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Abstract: This paper, for the first time, investigates the possibility of exploiting a nonlinear bistable
snap-through buckling structure employing piezoelectric transducers, to implement an autonomous
sensor of mechanical vibrations, with an embedded energy harvesting functionality. The device is op-
erated in the presence of noisy vibrations superimposed on a subthreshold deterministic (sinusoidal)
input signal. While the capability of the device to harvest a significant amount of energy has been
demonstrated in previous works, here, we focus on the signal processing methodology aimed to ex-
tract from the sensor output the information about the noise level (in terms of the standard deviation)
and the root mean square amplitude of the deterministic component. The developed methodology,
supported by experimental evidence, removes the contribution to the overall piezoelectric output
voltage ascribable to the deterministic component using a thresholding and windowing algorithm.
The contribution to the output voltage due to the noise can be used to unambiguously estimate the
noise level. Moreover, an analytical model to estimate, from the measurement of the output voltage,
the RMS amplitude of the deterministic input and the noise-related component is proposed.

Keywords: autonomous sensor; self-powered sensor; vibration sensor; nonlinear energy harvesting; Snap
Through Buckling; wideband vibrations; piezoelectric conversion; characterization; signal processing

1. Introduction

A large body of work on the possibility of implementing novel autonomous (or self-
powered) sensors has been produced in the past decade. Thanks to the development of new
low power demanding electronics, such as wireless transceivers and power management
electronics specifically designed for energy harvesting applications, new autonomous
measurement systems, for use as standalone devices or nodes of a distributed wireless
sensor network, are being developed. Such solutions are of high interest in many fields,
including robotics, where it could allow to power sensor nodes by scavenging energy from
the environment, such as vibrations during locomotion, temperature gradient, or other
sources [1–3], instead of using external batteries.

Typically, the architecture of the autonomous measurement system exploits a tradi-
tional sensor, dedicated conditioning electronics, and a processing unit with data com-
munication capabilities. The system is usually powered by batteries, whose charge can
be sustained through energy harvesting techniques. In some cases, the electronics are
directly powered by the harvester [4]. Recent reviews of energy harvesting technologies for
self-powered sensors are presented in [5,6]. Other examples of autonomous sensor nodes
are discussed in [7–10].

A concept of a battery-less accelerometer without any additional power source has
been proposed in [7]. The implemented concept exploited a piezoelectric cantilever as
a sensing element (accelerometer) capable of generating electric charges from vibrations
to drive a light-emitting diode (LED) providing information on the input acceleration by
the period of the pulsed light. The generated charges were accumulated in a low-leakage
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storage capacitor up to a switching threshold and then discharged into the LED through
a low-leakage switch constructed with cascading metal-oxide-semiconductor field-effect
transistors (MOSFETs).

The measurement of vibrations, aimed at the monitoring of a rotating shaft health, is
the main purpose of the energy-autonomous wireless sensor presented in [8]. The vibra-
tions are measured with a battery-powered wireless sensor node including an accelerometer,
a microcontroller unit, a radio transmitter, and a flash memory. An annular thermoelectric
generator (TEG) exploiting the Seebeck effect to produce electrical power from the heat flux
caused by the temperature gradient between the shaft and the surrounding air is proposed
to recharge the battery.

An autonomous wireless wind sensor aimed at providing information about the wind
speed for the sake of wildfire spread monitoring has been discussed in [9]. The sensor node
consists of a wind turbine generator acting as both wind energy harvester and wind speed
sensor and dedicated electronics for data processing and communication. Experiments
have shown that at a low wind speed of around 3 m/s, the power harvested (around
7.7 mW), using a maximum power point tracking strategy, is sufficient to sustain the
operation of the sensor node. Information about the wind speed is sensed by measuring
the equivalent electrical output voltage of the wind turbine generator.

In [10], the design and implementation of a self-sustainable wireless sensor node
with an accelerometer-based algorithm for wear detection of a band saw have been pre-
sented. The node uses a very low power accelerometer and a microcontroller architecture
implementing also data communication. To provide energy to the system, a TEG-based
energy harvester has been adopted together with a dedicated power management unit [11].
The thermoelectric generator operated in real conditions has been observed to provide an
average power of 1–2 mW.

In [12], the authors proposed a wireless condition monitoring sensor system powered
by ambient vibrations specifically designed to monitor vibrations on office air conditioning
and industrial air compressor units. The autonomous sensor employs an electromagnetic
generator able to harvest a sufficient amount of energy to power a microelectromechan-
ical systems (MEMS) accelerometer [13] linked to a microcontroller platform [14,15]. A
charge-pump circuit (voltage multiplier) has been adopted to increase the level of the
voltage produced by the electromagnetic generator. The generated power was stored in a
supercapacitor. The electromagnetic generator was able to produce an average power of
58 µW with a root mean square (RMS) acceleration of 0.6 m/s2 at a frequency of 52 Hz.

Many techniques for scavenging energy dispersed in the environment by sources
with different characteristics have been presented in [4,16]. In particular, mechanical
vibrations have largely attracted the attention of researchers because of their ubiquity.
Because environmental vibrations have a wide frequency spectrum [16] and, sometimes, a
time-dependent amplitude, recent efforts have been focused on the design of nonlinear
mechanical structures whose response is more suitable for scavenging energy in a range of
frequencies as large as possible [17–21].

An example of such kind of structure is the beam in the Snap Through Buckling (STB)
configuration, characterized by a bistable dynamical behavior in a relatively broad range
of frequencies. Examples of Energy Harvesters (EH) exploiting the buckled beam are
presented in [22] and [23] to scavenge energy from a rotating machine and to implement a
wind energy harvester, respectively.

The main recognizable advantage of the STB mechanism arises from its nonlinear
behavior, which allows the beam and an inertial mass added to the beam (if present), to
switch between the two stable positions of the beam under external wideband mechanical
vibrations. However, to switch the beam between its stable positions, the input acceleration
(or force) must overcome a minimum threshold value determined by different factors
among which is the energy barrier of the (bistable) potential energy function [24]. The
latter can be stated as the main drawback of the STB configuration.
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Recently, the authors have dedicated significant efforts to the investigation and devel-
opment of analytical models for EHs exploiting the STB mechanism [25,26]. The proposed
devices have been characterized and demonstrated to be able to generate powers in the
order of hundreds of microwatts with average efficiencies of about 12%. The first developed
prototype, exploiting a polyethylene terephthalate (PET) beam in the STB configuration
with two piezoelectric transducers placed at the two beam’s stable position, has been
demonstrated as capable of generating a power sufficient to periodically operate a 2.4 GHz
wireless transceiver [27].

Moreover, investigations have been accomplished to better understand the behavior
of such nonlinear architectures and the possibility to develop dedicated electronics for
energy management [28–30].

This paper investigates the possibility of exploiting the nonlinear harvester presented
in [31], to implement an autonomous sensor for the measurement of target vibrations, with
embedded energy harvesting features. The main idea addressed through this work is to
use the same device as a vibration sensor and as an energy harvester to extract energy from
the target mechanical source. The latter can be exploited to power downstream electronics.

The device functionality has been assessed in the presence of noise (band-limited
random vibrations) superimposed on a subthreshold deterministic input signal. The
sinusoidal signal has an amplitude lower than the switching threshold of the STB beam,
i.e., the signal alone is not sufficient to activate the switching between the two stable
states of the beam. While the capability of the device to harvest a significant amount of
energy has been already demonstrated in previous works [27,31], this work focuses on the
methodology developed to extract the information about the noise level and the amplitude
of the deterministic input from the sensor output.

The above-depicted operating conditions can be found in real scenarios like, e.g.,
everyday appliances, cars, flying vehicles, machinery, etc.

The main novelty of this work is represented by the possibility to exploit the same de-
vice as a nonlinear harvester and as a sensor to detect mechanical vibrations, thus labeling
the system as a fully autonomous sensor that does not require an external power source.
The possibility to exploit the nonlinear switching mechanism of the STB architecture for
the implementation of a suitable methodology able to detect and separate the information
related to the noise level from the strength of the deterministic components of the mechani-
cal source confers to the system a unique sensing feature. Moreover, the choice of using
an STB configuration provides the system with the valuable capability to scavenge energy
from wideband mechanical vibrations, which is quite common in a real scenario.

The paper is organized as follows: a schematization of the autonomous sensor and
a description of the nonlinear bistable energy harvester is given in Section 2. Section 3 is
dedicated to the experimental results and the description of the signal processing strategy.
Finally, conclusive remarks are given in Section 4.

2. Materials and Methods

As stated in Section 1, this work is mainly focused on the signal processing method-
ology aimed to detect and separate the information related to the random vibration from
the subthreshold deterministic components of the mechanical source. For the sake of
completeness, a schematization of the proposed autonomous sensor is shown in Figure 1.
It consists of an STB structure implementing the sensing/harvesting functions, generating
a voltage signal Vpiezo, a power management unit storing the energy produced by the
EH device and powering, through Vsupply, an ultralow-power (ULP) microcontroller unit
(MCU), incorporating a wireless transmitter (RF TX).



Energies 2021, 14, 754 4 of 14Energies 2021, 14, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 1. Schematization of the autonomous vibration sensor. 

The operation of this architecture has been already investigated [31] and will not be 

further considered through this paper. Anyway, it must be observed that the MCU is in 

charge of acquiring the output signal from the device and implementing the signal pro-

cessing aimed to estimate the quantity of interest (the noise level, σn, and the amplitude of 

the deterministic input). Such information can then be transmitted by the RF TX. Of 

course, most of the signal elaboration described in Section 3 can be implemented also by 

dedicated electronics, thus minimizing the computation demand of the MCU with a con-

sequent reduction in the power budget. 

2.1. The Device Description 

The STB Nonlinear Harvester (STB-NLH) has been already described in previous 

works [31]. Nevertheless, for the sake of completeness, an overview of the structure of the 

harvester is provided in the following paragraphs. A top view of the real device is shown 

in Figure 2. It consists of a flexible PET beam, specifically TartanTM 801 by Hewlett-Pack-

ard, whose dimension is 6 cm × 1 cm and a thickness is of 140 µm. The STB configuration 

has been obtained by applying a precompression of 1 mm along the main dimension, 

which leads to two possible stable positions 9 mm apart from each other. A 5.3 g proof 

mass is attached to the middle of the beam. 

 

Figure 2. A top view of the Energy Harvesters (EH) with the electromagnets used to investigate 

the device behavior. 

The beam precompression, the proof mass, and other factors such as the deterministic 

signal and noise characteristics and system parameters, e.g., dissipation define the switch-

ing threshold, below which the beam under the effect of (solely) a subthreshold signal will 

not exhibit switching. The precompression and the added proof mass can be fixed to fit the 

frequency “bandwidth” and the switching threshold (minimum acceleration), required for 

the particular addressed application [31]. 

Vibration
(SIN+Random) STB 

Vibration
Sensor/EH

Power
Management 

Unit

Vpiezo

ULP 
MCU

RF TX

Vsupply

Passive Analog
Electronics

STB beam

Proof mass

Piezoelectrics

Electromagnets

IR distance
module

Figure 1. Schematization of the autonomous vibration sensor.

The operation of this architecture has been already investigated [31] and will not
be further considered through this paper. Anyway, it must be observed that the MCU
is in charge of acquiring the output signal from the device and implementing the signal
processing aimed to estimate the quantity of interest (the noise level, σn, and the amplitude
of the deterministic input). Such information can then be transmitted by the RF TX. Of
course, most of the signal elaboration described in Section 3 can be implemented also
by dedicated electronics, thus minimizing the computation demand of the MCU with a
consequent reduction in the power budget.

2.1. The Device Description

The STB Nonlinear Harvester (STB-NLH) has been already described in previous
works [31]. Nevertheless, for the sake of completeness, an overview of the structure of the
harvester is provided in the following paragraphs. A top view of the real device is shown in
Figure 2. It consists of a flexible PET beam, specifically TartanTM 801 by Hewlett-Packard,
whose dimension is 6 cm × 1 cm and a thickness is of 140 µm. The STB configuration has
been obtained by applying a precompression of 1 mm along the main dimension, which
leads to two possible stable positions 9 mm apart from each other. A 5.3 g proof mass is
attached to the middle of the beam.
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Figure 2. A top view of the Energy Harvesters (EH) with the electromagnets used to investigate the
device behavior.

The beam precompression, the proof mass, and other factors such as the deterministic
signal and noise characteristics and system parameters, e.g., dissipation define the switch-
ing threshold, below which the beam under the effect of (solely) a subthreshold signal will
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not exhibit switching. The precompression and the added proof mass can be fixed to fit the
frequency “bandwidth” and the switching threshold (minimum acceleration), required for
the particular addressed application [31].

Two piezoelectric transducers Midè Volture V21BL have been placed at the stable po-
sitions of the beam, to realize the mechanical-to-electrical conversion mechanism exploited
to implement the readout strategy of the vibration sensor, as well as the EH operation.

An InfraRed (IR) distance module, Pololu QTR-1A, has been used during the investi-
gation of the device behavior to observe the beam deflection and the number of switching
events in a fixed time interval. To investigate the device behavior as a function of the input
signal (deterministic and stochastic) characteristics, an electromagnetic shaking system
was used. The shaker uses two electromagnets WF-P34/18, shown in Figure 2, driven by
counter phase current signals. The shaker generates a magnetic force on the proof mass
thus miming the target vibrations. To this aim, the proof mass consists of a permanent
magnet. It is important to note that the electromagnetic shaker is not part of the sensor/EH
system but is a tool used only for the sake of the device characterization.

The two signals used to investigate the device, sinusoidal and band-limited (at 100 Hz)
noise, are generated by two function generators Agilent 33120A and summed using a
dedicated electronic. The resulting signal used to drive the electromagnets, the IR module’s
output voltage, and the two voltage signals generated by the piezoelectric transducers are
acquired by a data acquisition board NI USB6341 with a sampling frequency of 2 kHz. The
board was managed through a virtual instrument developed in NI LabVIEW®. To maximize
the power transfer, a resistive load of 15 kΩ, has been connected to the piezoelectric
transducers [31].

3. Results and Discussion

A set of experiments have been performed to investigate the possibility to adopt
the STB structure to measure wideband vibrations superimposed to a subthreshold (with
respect to the system threshold) deterministic input. The device has been investigated
for different frequencies and amplitudes of the sinusoidal input and increasing values of
the standard deviation, σn, of the superimposed noise. The vibrations (deterministic and
superimposed noise) have been applied through the electromagnetic shaker introduced
in Section 2.1.

It is worth noting that, in the results reported in the following, the deterministic
input and the superimposed noise generating the input vibration, are represented in
terms of amplitude and standard deviation, respectively, of the signal generated by the
waveform generator (expressed in Volts). Anyway, to provide information about the
order of accelerations required by the beam investigated in this work, the results of the
investigation reported in [31] can be referred. In particular, in the case of a sinusoidal input
at 1 Hz, a minimum acceleration of about 14 m/s2 has been observed.

As already discussed in Section 1, the adopted sinusoidal signal has an amplitude
lower than the switching threshold of the STB beam, i.e., equivalently, increasing the
amplitude of the signal alone does not lead to the switching between the two stable states
of the beam. The beam switching threshold, Sth, is defined as the minimum dynamical
acceleration required to switch the beam from one stable state to the other in the opposite
position. In particular, three levels of the sinusoidal input have been considered, i.e., A1,
A2, and A3, being 10%, 20%, and 30% lower than the threshold, respectively.

The quantity ∆V defined as:

∆V = Sth − Ai (i = 1, 2, 3) (1)

represents, the gap to be “filled” by the superimposed noise vibration, to activate the
switching dynamics of the beam.

Figure 3a shows a segment of 5 s of the three subthreshold sinusoidal input at 1 Hz.
The beam threshold level and the gap ∆V are also reported. The beam threshold level here
represents the minimum amplitude of the deterministic signal causing the beam to switch
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at the same frequency as the input signal. The main characteristics of the pseudorandom
Gaussian noise limited at 100 Hz are shown through the frequency spectrum and the
histogram plot reported in Figure 3b,c, respectively.
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Figure 3. (a) The three subthreshold sinusoidal input at 1 Hz. The beam threshold level (in V) and the gap ∆V are also
reported. (b) The frequency spectrum and (c) the histogram plot of the pseudorandom Gaussian noise input.

Examples of real signals measured during experiments are reported in Figure 4.
In particular, Figure 4a,c,e shows the subthreshold sinusoidal input at 1 Hz with an

amplitude of 0.903 V corresponding to the case of ∆V = 30% and three different levels of
superimposed noise, with a standard deviation, σn, of 0.12, 0.24, and 0.56 V, respectively.

The related beam displacement between the two stable states (observed by the IR
distance sensor) is reported in Figure 4b,d,f. As it easily emerges, the first noise level
(σn = 0.12 V) is not sufficient to fill the gap ∆V defined in (1) and overpass the beam
switching threshold Sth thus activating the beam switching. In fact, as shown in Figure 4b,
the beam remains in one of its stable states (specifically at −4.5 mm in the case reported in
the figure).

Conversely, the beam switching is observable in Figure 4d,f related to the cases of
σn = 0.24 V and σn = 0.56 V, respectively. In particular, in the intermediate case, the noise
level is sufficient to randomly activate the beam switching each time the input signal
(subthreshold sinusoidal with superimposed noise) overpasses the beam threshold for
a sufficient time to win the beam’s inertia or, in other terms, to overpass the energy
barrier of the potential described in Section 2. Finally, in the case of σn = 0.56 V shown in
Figure 4f, the noise is sufficient to start the beam switching at the same frequency of the
deterministic input.
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Figure 4. Examples of real signals in the case of a sinusoidal input at 1 Hz and an amplitude of 0.903 V, 30% lower than the
switching threshold and three different levels of the superimposed noise. (a,c,e) the input signal and (b,d,f) the measured
beam displacement in the case of noise with a standard deviation, σn, of 0.12, 0.24, and 0.56 V, respectively. In (b), the level
of noise is not sufficient to activate the beam switching, in (d) the noise level is sufficient to activate some beam switching
events, while in (f), it has the optimal value making the beam switching with the same frequency of the deterministic input.

3.1. The Estimation of the Noise Level

According to the main target of this work, this subsection focuses on the procedure
developed to estimate the level of noise, more precisely the standard deviation, σn, from
the device’s output voltage signal (the piezoelectric output voltage), V_piezo.

It is worth remembering that, through this work, the (very low) noise level, taken as
the only input of the system, is not able to activate the beam switching. Then the output
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voltage peaks generated by the beam (the proof mass on the beam) hitting the piezoelectric
transducers can be ascribed to the deterministic input (leading, thanks to the effect of the
superimposed noise, to interwell switching events), while the remaining part of the voltage
signal is generated by the intrawell beam vibrations generated by the noise.

Just as a reference example, Figure 5 shows the observed piezoelectric RMS output
voltage, VRMS, as a function of the superimposed noise level (σn is the standard deviation
of the noise signal) in the case of the three amplitudes of the subthreshold sinusoidal
input at 1 Hz. The VRMS is calculated as the sum of the RMS voltages from the two
piezoelectric transducers. Clearly, the RMS value of the output voltage increases with the
noise level. Moreover, as expected, for a fixed noise level, the output voltage increases
while decreasing the gap ∆V or, equivalently, increasing the amplitude of the deterministic
component. Furthermore, as it can be observed, for fixed VRMS, the vibration level σn
cannot be univocally defined, since it depends on the amplitude of the deterministic input.
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Figure 5. The root mean square (RMS) output voltage as a function of the noise level superimposed
to the subthreshold deterministic sinusoidal input at 1 Hz.

To estimate the strength of the component due to only the noisy vibration, VVib
RMS, a

dedicated methodology of signal processing has been developed. A schematization of the
developed methodology is shown in Figure 6. The procedure removes the contribution
to the overall piezoelectric output voltage, Vpiezo, due to the proof mass impact on the
piezoelectric transducers using a thresholding and windowing algorithm. The remaining
part, VVib

RMS, is then used to estimate the noise level as discussed below.
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Figure 6. Schematization of the signal processing procedure to estimate the standard deviation of the noise.

For the sake of the algorithm explanation, it is convenient to refer to Figure 7a,b, which
shows the two observed output voltage signals from the two piezoelectric transducers
and the beam displacement in the case of a subthreshold sinusoidal input at 1 Hz, with
an amplitude of 30% lower than the beam switching threshold and a superimposed noisy
vibration with σn = 0.47 V.
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Figure 7. (a,b) The observed output voltage signal from the two piezoelectric transducers and the beam displacement in
the case of a subthreshold sinusoidal input at 1 Hz with an amplitude of 30% lower than the beam switching threshold
and a superimposed noisy vibration with σn = 0.47 V. The binary variable used by the windowing algorithm is also shown;
(c,d) the VVib

piezo obtained from the signals shown in (a,b) with the developed signal processing methodology.

The two figures show how each time the beam switches from one stable state to the
opposite one and the proof mass hits the piezoelectric transducer, a peak on the piezoelectric
output voltage appears.

To filter out these peaks (which are mainly related to the deterministic input com-
ponent), as a first processing step, a thresholding of the signal has been performed. The
threshold value has been set empirically by observing the complete set of voltage signals
obtained for different values of the superimposed noise. The comparison of the voltage
signal with the threshold value has been used to set the value of a binary time sequence
used in the subsequent windowing step. More specifically, the value of the binary time
sequence has been set to 0 each time the voltage signal overpasses the threshold value and
to 1 otherwise. The binary time sequence is also shown in Figure 7a,b. The output voltage
windowing aimed at removing the voltage peaks due to the beam switching has been
performed by multiplying the voltage signal by the binary time sequence. The processed
signals, representing the contribution to Vpiezo due to only the noise, VVib

piezo, are shown
in Figure 7c,d.

It should also be noted that the apparent different amplitude of the piezoelectric output
voltage signal, due to the vibration during the time intervals where the beam is not switch-
ing, is actually due to the intrawell vibrations of the mass on the piezoelectric transducer.

In fact, it can be observed that the output voltages in Figure 7a are large in the time
intervals when the beam mainly resides in the place of the piezoelectric transducer 1 (the
lower stable state in the beam displacement time series). It can be observed from Figure 7b
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that during the time intervals where the beam resides in the opposite stable state (the
top state in the beam displacement time series) the output voltage from the piezoelectric
transducers 2 due to the noisy vibrations is comparable with the one observed in Figure 7a.

The RMS value, VVib
RMS, of VVib

piezo, is then estimated. Figure 8 shows the VVib
RMS quantity

as a function of the noise level for the three subthreshold sinusoidal inputs at 1 Hz. The
results show that the VVib

RMS increases with the noise level (as expected) and, at least in a
large part of the noise range considered in this work, it is independent of the amplitude of
the sinusoidal input. A dependency on the amplitude of the deterministic input (A1, A2,
and A3) emerges only for high values of the input noise vibrations (σn > 1 V).
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Figure 8. The RMS output voltage, VVib
RMS, generated by only the noise superimposed to the sub-

threshold deterministic sinusoidal input at 1 Hz as a function of the noise level.

Moreover, for higher values of the input vibrations, a form of saturation appears. The
saturation phenomenon could be explained by observing that above a given level of noise,
the beam intrawell vibrations (vibrations of the beam while remaining in one of its stable
position) remain statistically quite constant and the piezoelectric transducers generate the
same amount of energy. This phenomenon is more evident for the highest value of the
deterministic signal, A1, which favorites the saturation mechanism.

The inverse dependence on the sinusoidal input suggests that for higher amplitudes of
the noise, the contribution of the noise to the overall output VRMS decreases by increasing
the sinusoidal input amplitude, i.e., the contribution of the deterministic component
predominates over the one produced by the noise.

It should be observed that, as demonstrated in [31], for higher values of the superim-
posed (to the deterministic input) noise, the beam starts switching randomly leading to
fast beam switching and a higher number of beam bumps on the transducers; the beam’s
residence time in the stable states decreases thus reducing the intrawell vibrations. This
behavior could be used to explain the observed reduction in the VVib

RMS. Nevertheless, the
first part of the curve could be used to estimate the noise level. In fact, once we extract the
VVib

RMS from the overall output voltage, the noise level, σn, can be unambiguously estimated.
These results demonstrate the possibility of exploiting the EH as a vibration sensor.

Moreover, it should be observed that the energy scavenged from the target vibrations
can be used to power (ultra) low-power electronics, which can implement the windowing
algorithm used to extract the VRMS generated by the noise and transmit information about
the estimated noise level. In fact, powers up to about 100 µW have been observed with the
subthreshold sinusoidal input at 1 Hz considered in this work.
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3.2. The Estimation of the Deterministic Component

Finally, in this subsection, the possibility to estimate the amplitude of the subthreshold
sinusoidal input is addressed. It should be also observed that in the case the level of noise
has been estimated as discussed in Section 3.1 using the relation between the VVib

RMS and
σn shown in Figure 8, the amplitude of the deterministic input can be estimated from the
curves on Figure 5 relating the overall VRMS to the noise level.

Anyway, in the following paragraphs, a different approach, schematized in Figure 9,
is presented.
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Figure 9. Schematization of the methodology for the estimation of the RMS amplitude of the deterministic component.

The main idea is to adopt an analytical model to estimate the RMS amplitude of the
deterministic input, Asin

RMS, from the measurement of the VRMS and VVib
RMS. To this aim, the

following model has been adopted:

Asin
RMS = a ∗ VRMS + b ∗ VVib

RMS + c, (2)

where the parameters a = 0.372, b = −0.243, and c = 0.536 V have been identified by fitting the
model (2) on the experimental data using the Nelder-Mead optimization algorithm [32]. The
algorithm, implemented in MathWorks® MATLAB, uses a simplex minimization method
to estimate a set of values of the parameters, which minimize a given functional. The
following functional, J%, which estimates the percentage root mean square error (PRMSE)
between the experimentally measured RMS amplitude of the subthreshold deterministic
input, Ai

sin
RMS, and the amplitude predicted by the model, Ai,pred, has been adopted:

J% = 100 ∗
3

∑
i=1

√√√√√∑
(

Ai
sin
RMS−Ai,pred

Ai
sin
RMS

)2

ni
= 6.97, (3)

where the index i = 1,2,3 refers to the three amplitudes of the subthreshold sinusoidal
input, while ni is the number of different noise levels, σn, used for the fitting. Taking into
account the dependency on the deterministic input observed in Figure 8 for the higher
values (σn > 1 V) of the input noise vibrations, for the model fitting, only the range of
values of σn ≤ 1 V has been used. Moreover, the first lower values, not sufficient to
overcome the beam switching threshold (then not generating beam switching events), have
not been used.

Table 1 shows the performance of model (2) for the three subthreshold sinusoidal
input at 1 Hz in terms of mean value and standard deviation, σe, of the residuals between
the experimental measured RMS amplitude of the sinusoidal input and the value predicted
by the model. The results demonstrate a good performance of the proposed model to
estimate the RMS amplitude of the subthreshold sinusoidal input.
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Table 1. Performance of the model (2) in terms of average error and standard deviation of the error
values, σe, for the three subthreshold sinusoidal input at 1 Hz.

∆V Mean(Asin
RMS−Apred) (V) σe(V)

10% −0.003 0.019
20% 0.010 0.008
30% −0.011 0.016

4. Conclusions

In this work, the possibility of exploiting a nonlinear bistable snap-through buckling
beam to implement a self-powered sensor for measurements of target vibrations, with
embedded capabilities of energy harvesting has been investigated. As far as we know, this
is the first example of an autonomous vibrational sensor exploiting the advantages of the
nonlinear STB configuration.

While the feature of the device to harvest a significant amount of energy has been
already demonstrated [31], this work focuses on a methodology to extract the information
about the noise level and the amplitude of the deterministic input from the (piezoelectric)
output voltage of the device.

The device is operated in the presence of noisy vibrations superimposed on a sub-
threshold deterministic (sinusoidal) input signal. These are cases related, e.g., to everyday
appliances, cars, flying vehicles, home appliances, machinery, etc.

A dedicated methodology of signal processing to estimate the strength of the noise-
related component has been presented and demonstrated by experimental evidence. The
developed procedure removes the contribution to the overall piezoelectric output voltage
due to the proof mass impact on the piezoelectric transducers, ascribable to the subthresh-
old deterministic component, using a thresholding and windowing algorithm. As demon-
strated, once the contribution to the output voltage due to the noise has been extracted, the
noise level can be unambiguously estimated.

Moreover, an analytical model to estimate the RMS amplitude of the deterministic
input, from the measurement of the output voltage and the estimation of the noise-related
component as described before, has been proposed. The model has been assessed using
experimental signals. The performances have been evaluated in terms of mean value and
standard deviation, of the residuals between the experimental measured RMS amplitude
of the sinusoidal input and the value predicted by the model.

Experiments, reported in this paper, demonstrate the viability of the proposed ap-
proach of exploiting the EH as a vibration sensor. It should be observed that the energy
scavenged from the target vibrations can be used to power (ultra) low-power electronics
which can implement the windowing algorithm used to extract the noise-related compo-
nent from the generated output voltage and transmit information about the estimated
noise level.

Future efforts will be dedicated toward a deep investigation of the proposed method-
ology and to the implementation of the measurement node embedding the power manage-
ment unit, as well as the electronics with processing and data transmission capabilities.
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