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Abstract: The method for preliminary powertrain design is presented in the paper. Performance of
the EV is realized by motor torque–speed curve and gear ratio optimization. The typical two-zone
mechanical characteristic of a PMSM traction motor is included in the optimization program. The
longitudinal vehicle model is considered in the paper. Some examples try to show the calculation
possibilities in application to existing vehicles: Tesla Model S and Mini Cooper SE.
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1. Introduction

The conversion of electrical energy into mechanical is very important for the drive in
an Electric Vehicle (EV) and optimization of the car performance is discussed in the article.
The path from battery to a traction force FT on the car wheels is called powertrain [1,2].

The presented optimization problem can be used to design preliminary powertrain
in a EV. The torque–speed curve (mechanical characteristics) [3] of PMSM (Permanent
Magnet Synchronous Motor) is introduced. This type of motor is the most popular in car
manufacturers (Toyota, Nissan, BMW, Renault), but Tesla induction motor characteristics
are also considered. The EV mathematical model is presented more precisely than in [4].
Two design examples are included in the paper: gear ratio optimization in Tesla Model S,
traction motor, and gear ratio optimization in the Mini Cooper SE.

The optimization is considered as a Nonlinear Programming Problem because the
objective function (performance index) is nonlinear, and a longitudinal model of motion is
also nonlinear. The value of the objective function is calculated after car race simulation.
Hence, the objective function is not explicit and the Simplex Method (Nelder–Mead Method
or Downhill Simplex Method) [5] is very useful because derivatives of the objective function
are unknown. In the Matlab environment, fminsearch is a Simplex Method without
constraints.

The method of the powertrain optimization shows Figure 1.

Optimization

Simulation

Performance index

Powertrain 2. Newton Law

Figure 1. Method of powertrain optimization.

The powertrain parameters that are optimized are pi, performance index J can be
function of time t, position spos, speed v or power of the traction motor PN . The traction
force FT on wheels is the output of the powertrain.
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The powertrain optimization is often considered in publications, and there are some
examples for EV and Hybrid Electric Vehicle (HEVs). The three ratios of planetary gear in
HEV are presented in the paper [6], the optimization objectives include the 0–100 kmh ac-
celeration time, CO emissions, HC compound emissions and NOx emissions under NEDC
(New European Driving Cycle) conditions. However, the traction motor is not considered
and the obtained results for one objective function are shown, but the optimization method
is unknown. The more precise optimization of planetary gear ratios is presented in [7],
where Particle Swarm Optimization is used.

The powertrain optimizations for PMSM and induction motors in the electric bus are
shown in [8].

The optimization problem where the goal is to minimize the cumulative fuel consump-
tion (for HEV) is considered in the article [9].

Parameters optimization of two-speed powertrain of electric vehicle based on genetic
algorithm (GA) is considered in [10]. The different GA for a gearbox optimization (internal
combustion engines) is used in the paper [11].

The parameter optimization for the CVT (continuously variable transmission) in 4-
wheel drive HEV is considered in [12], where evolutionary based non-dominated sorting
genetic algorithms-II (NSGA-II) is used.

The motor (wound rotor synchronous motor and PMSM) efficiency and battery opti-
mization are considered in [13].

This paper shows another objective function (performance indexes) in optimization than
previously cited and the deterministic minimization method (Nelder–Mead Method) instead
of stochastic optimization. Additionally, three energy storages are included in the vehicle
motion mathematical model, not one as in most publications, so the results of the optimization
are more real. Some of the presented examples are also multi-objective optimization.

The paper presents: PMSM characteristics, EV model, the Nelder–Mead optimization
method, two examples of powertrain optimization (Tesla S Model and Mini Cooper SE) for
assumed performance indexes. The EV acceleration to 100 kmh, 1/4 mile and top speed
are the indexes considered in the article.

2. PMSM Traction Motors

The work [14] (in 1977) discusses, for the first time, the three-zone angular velocity
control of induction motors, which was generalised for other drives [1–3]. Figure 2 shows
general characteristics M = f (ω), P = f (ω) and flux linkage ψ = f (ω) for PMSM
traction motors.

ωm

P
Mmax

ωN

ωmax

Me=const.

Me

Me   1/ωm

Figure 2. Theoretical two-zone angle velocity control of PMSM.

The control zones shown in Figure 2 represent different types of electric motor operation:

Zone 1: means working for constant torque Me = const and then the active power trans-
ferred to the working machine increases linearly as the angular speed increases
(Pm = Meωm). This zone means also working with limited current and constant
flux value in the air gap.
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Zone 2: means operating at constant active motor power Pm = PN = Meωm, where the
motor’s electromagnetic torque changes inversely proportionally to the motor’s
angular velocity (Me ∝ 1

ωm
). In this zone, the supply voltage equals the rated

voltage UN and is the voltage limit. At the same time, the current in the stator
winding is rated, and the flux in the air gap is reduced.

The curve from Figure 2 will be used in EV model, which will be optimized.

3. Longitudinal EV Model

The mathematical model for simulation of a EV is described more precisely than in [4].

3.1. Forces

The forces (road loads and traction force) acting on the EV are shown in Figure 3
e.g., [4,15,16].

Figure 3. Forces acting on a EV.

Tractive force FT is function of motor speed ωm and is described by:

FT = (Me(ωm)−4M)
2i
dw

(1)

where i is gear ratio, dw is wheel diameter, and Me is motor torque.
Total rolling resistance Fr is the sum of the resistances from all wheels [15] (cos α is

neglected because, for a 10% road grade, it is cos( 0.1π
4 ) = 0.9969):

Fr = frm2g, fr = f0

(
1 +

v
161

)
(2)

where v is EV speed in kmh and the rolling coefficient is f0 = 0.01÷ 0.02 for a concrete surface.
Aerodynamic drag force:

FDF =
1
2

$ Cd A(v− vw)
2 (3)

where ρ = 1.225 kg/m3 is air density, A is the cross sectional area (frontal area) of EV, Cd is
drag coefficient, and the speed of wind is vw.

Grade resistance is described as:

Fg = m2g sin(α) (4)

Newton’s second law for longitudinal motion of EV is in the following form:

m
dv(t)

dt︸ ︷︷ ︸
a(t)

= FT(t)− (FDF(t) + Fr(t) + Fg(t))︸ ︷︷ ︸
F′(t)

(5)

The FDF and FT are nonlinear functions, so the ordinary differential Equation (5) is
nonlinear too. Thus, the numerical solution of this equation will be used in the optimization
of the powertrain in EV.
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3.2. Torques, Mass, and Moments of Inertia

The forces from Figure 3 and torques in the powertrain are shown in Figure 4.

Motor

Figure 4. Simplified powertrain.

The conversion of the road loads F′ to torques on the motor shaft by gear is de-
scribed as:

Mm = 4M +
M′

i
, M′ =

F′dw

2
(6)

where Coulomb friction can be calculated as load torque [17]:

4M = Mmax(1− η) · sign(ωm) (7)

Three kinetic energy storages are found in every EV. The first two storages are: rotor
moment of inertia J1 and a vehicle mass (m2); the equivalent mass or moment of inertia are:

m1 = J1
4i2

d2
w

, J2 = m2
d2

w
4i2

(8)

the values m1, J1 are much smaller than m2, J2.
The next energy storages are the remaining rotating elements: wheels (rims and tires),

brake discs, shafts, etc. Considering any rotating mass mi of radius ri, it is possible to
determine its moment of inertia or to specify an equivalent mass (for horizontal motion) of
the same kinetic energy:

Ji = miri (9)

Ji is each rotating element in power transmission. Hence, the principle of the energy
conservation results in the formula:

m3iv2

2
= Ji

ω2

2
(10)

where m3i is the equivalent of mass calculated on the vehicle body. If v is car speed and
radius of wheels is rw = dw/2, then Equation (10) leads to:

m3iω
2r2

w
2

=
mir2

i ω2

2
=⇒ m3i = mi

r2
i

r2
w

(11)

For example, four wheels, each weighing 20 kg, should be added to the vehicle’s
weight as 80 kg, while four brake discs, each weighing 3 kg and their diameter being
half the size of the wheel, should be reduced four times, i.e., 3 kg should be added to the
vehicle body.

Thus, small diameter and small mass rotating elements can be omitted from the
mathematical model. In summary, the total moment of inertia that is reduced to the motor
shaft and the total mass reduced to the EV body are:

J = J1 + J2 +
∑i Ji

i2
, m = m1 + m2 + ∑

i
m3i (12)



Energies 2021, 14, 725 5 of 12

Hence, the Newton’s second law is in the following form:

J
dωm(t)

dt
= Me(t)−Mm(t) (13)

Equations (5) and (13) describe the same electromechanical system, but in different
reference frames.

3.3. Model

Equations (5) and (13) lead to the block diagram in Figures 5 and 6. The block Motor
+ Control is the torque–speed curve of a traction motor drive system that is presented
for PMSM in Figure 2. The Coulomb friction 4M is included in both models. In the
block diagrams, three energy storages are considered that are given by Formula (12). The
diameter of the wheels is dw, which changes rotational motion to longitudinal, and is found
in every scheme because the torque M′ also depends on dw (6).

Motor

Control
+

Figure 5. Powertrain model ver. 1.

Motor

Control
+

Figure 6. Powertrain model ver. 2.

The proposed model is not complicated like in, e.g., a Powertrain Blockset toolbox,
which is the Matlab-Simulink environment, but should be sufficient for the preliminary
design of the drive.

4. Optimization of Powertrain

The Nelder–Mead method [5] is used to optimize the gear ratio and the torque–speed
motor curve in the powertrain of EV. The names Simplex method or amoeba method are
used here.

A simplex is considered to be a convex figure in n-dimensional space that has n + 1
vertices. This means that, for n = 1, it is a segment, for n = 2 a triangle, and, for
n = 3, a tetrahedron. To determine the minimum of the objective function, the following
operations are performed on the simplex: sort, reflect extend, contract, shrink. Hence, for
two dimensions, the search for the minimum of a function is similar to a moving amoeba.

Optimization of powertrain is realized by (as in Figure 1):

1. Initial conditions: gear ratio i and torque–speed curve (block Motor + Control in Figure 5).
2. EV model simulation (Figure 5).
3. Calculating of performance index (objective function) J .
4. Minimization, which leads to new values of the gear ratio i and the torque–speed curve.
5. Checking the stop condition: max iterations and errors, which leads to points 2 or 6.
6. Stop.

The next two sections present a lot of powertrain optimization examples.
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5. Gear Ratio Optimization in Tesla Model S P85

The Tesla Model S powertrain is one of the best known, and has been chosen as an
example of the gear ratio selection for different tasks (performance).

Figure 7 presents torque–speed and power–speed curves of the traction motor in the
considered EV (red color).

Figure 7. torque–speed and power-speed curves of the EV.

Figure 7 shows 3 modes (zones) of operation for the induction motor:

• Mode 1: as in Figure 2,
• Mode 2: as in Figure 2,
• Mode 3: constant power × rotor angular velocity region, slip frequency is constant

and equals ω2K (critical value, pull-out frequency). This region exists only in the
induction motors and PMSM has only two modes.

The parameters of the previous model for Tesla Model S P85 are included from [4],
and they are assumed as:

• m2 ≈ 2100 + 100 = 2200 kg,
• J1 ≈ 0.06 kgm2,
• Cd = 0.24, frontal area of the vehicle A = 2.4 m2,
• i = 9.73, η ≈ 0, 97 (assumed in [18]), which lead to4M = 18sign(ωm).
• Equations (8) and (11) lead to: m1 = 46 kg, m3 = 120 kg.
• dw = 0.703 m.

Tesla Model S P85 (2012) [19]. This vehicle has the following performance:

• 0–60 mph (0–96.6 km/h): 4.6 s,
• 1/4-mile (402.5 m): 13.3 s and speed: 104 mph (167.5 km/h),
• top speed: 134 mph (215.7 km/h), which leads to vmax = 59.9 m/s.

Simulation results for original gear ratio are presented in Figure 8, where t100 is
acceleration time to 100 kmh, t1/4 is time for 1/4 mile. The obtained results are similar to
the vehicle catalog data. Simulations are realized as numerical integration (Euler method,
with step 0.01 s) nonlinear differential equation in Figure 5 where “Motor + Control” is the
torque–speed curve in Figure 7.
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Figure 8. Performance of EV for nominal gear ratio.

Now, the car performances can be improved, so the optimization problem is consid-
ered in the following form:

min
i
J (14)

where J is objective function (performance index) and J can be equal t100, t1/4 or vmax.
The result of optimization is gear ratio i. The Simplex method (Figure 1 and description
in Section 4) is used for minimization. The results of optimization for performance index
J = t100 are shown in Figure 9.

0 5 10 15 20

t

50

100

150

v
/k

m
h

i=14.70,  t
100

=3.85 s,  v
max

=169 km/h

0 5 10 15 20

t

0

200

400

600

s
p

o
s
/m

i=14.70,   t
1/4

=13.00 s

Figure 9. Optimized gear ratio i of EV for J = t100.

Obtained results are displayed in figures with simulation. The next optimization
problem can be minimization of the time t1/4, then i = 11.45 and race time is t1/4 = 12.85 s,
so the simulation results are similar to what is presented in Figure 9, and they are omitted.

Ref. [19] reads: “With taller gearing, a P85 Model S might reach 200 mph. Clearly,
this is the aerodynamic electric car that merits intense scrutiny by the world’s carmakers”.
Hence, if J = −vmax (maximization speed can be written as minimization, thus sign
‘−’) and simulation time is longer, e.g., 100 s, then optimization can find the i. Figure 10
presents obtained results, so, for gear ratio 3.73, maximum speed is near 200 mph.

Summing up the main points, an obvious qualitative conclusion can be given, which
is supported by quantitative data: different gear ratios should be used for different tasks.
Thus, the optimization of torque–speed curve and gear ratio will be presented in the
next section.
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Figure 10. Optimized gear ratio i of EV for J = −vmax.

6. Powertrain Optimization for Mini Cooper SE

A modern car like Mini Cooper SE was chosen as an example of EV. The maximum
torque of the traction motor and mechanical gear will be optimized. The characteristics
are adopted in a two-zone form as for PMSM motors, and the ratio of ranges is 1:2, so in
Figure 2 ωN = 1/3ωmax:

• 0÷ 1/3ωmax constant torque region: Me = Mmax,
• 1/3ωmax ÷ωmax constant power region: Me =

PN
ωm

.

The basic parameters of the considered car from the manufacturer’s website or
https://www.carfolio.com are:

• car and driver mass m ≈ 1365 + 100 kg,
• drag coefficient Cd = 0, 3, frontal area A = 2.1 m2,
• gear ratio i = 8.96,
• tires: P205/45R17, which leads to wheel diameter dw = (17× 25.4 + 2 × 205 × 0.45)/1000

= 0.616 m, thus the circumference of the wheel is 1.935 m,
• maximum speed vmax = 150 kmh, acceleration 0–100 km/h equals 7.3 s.
• PMSM 135 kW (from 7000 obr/min), maximum torque Mmax = 270 Nm (0–1000 obr/min).

Knowing the maximum speed of the vehicle, the transmission and the wheel circumference
can calculate the maximum speed of the electric motor:

ωmax =
vmax

3.6
1

πdw
2πi = 1212 rad/s → nmax = 11.580 rpm

The original motor will be neglected in the remainder of this paper, but a new torque–
speed curve of the motor and gear ratio will be calculated by optimization for the perfor-
mance requirements that will be written in the objective function J .

The design takes into account the influence of PMSM motor power on the moment of
inertia and vehicle mass.

In the optimization, changes are assumed in the traction motor moment of inertia J1,

considering the factor: 0.05 kgm2

100 kW . This value for PMSM is higher than for the squirrel cage
motor in [4] and can be recalculated to car body mass m1 by Formula (8).

The second mass of m2 will also vary with the traction motor power (mass of motor,
power electronics and electrical equipment), and it includes the 135 kW of Cooper SE motor
(the factor is 0.5 kg

1 kW ), which leads to: m2 = m + (PN − 135,000)/1000× 0.5, where m is car
and driver mass.

The next mass m3 = ∑i m3i is constant (11) and is assumed as 80 kg. Hence, in the EV
simulation, the total mass described by the Formula (12) is used.

https://www.carfolio.com
https://www.carfolio.com
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The performance index for the acceleration time can be described as:

J = (t100 − t100opt)
2 (15)

where t100opt is desired time to 100 kmh. An example of optimization (t100opt = 4 s) is in
Figure 11, where the initial conditions were Mmax = 370 Nm and i = 13.

Figure 11. Optimized powertrain for 4 s acceleration to 100 kmh.

For different initial conditions, different results are obtained and the motor power
increases up to 271 kW, so it is necessary to modify the objective function (15), e.g., the
motor power is taken into account, and this leads to (multi-objective optimization):

J = (t100 − t100opt)
2 + αPN (16)

where α is the weighting factor which brings PN down to a similar numerical level. For
example, α = 2.5× 10−5, and optimization results are shown in Figure 12 (initial conditions
do not matter for the optimization result).

Modification of the index J by power PN causes the assumed time not to be reached,
so you can take a smaller value t100opt or reduce α. For t100opt = 3.35 s, the time t100 = 4 s is
reached, and powertrain is characterized by: PN = 199 kW, Mmax = 497 Nm and i = 12.67.
Hence, it is a better result than optimization with performance index (15) with different
initial conditions. Moreover, αPN has the role as a penalty function, so we can talk about
optimization with constraints here.

The last example will be about using a multi-task objective function in the following form:

J = (t100 − t100opt)
2 + αPN + β(t1/4 − t1/4opt)

2 + γ(vmax − vmaxopt)
2 (17)

where t1/4opt and vmaxopt are desired values of the car performance and α, β, γ are the
weights of the respective objective function components. Optimization of the drive for
dynamic but not sporty EV is shown in Figure 13, where it is assumed: t100opt = 6 s,
t1/4opt = 14 s, vmaxopt = 200 kmh and weights α = 2.5× 10−5, β = 0.33, γ = 0.05.

The obtained results are similar to the reference values, the motor power is not so
high, and the powertrain parameters are similar to cars with internal combustion engines.
Thus, performance index (17) can be used for preliminary drive design.
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Table 1 collects the results from this chapter, where three performance indexes are
considered.

Figure 12. Optimized powertrain for 4 s acceleration to 100 kmh and motor power minimization.

Figure 13. Optimized powertrain.

Table 1. Powertrain optimization for different performance indexes.

J
m1 m2 t100 t1/4 PN Mmax

i[kg] [kg] [s] [s] [kW] [Nm]

(t100 − 4)2 120 1484 4.00 17.75 204 509 10.56
(t100 − 4)2 + αPN 142 1470 4.55 15.4 174 435 12.43

(t100 − 6)2 + αPN + . . .
+β(t1/4 − 14)2 + γ(vmax − 200

3.6 )
2 36 1459 6.15 14.45 153 383 6.72
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The first performance index is only set to accelerate to 100 kmh in 4 s and, as a
result of optimization, this assumption is obtained. In the second case, PN appears in the
performance index, and it leads to a motor power reduction, but the acceleration time
is longer t100 = 4.55 s. Thus, αPN is similar to the penalty function—optimization with
constraints. If α is higher, the power will be lower. The third case is the most reasonable
because it takes into account all vehicle performances while limiting motor power. The last
case is multi-objective optimization.

7. Conclusions

The methods for preliminary powertrain design are presented in the paper. In contrast
to the often used genetic algorithms in this field, the Nelder–Mead (Simplex) method has
been used. This method is much simpler than genetic algorithms and, after the results, it
seems sufficient for this stage of EV powertrain design.

Three energy storages (motor moment of inertia; total car mass; wheels and brake discs
and halfshaft moments of inertia) are included in the EV mathematical model, which is
also rare in another papers. Appropriate formulas are given to convert masses or moments
of inertia to the electric motor or the vehicle body side.

The optimization results are presented for Tesla Model S P85 and Mini Cooper SE. In
the first car, the motor torque–speed characteristics were maintained, and the optimum gear
ratio was found for the various performance targets. For Cooper, the mechanical gearbox
and maximum of electromagnetic torque (the shape of the torque–speed characteristics was
assumed) were optimized. Moreover, the motor power PN influences the motor moment of
inertia J1 and the mass of the vehicle m2. Hence, PN additionally changes Newton’s 2nd
law in Figure 1.

Solved nonlinear programming problems look promising and can be extended, e.g., by
vehicle range (battery weight will increase) and more precise motor characteristics (as for
Tesla), etc. In addition, constraints for the cost function can be introduced as constraints
on component cost (motor, batteries), weight. In this optimization problem, the penalty
function is most preferred.

The presented solution should be used for preliminary vehicle powertrain design,
while e.g., the Powertrain Blockset toolbox (Matlab-Simulink environment) can be used for
precise modeling.
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