
Refs. [23,24] studied the uncertainty effects of DR in distribution systems.

The power outputs of large-scale generator units can be predicted and controlled
easily; therefore, the pricing and reliability of conventional power utility can be assessed
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straightforwardly. Many probabilistic evaluation techniques considering failure and repair
probabilities can be used to calculate the probability distribution of generation and then be
utilized to evaluate system reliability [25,26]. The customer loads are very variable and
difficult to predict and control especially the integration of renewable generation resources;
therefore, the utilization of DR might cause higher uncertainty on pricing and reliability
and is essential to be further investigated. A novel uncertainty model for load reduction is
proposed in this paper. The probability intensities of load reduction are first estimated from
the measured load reduction variations. A multi-state probability model is then proposed
for load reduction and the Markov process is used to calculate the state probabilities. Monte
Carlo simulation is used to investigate the DR uncertainty on pricing and reliability. Several
cases are designed to demonstrate the validity of the proposed method. The integration of
DR can effectively improve the system’s reliability. However, if the DR uncertainty cannot
be effectively considered, the results may be too optimistic and may cause reliability issues
and additional interruption costs. The proposed method can effectively integrate the DR
uncertainty into account and accurately evaluate the system’s reliability.

2. Basic Concepts and Mathematical Models of DR

The cost of supplying system load without DR is the solution of economic dispatch
based on the marginal costs of generator units. The cost function of generator unit i is
usually assumed to be a quadratic polynomial and can be expressed as [14]

GCi(Pi
G) =

1
2

ai(Pi
G)

2
+ biP

i
G + ci, (1)

where GCi(•) is the cost function of generator unit i. Pi
G is the power output of generator

unit i. ai, bi and ci are coefficients of the quadratic polynomial.
The minimum cost for economic dispatch without DR can be obtained by solving the

following problem.

TCG(PG) = min
NG
∑

i=1
GCi(Pi

G)

s.t.
NG
∑

i=1
Pi

G − Ploss − PSL = 0

Pi,min
G ≤ Pi

G ≤ Pi,max
G i = 1 · · ·NG

, (2)

where TCG(•) is the total economic dispatch cost without DR. NG is the number of inter-
connected generator units. PSL and Ploss are the system load and loss, respectively. Pi,min

G
and Pi,max

G are the allowable minimum and maximum power output of generator unit i,
respectively. If necessary, the line flow and bus voltage constraints can be integrated into
(2) and be treated as a security-constrained economic dispatch.

The cost function of load reduction is more difficult to be assessed; however, it can also
be considered as a quadratic function for simplification [14]. Therefore, the cost function
for load reduction at bus i can be written as

DCi(Pi
D) =

1
2

di(Pi
D)

2
+ eiP

i
D + fi, (3)

where DCi(•) is the cost function for load reduction at bus i. Pi
D is the load reduction at

bus i. di, ei, and fi are coefficients of the quadratic polynomial.
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For incentive-based DR such as demand-side bidding, the minimum cost for serving
system load with DR can be obtained by solving the following problem.

TCIB
DR(PG, PD) = min

(
NG
∑

i=1
GCi(Pi

G) +
ND
∑

i=1
DCi(Pi

D)

)
s.t.

NG
∑

i=1
Pi

G −
ND
∑

i=1
Pi

D − Ploss − PSL = 0

Pi,min
G ≤ Pi

G ≤ Pi,max
G i = 1 · · ·NG

Pi,min
D ≤ Pi

D ≤ Pi,max
D i = 1 · · ·ND

, (4)

where TCIB
DR(•, •) is the total economic dispatch cost with incentive-based DR. ND is

the number of DRs. Pi,min
D and Pi,max

D are the allowable minimum and maximum load
reductions at bus i, respectively.

The marginal costs for generation unit and load reduction can be calculated by

λi
G =

∂(GCi(Pi
G))

∂Pi
G

= aiP
i
G + bi

λi
D =

∂(DCi(Pi
D))

∂Pi
D

= diP
i
D + ei

, (5)

where λi
G and λi

D are the marginal costs for generation unit i and load reduction at bus i,
respectively.

The solution of system marginal cost, power output of generator unit i and load
reduction at bus i for demand-side bidding without taking the system loss into account can
be calculated by

λS =

NG
∑

i=1

bi
ai
+

ND
∑

i=1

ei
di
+PSL

NG
∑

i=1

1
ai
+

ND
∑

i=1

1
di

Pi
G = λS−bi

ai
i = 1 · · ·NG

Pi
D = λS−ei

di
i = 1 · · ·ND

, (6)

where λS is the system marginal cost.
For the price-based DR, the price for load reduction should be determined by Inde-

pendent System Operator (ISO) first, the objective can be expressed as

TCPB
DR(PG, PRopt

DR) = min

(
NG
∑

i=1
GCi(Pi

G) +
ND
∑

i=1
PRopt

DR ∗ Pi
D

)
s.t.

NG
∑

i=1
Pi

G −
ND
∑

i=1
Pi

D − Ploss − PSL = 0

Pi,min
G ≤ Pi

G ≤ Pi,max
G i = 1 · · ·NG

Pi,min
D ≤ Pi

D ≤ Pi,max
D i = 1 · · ·ND

, (7)

where TCPB
DR(•, •) is the total economic dispatch cost with priced-based DR. PRopt

DR is the
optimal price for price-based DR determined by ISO.
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The solution of the optimal price for price-based DR, system marginal cost, power
output of generator unit i and load reduction at bus i without taking the system loss into
account can be calculated by

PRopt
DR =

λS(
ND
∑

i=1

1
di
)+

ND
∑

i=1

ei
di

ND
∑

i=1

1
di

λS =

NG
∑

i=1

bi
ai
+ 1

2

ND
∑

i=1

ei
di
+PSL

NG
∑

i=1

1
ai
+ 1

2

ND
∑

i=1

1
di

Pi
G = λS−bi

ai
i = 1 · · ·NG

Pi
D =

Popt
DR−ei

di
i = 1 · · ·ND

, (8)

The benefits of incentive-based and price-based DRs can be expressed by

BCIB
DR = TCIB

DR(PG, PD)− TCG(PG)

BCPB
DR = TCPB

DR(PG, PRopt
DR)− TCG(PG)

, (9)

where BCIB
DR and BCPB

DR are the benefits of incentive-based and price-based DRs, respectively.
Note that the coefficients of quadratic functions for incentive-based and price-based

DRs might be different and can be estimated and predicted from market information
and/or customer interruption costs. In the following, only incentive-based DR is discussed
and simulated due to limited space.

3. Proposed Uncertainty Model for DR

The outputs of large-scale utility generators can be predicted and controlled more
effortlessly; therefore, the pricing and reliability in conventional power utilities can be
easily assessed. Traditionally, a two-state probability model as shown in Figure 1 is used
for most of the reliability assessments where λi

G and µi
G are the failure rate and repair rate

of generator unit i, respectively. The Mean Time To Failure (MTTF) and Mean Time To
Repair (MTTR) can be expressed as

MTTFi
G = 1

λi
G

MTTRi
G = 1

µi
G

, (10)

where MTTFi
G and MTTRi

G are the MTTF and MTTR of generator unit i, respectively.
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The availability and unavailability of generator unit i can be expressed as

Ai
G =

µi
G

µi
G+λi

G
UAi

G = 1− Ai
G

, (11)

where Ai
G and UAi

G are the availability and unavailability of generator unit i, respectively.
The probability density function for a two-state model of generator unit i is shown

in Figure 2. After those parameters as illustrated in (10) and (11) were obtained, the
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reliability indices of a power utility can be assessed effortlessly by capacity outage table
with convolution, effective load approach, Monte-Carlo simulation, etc. [25,26].
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The customer loads are very variable and difficult to predict and control; therefore,
DR especially the integration of renewable generation resources might cause higher uncer-
tainty on pricing and reliability. A novel multi-state probability model based on the real
measurements for load reduction is proposed in this paper. Due to the higher variation
of load reduction and renewable generation resources, the transitions between different
states of load reduction as illustrated in Figure 3 might occur frequently. Generally, the DR
contract is confirmed if the measured power is larger than the set power and is denoted
as “Normal State” in Figure 3. The DR contract is failed and the customer will be charged
a penalty when the measured power is lower than a certain ratio of the set power and is
denoted as “Fail State” in Figure 3. Due to the load reduction variations, several derated
load reduction states denoted as “Derated State” may be occurred. λi

ij in Figure 3 is the
transition intensity from state i to state j. If the transition intensities between the different
states can be estimated, the probability of each state can be solved by a Markov-based
state-space method.
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The definition of transition intensity between the states can be expressed as

λij = lim
∆t→0

1
∆t

p[x(t + ∆t) = j|x(t) = i)], (12)

where x(t) is the random variable of system state at time t. p(•) is a probability function.
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In most power system applications, the transition intensities don’t depend on the time
t; therefore, the transition intensity can be rewritten as

λij∆t = p[x(t + ∆t) = j|x(t) = i)], (13)

From (13), it can be seen that if the conditional probability between different states
can be calculated, then the transition intensity can be calculated accordingly. Figure 4
shows the load reduction of a customer with wind generation resources. In Figure 4, the
measured powers are actual measurements and the set DR powers are the assumed values.
From Figure 3, the variation of load reduction can be significantly observed; therefore, the
probabilities between the measured and set load reduction values can be identified. If the
uncertainty of load reduction can be quantified, the pricing and reliability of DR can be
effectively analyzed. Using the actual measurements and time sequences, the transitions
between different states can be counted, and then the transition intensities can be calculated.
Using the enlarged part of Figure 4 as an example and shown in Figure 5, the set power
at each time period is treated as 100%. In this example, the normal state is the measured
power larger than 90% of the set power; the derated states 1–3 indicate that the measured
power is in 90% to 80%, 80% to 70%, and 70% to 60% of the set power, respectively; and the
fail state 4 means that the measured power is less than 60% of the set power. Based on the
time-sequence process of Figure 5, the percentages and state transitions of load reduction
are listed in Table 1. The number of state transitions is shown in Figure 6. From Table 1 and
Figure 6, it can be observed that there are 8 transitions from state 0 to state 0, 2 transitions
from state 0 to state 1, 2 transitions from state 0 to 4, etc. Therefore, the number of state
transitions for Figure 6 can be expressed in matrix form as

NST =


8 2 1 0 2
2 0 0 0 0
1 0 0 0 0
0 0 0 0 0
1 1 1 0 3

, (14)

where NST is the number of state transition matrix.
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Using 4320 actual measurements as an example, the number of state transitions can
be calculated similarly as shown in Table 1 and Figure 6 and be written as

NST =


3043 202 135 79 44
146 79 25 30 22
107 23 66 28 10
59 27 18 46 22
30 13 20 15 31

, (15)

The numbers of transitions started from states 0 to 4 are 3503, 302, 234, 172, and
109, respectively. According to (12) and (13), the transition intensity can be calculated
by dividing the number of transitions by the number of transitions started from the
corresponding state. For example, the transition intensity from state 0 to 1 can be calculated
by dividing 202 by 3503. Therefore, the transition intensity matrix can be expressed as

λij =


0.8687 0.0577 0.0385 0.0226 0.0126
0.4834 0.2616 0.0828 0.0993 0.0728
0.4573 0.0983 0.2821 0.1197 0.0427
0.3430 0.1570 0.1047 0.2674 0.1279
0.2752 0.1193 0.1835 0.1376 0.2844

, (16)

where λij is the transition intensity matrix.
After the transition intensities were estimated from the historical measurement data,

a Markov-process-based state space method [25,26] as expressed in (17) can be used to
calculate the state probabilities. Due to limited space, the detail derivations of the Markov-
process-based state space method are not shown here.

(
λij − I

)TPRS = 0
NS
∑

i=1
PRS[i] = 1

, (17)

where I is an identity matrix. PRS is the vector of state probability. NS is the number of
states.

Using (16) as an example, the state probabilities can be calculated by
−0.1313 0.4834 0.4573 0.3420 0.2752
0.0577 −0.7384 0.0983 0.1570 0.1193
0.0385 0.0828 −0.7179 0.1047 0.1835
0.0226 0.0993 0.1197 −0.7326 0.1376

1 1 1 1 1




PRS[0]
PRS[1]
PRS[2]
PRS[3]
PRS[4]

 =


0
0
0
0
1




PRS[0]
PRS[1]
PRS[2]
PRS[3]
PRS[4]

 =


0.7595
0.0852
0.0673
0.0526
0.0354


, (18)

The probability density function of load reduction under different states is shown in
Figure 7. With the actual measurements, a multi-state probability model for load reduction
is proposed in this paper. Using the multi-state model, the load reduction uncertainty
on DR can be investigated effectively. The detailed steps of the proposed multi-state
probability model are described below:

(1) Collect measured power and set power data and calculate the load reduction percent-
age of each measurement as listed in Table 1;

(2) Determine the number of states for load reduction (e.g., 5 states are used in the above
example);
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(3) Use the time-sequence process and load reduction percentage to count the number of
transitions between different states as the example shown in Table 1 and Figure 6;

(4) Build the number of state transition matrix as expressed in (15) and calculate the
number of transitions started from each state;

(5) Build the transition intensity matrix by dividing the number of transitions by the
number of transitions started from the corresponding state as expressed in (16);

(6) Use a Markov-process-based state space method as expressed in (17) to calculate the
state probabilities. After the state probabilities were calculated, a probability density
function of the multi-state model for a load reduction as illustrated in Figure 7 can
be obtained.

Energies 2021, 14, x FOR PEER REVIEW 10 of 17 
 

 

(1) Collect measured power and set power data and calculate the load reduction per-
centage of each measurement as listed in Table 1; 

(2) Determine the number of states for load reduction (e.g., 5 states are used in the above 
example); 

(3) Use the time-sequence process and load reduction percentage to count the number 
of transitions between different states as the example shown in Table 1 and Figure 6; 

(4) Build the number of state transition matrix as expressed in (15) and calculate the 
number of transitions started from each state; 

(5) Build the transition intensity matrix by dividing the number of transitions by the 
number of transitions started from the corresponding state as expressed in (16); 

(6) Use a Markov-process-based state space method as expressed in (17) to calculate the state 
probabilities. After the state probabilities were calculated, a probability density function 
of the multi-state model for a load reduction as illustrated in Figure 7 can be obtained. 

 
Figure 7. Probability density function of the multi-state model for load reduction. 

4. Investigations of DR Uncertainty on Operation and Reliability 
The concepts and mathematical models of DR as described in Section 2 did not consider 

the uncertainties of generator unit and customer load reduction. With the proposed multi-
state probability model of load reduction, the load reduction uncertainty on DR can be in-
vestigated effectively and precisely. The cumulative probability density functions of the 
generator units and customer load reductions can be obtained by the formulas proposed 
in Section 3 and then the Monte Carlo simulation can be used to calculate the expected 
total economic dispatch cost and Loss-of Load Probability (LOLP) straightforwardly. The 
expected total economic dispatch cost including the customer interruption cost of unsup-
plied load can be estimated by 

= +( ( , ) ( , ))E IB
S DR G D CIC G DTC E TC P P C P P , (19) 

where E
STC  is the expected total economic dispatch cost including customer interruption 

cost considering the uncertainties of generator unit and load reduction. •( )E  is expected 
function. CICC  is the customer interruption cost of unsupplied system load.  

The • •( , )CICC  can be calculated by (20). 

( , ) *UNS
CIC G D SL CICC P P P MW= , (20) 

where UNS
SLP  is the unsupplied system load and can be calculated by GP  and DP . 

CICMW  is customer interruption cost per MW ($/MW).  
Equation (19) cannot be calculated by a deterministic method; therefore, a stochastic 

method, Monte-Carlo simulation, is used in this paper to calculate the cost of (19). The 
procedures are as follows: 
(1) Establish the two-state probability model of each generator unit and the multi-state 

probability model of each load reduction as proposed in Section 3; 

Figure 7. Probability density function of the multi-state model for load reduction.

4. Investigations of DR Uncertainty on Operation and Reliability

The concepts and mathematical models of DR as described in Section 2 did not con-
sider the uncertainties of generator unit and customer load reduction. With the proposed
multi-state probability model of load reduction, the load reduction uncertainty on DR can
be investigated effectively and precisely. The cumulative probability density functions
of the generator units and customer load reductions can be obtained by the formulas
proposed in Section 3 and then the Monte Carlo simulation can be used to calculate the
expected total economic dispatch cost and Loss-of Load Probability (LOLP) straightfor-
wardly. The expected total economic dispatch cost including the customer interruption
cost of unsupplied load can be estimated by

TCE
S = E(TCIB

DR(PG, PD) + CCIC(PG, PD)), (19)

where TCE
S is the expected total economic dispatch cost including customer interruption

cost considering the uncertainties of generator unit and load reduction. E(•) is expected
function. CCIC is the customer interruption cost of unsupplied system load.

The CCIC(•, •) can be calculated by (20).

CCIC(PG, PD) = PUNS
SL ∗MWCIC, (20)

where PUNS
SL is the unsupplied system load and can be calculated by PG and PD. MWCIC is

customer interruption cost per MW ($/MW).
Equation (19) cannot be calculated by a deterministic method; therefore, a stochastic

method, Monte-Carlo simulation, is used in this paper to calculate the cost of (19). The
procedures are as follows:

(1) Establish the two-state probability model of each generator unit and the multi-state
probability model of each load reduction as proposed in Section 3;

(2) Establish the cumulative probability density functions for each generator unit and
load reduction;
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(3) Determine the number of Monte-Carlo simulation;
(4) For each simulation, generate the random variables for each generator unit and load

reduction and determine the availability or unavailability of each generator unit and
actual load reduction of each DR customer;

(5) Solve the problem of incentive-based DR as expressed in (4);
(6) Calculate the total generation output, total load reduction, unsupplied system loads,

and so on for this simulation;
(7) Repeat (4) to (6) until the number of Monte-Carlo simulations is completed.
(8) Calculate (19) and the statistical data including average and standard deviation of

system marginal price, total economic dispatch cost, total generation output, total
load reduction, unsupplied system load, etc.

5. Test Results and Discussions

A 6-bus system as shown in Figure 8 is simulated in this paper. From Figure 8, it can be
seen that buses 1–3 are generator buses and buses 4–6 are demand buses. The parameters
of cost function and the lower and upper limits of each generator bus are shown in Table 2.
The generator units installed at each generator bus and the reliability parameters of the
two-state probability model are shown in Table 3. From Table 3, it can be seen that there
are 5, 4, and 5 generator units installed at buses 1, 2, and 3, respectively. The loads at buses
4, 5, and 6 are 120, 140, and 140 MW, respectively, therefore, the system load is 400 MW.
Buses 4 and 6 participate in DR and the parameters of the cost function and the lower and
upper limits of each load reduction are also shown in Table 2. The parameters of Table
2 were obtained from Ref. [14] with minor modification for test purposes. The reliability
parameters of multiple-state probability models for load reductions of buses 4 and 6 are
listed in Table 4 where the states 0–4 indicate the measured power is larger 90%, in 90% to
80%, in 80% to 70%, in 70% to 60% and less than 60% of the set power, respectively.
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Table 2. Parameters of cost functions for the test system.

Bus a b c Min (MW) Max (MW)

1 0.1633 11.669 213.1 50 180
2 0.1689 10.333 200.0 40 120
3 0.1441 10.833 240.0 30 125

d e f Min (MW) Max (MW)
4 0.80 25.5 167.5 0 30
5 - - - - -
6 0.85 25.5 173.8 0 30
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Table 3. Reliability parameters of generation units.

Bus Capacity (MW) Type MTTF (h) MTTR (h) UA *

1

36 Thermal 1460 45 0.03
36 Thermal 1460 45 0.03
36 Thermal 1460 45 0.03
36 Thermal 1460 45 0.03
36 Thermal 1460 45 0.03

2

30 Hydro 2920 60 0.02
30 Hydro 2920 60 0.02
30 Hydro 2920 60 0.02
30 Hydro 2920 60 0.02

3

25 Thermal 1752 45 0.025
25 Thermal 1752 45 0.025
25 Thermal 1752 45 0.025
25 Thermal 1752 45 0.025
25 Thermal 1752 45 0.025

‘*’: UA is unavailability.

Table 4. Reliability parameters of load reduction buses.

Bus
PRS[State]

PRS[0] PRS[1] PRS[2] PRS[3] PRS[4]

4 0.7579 0.0852 0.0673 0.0526 0.0354
6 0.8252 0.0756 0.0461 0.0308 0.0223

The number of Monte-Carlo simulation is set as 50,000 and the customer interruption
cost is 140 $/MW. Cases as listed below are simulated and discussed:

Case A: Economic dispatch without DR and uncertainty is neglected;
Case B: Economic dispatch with DR, but the uncertainty is neglected;
Case C: Economic dispatch with two-state generator model but without DR;
Case D: Economic dispatch with two-state generator model and incentive-based DR, but
the DR uncertainty is neglected;
Case E: Economic dispatch with two-state generator model and incentive-based DR and
the proposed DR uncertainty is considered.

For each case, the total economic dispatch cost, total customer interruption cost, LOLP,
etc. are calculated. For Case A, the marginal cost calculated by (2) is 68.63 $/MW, and
the power outputs for generating buses 1, 2, and 3 are 174.43 MW, 120 MW, and 125 MW,
respectively. The total economic dispatch cost without DR is 14,934.65$. For Case B, the
marginal cost calculated by (4) is 54.21 $/MW, and the power outputs for generating buses
1, 2, and 3 are 130.27 MW, 120 MW, and 125 MW, respectively. The load reductions for
buses 4 and 6 are 20.60 MW and 19.60 MW, respectively. The total economic dispatch cost
with DR is 13,912.86$. Obviously, the total economic dispatch cost and marginal cost are
significantly reduced due to the integration of DR.

The cumulative failure probability density function of generator units with a two-state
probability model is shown in Figure 9. From Figure 9, it can be observed the failure
probability under the system load of 400 MW is 0.2383 and therefore LOLP is about 0.2383.
It is a little high due to the lower reserve without DR. For Case C, the expected marginal cost
is 66.34 $/MW with a standard deviation of 5.43 $/MW and the expected total generation
cost is 15,142.51$ with a standard deviation of 361.58$. The expected unsupplied system
load is 14.51 MW with a standard deviation of 20.53 MW and therefore the expected
total customer interruption cost is 2031.99$ with a standard deviation of 2873.93 $. The
expected total economic dispatch cost including customer interruption cost is 17,174.51$
with a standard deviation of 3142.39$. Comparing Cases A and C, it can be seen that
the generator failure uncertainty would cause the higher total economic dispatch cost.
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For Case D, the failure probability is 0.0078 and therefore LOLP is about 0.0078 since the
system load can be regarded as 400 MW minus the maximum load reduction of 60 MW.
The expected marginal cost is 56.39 $/MW with a standard deviation of 3.70 $/MW and
the expected total generation cost is 14,062.68$ with a standard deviation of 280.03$. The
expected unsupplied system load is 0.59 MW with a standard deviation of 4.22 MW and
therefore the expected total customer interruption cost is 41.37$ with a standard deviation
of 295.34$. The expected total economic dispatch cost including customer interruption
cost is 14,145.42$ with a standard deviation of 753.84$. Comparing Cases B and D, it can
be observed that total economic dispatch cost will only be slightly increased if the load
reduction is absolutely reliable.
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The cumulative failure probability density function of load reductions with the pro-
posed multi-state model is shown in Figure 10. The cumulative failure probability density
function of generation units and load reductions is shown in Figure 11. From Figure 11, it
can be observed the failure probability under the system load of 400 MW is 0.01244 and
therefore LOLP is about 0.01244. For Case E, the expected marginal cost is 56.73 $/MW
with a standard deviation of 3.82 $/MW and the expected total generation cost is 14,082.74
$ with a standard deviation of 294.65$. The expected unsupplied system load is 1.01 MW
with a standard deviation of 5.50 MW and therefore the expected total customer interrup-
tion cost is 141.85$ with the standard deviation of 770.47$. The expected total economic
dispatch cost including customer interruption cost is 14,224.59$ with a standard deviation
of 944.74$. Comparing Cases D and E, it can be seen that the LOLP is changed from 0.0078
to 0.01244 due to the DR uncertainty. The difference of LOLPs with or without taking DR
uncertainty into account is not very significant due to the lower system demand. If the
system demand is 440 MW, the LOLPs of Cases D and E are 0.0920 and 0.1667 from Figures
9 and 11, respectively. Figure 12 illustrates the LOLPs while system load is increased from
400 MW to 480 MW. Apparently, from Figure 12, it can be seen that the consideration of
DR uncertainty can effectively and accurately evaluate the system reliability and analyze
the effects of DR for economic dispatch.
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A larger system is also simulated to further verify the validity of the proposed method.
Due to the limited space, the data as shown in Tables 3 and 4 is used and only reliability
assessment is discussed. The larger system consists of 36 thermal generator units with
a rated capacity of 36 MW, 26 hydro generator units with a rated capacity of 30 MW
and 37 thermal generator units with a rated capacity of 25 MW. The total generation
capacity and demand reductions are 2857 and 700 MW, respectively. The cumulative failure
probability density function of generator units with a two-state probability model for the
larger system is shown in Figure 13. The cumulative failure probability density function of
load reductions with the proposed multi-state model is shown in Figure 14. The cumulative
failure probability density function of generation units and load reductions is shown in
Figure 15. Figure 16 illustrates the LOLPs while system load is increased from 2400 MW
to 3400 MW. Once again it can be seen from Figure 16 that DR can effectively enhance
the system’s reliability. For example, the LOLPs for a total load of 3000 MW are 1.00,
0.01314, and 0.026 for Cases C, D, and E, respectively. The integration of DR such as the
results of Cases D and E can effectively improve the system reliability. However, if the DR
uncertainty cannot be effectively considered, the results as shown in Case D may be too
optimistic and may cause unexpected load shedding. The proposed method can effectively
integrate the DR uncertainty into account and accurately evaluate the system’s reliability.
The proposed method will be very useful for ISOs and/or power utilities since the DR
uncertainty can be fully considered.
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