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Abstract: The State of Charge (SOC) estimation is a significant issue for safe performance and the
lifespan of Lithium-ion (Li-ion) batteries. In this paper, a Robust Adaptive Online Long Short-Term
Memory (RoLSTM) method is proposed to extract SOC estimation for Li-ion Batteries in Electric
Vehicles (EVs). This real-time, as its name suggests, method is based on a Recurrent Neural Network
(RNN) containing Long Short-Term Memory (LSTM) units and using the Robust and Adaptive online
gradient learning method (RoAdam) for optimization. In the proposed architecture, one sequential
model is defined for each of the three inputs: voltage, current, and temperature of the battery.
Therefore, the three networks work in parallel. With this approach, the number of LSTM units are
reduced. Using this suggested method, one is not dependent on precise battery models and can avoid
complicated mathematical methods. In addition, unlike the traditional recursive neural network
where content is re-written at any time, the LSTM network can decide on preserving the current
memory through the proposed gateways. In that case, it can easily transfer this information over
long paths to receive and maintain long-term dependencies. Using real databases, the experiment
results illustrate the better performance of RoLSTM applied to SOC estimation of Li-Ion batteries in
comparison with a neural network modeling and unscented Kalman filter method that have been
used thus far.

Keywords: electric vehicles (EVs); Lithium-ion (Li-ion); state of charge (SOC); Recurrent Neural
Network (RNN); Long Short-Term memory (LSTM); robust and adaptive online gradient learning
method (RoAdam); robust adaptive online LSTM (RoLSTM)

1. Introduction

For over 100 years, automobiles have been used for transportation of humans, goods,
etc. and, in this way, reformed traveling around the world. Exploring of rural areas
and going on a road trip across the country were made possible using wheels. However,
the engine vehicles cause many environmental damages as well [1]. According to the
World Health Organization (WHO), in 2000, fuel vehicles produce 34% of nitrogen dioxide
discharged into the environment. They, additionally, generate 51% of the carbon monoxide,
10% of the particulate, and 33% of the carbon dioxide, in the United States only [2]. Reacting
with humidity in the air, nitrogen dioxide makes nitric acid, which causes severe decay of
metals. It also causes thick fog and drastically reduces field of view. This molecule also has
a critical negative footprint on plant growth and a greenhouse effect. Carbon monoxide
(CO) is a harmful gas that provokes migraines, dizziness, and respiratory disease. High
enough CO levels may induce unconsciousness or death. Lastly, carbon dioxide is a major
contributor to temperature rise worldwide. As a result, nowadays, using electric vehicles
(EVs) as an alternative to diesel- and petrol-powered cars is highly regarded. In this context,
a high-tech battery is a crucial element for EVs.

Various types of batteries, such as nickel-cadmium, lithium, and acid, are used as the
dominant power source in EVs [3]. Among them, Li-ion batteries are the most popular due
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to their specific characteristics, e.g., high energy density, self-discharge, charging speed,
low maintenance, and long-life cycle. The correct charging of Li-ion batteries improves
their performance and extends their lifespan. This correct charging is performed using
the Battery Management System (BMS), which controls the discharging [4]. One of the
significant issues of BMS is the SOC estimation of the battery [5]. SOC is the amount of
charge that is stored in the battery at each moment. To date, various methods have been
introduced for SOC estimation, which are separated into two main categories: direct and
indirect methods [6,7]. When considering direct methods, an equation is used to estimate
SOC, determined by the battery’s physical properties such as current, voltage, and battery
temperature. A popular direct method is Coulomb Counting (CC) estimation described in
detail by Lashway et al. [8]. Many published studies contributed in the development of the
Open Circuit Voltage (OCV) method for the SOC estimation (e.g., [1,9]). Electrochemical
Impedance Spectroscopy (EIS) is another direct method to estimate SOC [10]. Indirect
methods, on the other hand, do not use a specific equation, rather they employ a model
for the battery or mapping of system specification. One of the model-based methods is
Electrical Circuit Model (ECM) [11]. Another type of indirect methods are the adaptive-filter
based algorithms such as Kalman filter (KF, EKF, UKF, and AEKF) [12–14], Recursive Least
Square algorithm (RLS), and the H infinity algorithm (H∞) [7,15,16]. Artificial Intelligent
methods are also a category of indirect methods, which in recent years have been used for
the SOC estimation, including Fuzzy Logic (FL) [17–19], Neural Networks (NN) [20–24],
and deep learning methods [25–29].

Deep learning (also known as deep structured learning or dynastic learning) is a class
of machine learning with multiple layers for extracting a higher level of features, and
is based on work-specific algorithms. Most modern deep learning models are based on
artificial neural networks. However, they may include predicate or hidden variables in
generating models such as nodes in deep belief networks and deep Boltzmann machines.
Recurrent Neural Networks (RNNs) are a type of deep learning method created in the
1980s [30] yet widely used only in the last few years. These types of neural networks are
beneficial for serial or sequencing data. Theoretically, RNNs should have the ability to use
previous data for estimation of any future one. In practice, however, this is not the case.
Expanding the sequence, typical RNNs are unable to learn the information. This is why
the use of RNNs was stopped for a while until outstanding results were obtained using the
long- and short-term memory units in neural networks, namely Long Short-Term Memory
(LSTM). Unlike traditional RNNs, LSTMs can deal with long sequences, using a designed
mechanism.

LSTM, in fact, emerged in 1995 to improve RNNs in dealing with sequential data, and
solving the problem of the disappeared gradient phenomenon [31]. Sepp Hochreiter et al. [31]
explained that “long-term memory” in LSTM refers to acquired weights and “short-term
memory” is internal cellular states. The major change in this network is replacing the
hidden layer of the RNN with a block called the LSTM block and its most incredible feature
is the ability to learn long-term dependencies that are not possible using RNNs [32].

In this paper, a new deep learning method for estimating SOC is investigated. In
this method, instead of one LSTM for inputs, three of them are used in parallel, and,
consequently, the number of LSTM units is reduced. In addition, to optimize the LSTM
network, a robust and adaptive online optimization method is utilized. This optimization
is an improvement of Adam method which is called Robust Adam (RoAdam). RoAdam
can be adaptively tuned against a doubtful outlier. The weights and biases could be
tuned online with a strategy of adaptive optimization to have a high-performance network.
Since batteries have a nonlinear function and a complex electrochemical model, the SOC
estimation function is also nonlinear and depends on the charge and discharge currents
and temperature. Hence, finding a method that does not depend on the model is essential.

This paper is organized as follows. The LSTM Structure is described briefly in
Section 2. Section 3 explains SOC estimation with the RoLSTM method. Section 4 is
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the discussion of the results for this implementation. Finally, Section 5 summarizes the
study main achievements.

2. Long Short-Term Memory Structure

In RNN, each neuron or processing unit can manage its internal state or memory
to maintain the previous input information. This feature is critical in many applications
related to serial data. The main idea behind this type of architecture is the exploitation of
this series structure. The name of this neural network is derived from the fact that these
types of networks operate recursively. An operation is performed for each element of a
sequence (word, sentence, etc.), and its output depends on the current input and previous
operations. It means the output at time t is achieved by combining the output network at
t− 1 with the new network input at time t. These cycles permit the existence of information
from one step to the next step. In other words, these types of networks have a loop within
themselves, which they can pass information through the input of neurons.

The structure of RNN is shown in Figure 1, where the black square represents the
time delay at each time step. Looking at the chain formed after opening this computational
graph, how the network works is completely understandable. Now, this is an architecture
that can receive different inputs xt and generate ot outputs at each time step. It also
contains a memory state ht that maintains the information about what happened on the
network until the time (t). W1, W2, and W3 in Figure 1 indicate the weights of input neuron,
recurrent neuron, and output layer, respectively.

Figure 1. The structure of Recurrent Neural Network (RNN) for n inputs.

All RNNs are in the form of repetitive sequences of neural network modules (units). In
standard RNNs, these repeatable modules have a simple structure: for example, they only
contain a hyperbolic tangent (tanh) layer. However, in LSTM, four layers communicate in
a special structure instead of only one layer.

Figure 2 indicates the architecture of LSTM block. In this figure, xt is the input and ht
is the output of the LSTM unit at time t, and ht−1 is the output of previous LSTM block.

Figure 2. Long Short-Term Memory (LSTM) block.
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The initial phase in the LSTM is deciding what information should be discarded from
the cell state. This decision is made by a sigmoid (σ) layer, shown in Equation (1), called
the forget gate layer ( ft). The next step is to decide what new information have to save
in the cell state. This decision contains two parts. First, a sigmoid layer called the input
gate (it) decides which values will be updated with Equation (2). The next step represents
in Equation (3), is a tanh layer that makes the vector of values called memory cell (Ct)
that could be added to the state cell. By combining those two steps, the state cell (ht)
within the next step can be updated. Finally, it must be determined what information to
be transmitted to the output (Ot). This output is based on the state cell that passes via a
specified filter. The formulas for these models are expressed as below.

ft = σ(W f [ht−1, xt] + b f ) (1)

it = σ(Wi[ht−1, xt] + bi) (2)

Ct = ft ∗ Ct−1 + it ∗ tanh(Wg[ht−1, xt] + bg) (3)

Ot = σ(Wo[ht−1, xt] + bo) (4)

ht = Ot ∗ tanh(Ct) (5)

where the initial values of Ct and ht are C0 = 0 and h0 = 0, respectively. W f , Wi, Wg, and
Wo are, respectively, the weights of forget gate, input gate, memory cell, and output gates,
while b f , bi, bg, and bo are their associated biases. The gate activation function and the
output activation function are shown by σ and tanh, which define in Equations (6) and (7),
respectively.

σ(x) =
1

1 + exp(−x)
(6)

tanh(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

(7)

3. Robust and Adaptive Online LSTM for SOC Estimation

In this inquiry, a RoLSTM model is used for the SOC estimation of a Li-ion battery with
voltage (V), current (I), and temperature (T) as input variables and the SOC of the battery
as output. The structure of this method is depicted in Figure 3. Three LSTM networks are
used for the inputs. In fact, each input variable contains two hidden layers with 128 and 8
LSTM units, respectively, which they are working in parallel. The concatenation of these
layers is realized to calculate the output with a dense layer, which is a linear operation that
relates every input to every output with the following equation:

SOCt = Wht + b (8)

where W and b are defined, respectively, as the weight matrices and biases of full connected
layers.

The input datasets for the LSTM layer should be three-dimensional (3D), which are
defined as “(Samples, Time steps, Features)”. Samples indicate the number of sequences,
Time steps symbolize the number of observations in each sample, and Features represent the
number of features for each element in the samples. The voltage, current, and temperature
are the input vectors. In the preprocessing step, the input datasets must be converted to a
3D array for use as an input of the RoLSTM and normalized in the range [−1, 1] as:

x = [((x− xmin)/(xmax − xmin)) ∗ (max−min)] + min (9)

In (3), the minimum and maximum values of input vector x are shown by xmin and
xmax, respectively. In addition, max equals 1 and min is −1. To scale the testing dataset, the
maximum and minimum values of training inputs must be used.
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Figure 3. The proposed structure of the RoLSTM model for the SOC estimation.

To train the LSTM and update the weights and biases in the network for SOC esti-
mation, the Robust and Adaptive online optimization algorithm (RoAdam) is used [33].
RoAdam is dependent on gradient and the squared gradient. The equations of RoAdam
are described in (10). The training step size is η = 0.0005; β1 = 0.9, β2 = 0.999, and
β3 = 0.999 are exponential decay rates; Wt is the weights vector of the model in time step t;
and ε = 10−8 is a constant. The initial values of the first moment of the gradients, mt, and
the second moment of the gradients, vt, are zero. rt is defined as a relative prediction error
term of the loss function.

mt = β1mt−1∇L(Wt−1)

vt = β2vt−1∇L(Wt−1)
2

m̂t =
mt

1− β1
t

v̂t =
vt

1− β2
t

rt = ‖L(Wt−1)/L(Wt−2)‖
dt = β3dt−1 + (1− β3)(rt)

Wt = Wt−1 − m̂t
η

dt
√

v̂t + ε

(10)

L is the loss function that is calculated considering (11):

L =
1
n

n

∑
t=0
|SOCt − ˆSOCt| (11)

where n is the number of data point, while SOCt and ˆSOCt are, respectively, actual and
predicted values of state of charge at time step t. To guarantee the stability of the relative
prediction error, a threshold is intended for rt. Then, rt is changed as (12).

rt =

min{max{k, ‖L(Wt−1)/L(Wt−2)‖}, K}, if‖L(Wt−1)‖ ≥ ‖L(Wt−2)‖

min{max{1/K, ‖L(Wt−1)/L(Wt−2)‖}, 1/k}, Otherwise
(12)

where k = 0.1 and K = 10 are the lower and upper thresholds, respectively. To implement
this method and the mathematics operation, tensorflow framework is used.

The flowchart of this program is depicted in Figure 4.
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Figure 4. The flowchart of RoLSTM programming for SOC estimation.

4. Experimental Results
4.1. Battery Specification and Experimental Conditions

This method was applied on two different battery databases. The first database is
related to the Panasonic 18650PF Li-ion battery which is used in some Tesla Electrical
Vehicles. This database is collected by McMaster University in Ontario (Canada) [34]. The
second one concerns the A123 LifePO4 Li-ion battery collecting by the Center for Advanced
Life Cycle Engineering (CALCE) at University of Maryland [35]. The battery parameters
are listed in Table 1.

The discharge datasets are realized from 10 different standard drive cycles e.g. Los
Angeles 92 (LA92), Supplemental Federal Test Procedure Driving Schedule (US06), the
Highway Fuel Economy Test (HWFET), and the Urban Dynamometer Driving Schedule
(UDDS), with a variety of current steps and temperatures. Figure 5 presents the drive cycle
power profiles of the Panasonic NCR18650PF cell for different drive cycles. The negative
power is the discharge power and the positive power is the charge power.

Table 1. The specification of the Panasonic 18650PF battery parameters.

Item Specification

Capacity Min. 2750 mAh
Typ. 2900 mAh

Nominal voltage 3.6 V
Min/Max Voltage 2.5 V/4.2 V
Charging CC-CV, Std. 1375 mA, 4.20 V, 4.0 h
Temperature Charge and Discharge: 0 ◦C to 45 ◦C

Discharge: −20 ◦C to 60 ◦C
Storage: −20 ◦C to 50 ◦C

Energy density Volumetric: 577 Wh/l
Gravimetric: 207 Wh/kg
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Figure 5. The drive cycle powers used for the training and testing phases at 25 ◦C for a one cell of
battery pack of Ford F150 for: (a) UDDS; (b) US06; (c) HWFT; and (d) LA92 profiles.

The A123 battery is a lithium iron phosphate battery (LiFePO4 battery). LiFePO4
batteries are a type of li-ion batteries being used in EVs and Electric bikes. Table 2 represents
the specification of A123 battery.

Table 2. The specification of the A123 battery parameters.

Item Specification

Nominal capacity 2500 mAh (at 0.2 C rate, 3.65 ± 0.05 V cut-off)
Nominal voltage 3.2 V
Charging current Standard Charging: 2.5 A, 1.0 C rate

Maximum Charging: 10.0 A, 4.0 C rate
Discharging current Max. continuous discharge: 50 A, 20 C rate

Max. Impulse Discharging: 120 A, 48 C rate
Operating temperature Charge and Discharge: −30 ◦C to 55 ◦C
(surface temperature) Storage: −40 ◦C to 60 ◦C

The training and testing data of A123 battery were collected under Dynamic Stress
Test (DST) and Federal Urban Driving Schedule (FUDS) while including a variety of current
steps and mixed of different temperatures. The DST profile is determined within the US
Advances Battery Consortium LLC (USABC) [36]. The measured current and voltage for
DST profile are shown in Figure 6.
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Figure 6. (a) Measured current and (b) measured voltage of the A123 Li f ePO4 battery for DST profile
used for the training and testing phases

The average training time of this RoLSTM network is changed by the definition of
different step-time and epochs. The optimal number of epochs is determined as 500. The
servers of the Strasbourg University Computing Center (CCUS) were used for the training
process. The RoLSTM network was deployed on three NVIDIA Tesla V100 Graphical
Processing Units (GPUs).

In this study, the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE),
and the Maximum Error (MAX) were used to evaluate the performance of the suggested
network for SOC estimation. Equations (13)–(15), respectively, were used to calculate the
MAE, RMSE, and MAX.

MAE =
1
n

n

∑
t=0
|SOCt − ˆSOCt| (13)

RMSE =
n

∑
t=0

√
1
n
(SOCt − ˆSOCt)2 (14)

MAX = max |SOCt − ˆSOCt| (15)

where SOCt and ˆSOCt are the measured value and the estimated value at time step t,
respectively, while n is the number of data points in the sequence.

4.2. SOC Estimation Results
4.2.1. Results for the Panasonic 18650PF

The existing data of all ten cycles at different ambient are more than 8 million data.
They are categorized into two groups, training and validation data. To train the system, a
random dataset containing the mixed eight drive cycles in different ambient temperature
was used. The validation was applied to the remaining two cycles. In most cases, the length
of the dataset for one drive cycle is more than 100,000 time steps. In reality, to implement a
RoLSTM network with an n-step size equal to this length sequence, more than three GPUs
are needed. Therefore, in this paper, the optimal values of n-step is chosen 500. The time
required for training system with three Tesla V100 GPU is about 8 h. For testing the system,
two categories with fixed and varying ambient temperatures were used. The current and
voltage of the testing dataset are shown in Figure 7.
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Figure 7. (a) Measured current and (b) measured voltage of the Panasonic 18650PF battery used for
the training and testing phases

The results of SOC estimation and SOC error for a dataset of mixed drive cycles with
fixed ambient temperature at 0 and 25 ◦C and varying ambient temperature are described
in Figures 8 and 9, respectively.
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Figure 8. SOC estimation for Panasonic 18650PF battery with RoLSTM for: (a) 0 ◦C; (b) 25 ◦C; and (c) different ambient
temperature.
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Figure 9. SOC error for Panasonic 18650PF battery with RoLSTM for: (a) 0 ◦C; (b) 25 ◦C; and (c) different ambient
temperature.

Table 3 details the MAE, RMSE and MAX error metrics, at 0, 10, and 25 ◦C for
RNN [25], GRU-RNN [25], LSRM-RNN [26], and RoLSTM. Looking at these values for
each temperature, one can see that all are decreased when RoLSTM method is applied.
When varying temperature is considered, the RMSE of RoLSTM is equal to 1.8%, while the
same error using LSTM-RNN [26] method is calculated as 2.08%.

Table 3. Comparison of MAE (%), MAX (%), and RMSE (%) SOC estimation for Panasonic 18650PF battery.

Temperature (◦C)
MAE (%) MAX (%) RMSE (%)

RNN [25] GRU-RNN [25] LSTM-RNN [26] RoLSTM RNN [25] GRU-RNN [25] LSTM-RNN [26] RoLSTM LSTM-RNN [26] RoLSTM

0 ◦C 11.06 1.31 2.08 0.7 23.7 5.07 6.87 2.56 2.44 1.02

10 ◦C 6.75 1.11 0.78 0.65 14.85 4.45 4.04 2.2 0.99 0.90

25 ◦C 5.69 0.71 0.77 0.40 11.29 2.90 3.69 1.9 1.11 0.79
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4.2.2. Results for the A123 Li f ePO4 Battery

In the next step, this model was tested for the dataset of A123 Li f ePO4 battery at
different ambient temperatures from −10 to 50 ◦C, which were prepared based on DST
and FUDS tests and datasets collected based on the low current voltage test.

The SOC estimation obtained based on DST and FUDS tests in the variant temperature
are illustrated in Figure 10. Figure 11 presents the SOC error, which is defined as the
difference between the SOC measurement and the SOC estimation with this model. As can
be seen in these figures, the SOC estimate achieved by the RoLSTM is quite smooth.

The SOC estimation and the SOC error for datasets of discharging at −10 and 50
◦C based on the low current voltage test with 500 epochs are shown in Figures 12 and 13,
respectively. For these datasets, SOC estimation error does not have an observable change
while changing the temperature.
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Figure 10. SOC estimation based on DST and FUDS test with RoLSTM for: (a) −10 ◦C; (b) 50 ◦C; and (c) different ambient
temperature.
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Figure 11. SOC estimation error based on DST and FUDS test with RoLSTM for: (a) −10 ◦C; (b) 50 ◦C; and (c) different
ambient temperature.

The results show that, with 500 epochs in the RoLSTM method, the loss function
converges to zero in all ambient temperatures. In summary, these results show that the
maximum error of SOC estimation for Li f ePO4 battery by the RoLSTM method for all
datasets with fixed ambient is less than 2% and for different ambient is less than 2.5%.
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Figure 12. SOC estimation for: (a) −10 ◦C and (b) 50 ◦C based on low current OCV test.
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Figure 13. SOC estimation error for: (a) −10 ◦C and (b) 50 ◦C based on low current OCV test.

The values of RMSE and MAX error derived from the RoLSTM were compared with
previous models used for SOC estimation of A123 Li f ePO4 Li-ion Battery. In [22], the
authors introduced a method based on simple neural network and combined it with an
unscented Kalman filter. Their neural network is static and does not have a memory, so
UKF is used to filter out the outliers. Meanwhile, in the RoLSTM model, multiple LSTM
layers can be learned by a bigger dataset, and it uses a self-learning algorithm to tune
the parameters against uncertain outliers. In addition, the RoLSTM has a memory that is
fitted for time series sequences. Generally, our proposed model has better performance in
comparison with NN and UKF [22]. The MAX error at 0 ◦C is 1.9 by the RoLSTM while this
values is 3.1 by NN and UKF [22]. The 25 and 50 ◦C the MAX error is equal in both methods.
From the MAX error values in Table 4, it is apparent that the performance of RoLSTM is
better than the simple NN [22]. Table 4 reveals that the RMSE has dropped using RoLSTM
method on the same database. In addition, in another study, Yang et al. [37] introduced a
multi-hidden LSTM network for SOC estimation. The minimum RMSE reported by them
was 1.07, and an overall comparison shows RoLSTM gives a better performance.

Table 4. Comparison of RMSE (%) and MAX (%) error of SOC estimation for A123 Li f ePO4

Temperature (◦C)
RMSE (%) MAX (%)

NN [22] NN and UKF [22] Adaptive-GRU [29] RoLSTM NN [22] NN and UKF [22] RoLSTM

0 ◦C 4.2 2.2 1.08 0.92 20.5 3.1 1.9

25 ◦C 2.5 0.5 1.1 0.73 16 1.9 1.9

50 ◦C 1.9 1 0.84 0.61 9.9 1.5 1.5
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5. Conclusions

The purpose of the current study was to reform an Adaptive Online LSTM method to
find the SOC estimation of EVs’ Li-ion batteries. It is based on deep learning and builds
the connection between the input and output variables by nonlinear mapping. In other
methods which depend on the battery model, a complex nonlinear equation is required
and finding a model with high accuracy is one of their main challenges. For example,
the Kalman filter method’s performance is highly dependent on the measurement noise
covariance, the battery model, and any imprecision in the battery model. Thus, any the
noise of the system will reduce the performance of this method. The suggested RoLSTM
network does not depend on the battery model and the initial values of SOC. The inputs
are voltage, current, and temperature and the output is SOC estimation. Each input uses
one LSTM. Then, three LSTM networks with fewer units are processed in parallel. As a
result, the number of LSTM units can be reduced in the whole model. The method is a
self-learning algorithm that can learn all the network parameters. The proposed algorithm
is suitable for SOC estimation in different ambient temperatures. In addition, the number
of LSTM units can be reduced in the whole model. In addition, the number of epochs for
training the system is dropped. However, RoLSTM needs big data and extended training
time to learn the system. The present study shows that the errors decrease when the
system is trained by a proper number of epochs. Moreover, the RoAdam optimizer gives a
smoother estimate in comparison with other optimizers of LSTM network. This network is
applied in two different batteries. Changing the battery, the network architecture does not
change, and one just needs to retrain the system. The results from the RoLSTM method are
compared to previous methods in the literature (NN, NN and UKF, GRU, and LSTM with
Adam optimization). This comparison indicates that the Maximum error of estimation and
RMSE have decreased significantly for the two investigated battery types.
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