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Abstract: Propylene is one of the world’s most important basic olefin raw material used in the produc-
tion of a vast array of polymers and other chemicals. The need for high purity grade of propylene is
essential and traditionally achieved by the very energy-intensive cryogenic separation. In this study,
a pillared inorganic anion SIF6

2− was used as a highly selective C3H4 due to the square grid pyrazine-
based structure. Single gas adsorption revealed a very high C3H4 uptake value (3.32, 3.12, 2.97 and
2.43 mmol·g−1 at 300, 320, 340 and 360 K, respectively). The values for propylene for the same tempera-
tures were 2.73, 2.64, 2.31 and 1.84 mmol·g−1, respectively. Experimental results were obtained for the
two gases fitted using Langmuir and Toth models. The former had a varied degree of representation
of the system with a better presentation of the adsorption of the propylene compared to the propyne
system. The Toth model regression offered a better fit of the experimental data over the entire range
of pressures. The representation and fitting of the models are important to estimate the energy in the
form of the isosteric heats of adsorption (Qst), which were found to be 45 and 30 kJ·Kmol−1 for propyne
and propylene, respectively. A Higher Qst value reveals strong interactions between the solid and
the gas. The dynamic breakthrough for binary mixtures of C3H4/C3H6 (30:70 v/v)) were established.
Heavier propylene molecules were eluted first from the column compared to the lighter propyne.
Vacuum swing adsorption was best suited for the application of strongly bound materials in adsorbents.
A six-step cycle was used for the recovery of high purity C3H4 and C3H6. The VSA system was tested
with respect to changing blowdown time and purge time as well as energy requirements. It was found
that the increase in purge time had an appositive effect on C3H6 recovery but reduced productivity and
recovery. Accordingly, under the experimental conditions used in this study for VSA, the purge time of
600 s was considered a suitable trade-off time for purging. Recovery up to 99%, purity of 98.5% were
achieved at a purge time of 600 s. Maximum achieved purity and recovery were 97.4% and 98.5% at
100 s blowdown time. Energy and power consumption varied between 63–70 kWh/ton at the range
of purge and blowdown time used. The VSA offers a trade-off and cost-effective technology for the
recovery and separation of olefins and paraffin at low pressure and high purity.

Keywords: MOFs; Olefin-Paraffin Separation/paraffin; cryogenic separation; vacuum swing adsorption;
pressure swing adsorption; breakthrough curves; Toth model; propylene; propyne

1. Introduction

The vast increase and addiction to energy and plastics are expected to rise in the future.
Light hydrocarbons (C2-C4) are the most demanded materials for polymer industries
around the globe [1]. In specific, C3H6 is the second most important and used hydrocarbon
in the world after ethylene. It is an intermediate material for a vast array of products such
as polyvinyl chloride, polypropylene and most importantly, polyethylene [2].
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Cryogenic distillation is the most conventional and industrially used technology for
the separation of olefins and paraffin. It is used for example to produce 99.9% purity
ethylene from ethylene-ethane mixtures [3–7]. In the case of C2H2/C2H4, C2H4/C2H6,
C3H4/C3H6 and C3H8 system, cryogenic distillation requires a huge number of theoretical
plates to achieve a good gas separation and purity. The most challenging and demanding,
from economic and energy perspectives, is the separation of C3H4 and C3H6 [8–12] as
the relative volatility of their mixture is very close, resulting in a very large separation
column (with upwards of 100 theoretical stages), large reflux ratio and subsequently high
operating and energy costs. Steam/catalytic cracking of higher chain hydrocarbons is
the main method of producing propylene and inevitably contains amounts of propyne.
Propyne (C3H4), with concentrations of 1000–2000 ppm, is produced during steam crack-
ing and is considered to be the main impurity that is known to cause poisoning effect of
the catalyst during the cracking process with a detrimental effect on the production of
propylene [8]. To meet the polymer grade propylene requirements, the content of propyne
must be reduced to less than 5 ppm. It is therefore imperative to remove propyne from
the propylene gas streams to produce the required propylene polymer required grade
gas (>999.99% purity). The separation of propane (C3H8) and propylene is well reported
in literature given its demanding energy requirements and close relative volatilities of
both compounds at the temperature range of 244–327 K [2,13–19]. However, only a few
studies have reported the separation of C3H4/C3H6 mixtures [20–23]. Accordingly, finding
technological alternatives to this conventional separation process have been the intense
focus of research. In addition, alternatives such as adsorption/distillation hybrids, ad-
sorption, and membrane separation permeation using porous materials like zeolites or
metal-organic frameworks (MOFs) were reported [24,25]. Among zeolites, 4A zeolite and
13X zeolite [14,17,26–28] have been intensively reported. MOFS are sometimes referred to
as pours coordinated polymer and are tunable materials that consist of multifunctional
linkers (organic or inorganic) joining metal nodes. A number of very good reviews on
MOFs are available in the literature [24,29,30]. The development of advanced adsorption
technologies based on newly developed metal-organic frameworks opens new frontiers
separations such as propane/propylene, ethylene/ethane, CO2/N2, CO2/CH4 and propy-
lene/propyne [22,31]. However, the separation of propyne and propylene is rarely reported
in the literature. Li et al. [21] reported in 2017 on the best performing MOFs for the separa-
tion of propyne from propylene. The uptake capacities of ELM-12 were about 2.0 mmol·g−1

and 0.0025 mmol·g−1 for Cu(dhbc)2(4,4′-bipy)]. In 2018, Yang et al. [12] reported on the
use of pillared hybrid ultra-microporous (HUM) SiF−2

6 and NboF5
2 as a single molecu-

lar trap of C3H4 at an ultralow concentration of C3H4 in C3H6 mixture and recorded a
new benchmark for the uptake of C3H4 under with a value of 2.0 mmol·g−1. A suitable
separation system is essential for utilization of any sorbent new materials for a specific
separation as it will affect the cost, footprint and process efficiency [32–34]. Compared to
traditional activated carbon or zeolites, MOFs attracted a vast research focus for many gas
separations due to their superior flexibility, tenability and functionality [20,24,25,33,35–42].
Metal-organic frameworks used for olefin separation can be mainly divided into two cate-
gories: open metal site MOFs that results in propylene higher equilibrium selectivity and
MOFs with size sieving optimal pore aperture (elevated kinetic selectivity to C3H6[43,44].
The ability to control their synthesis, functional surface groups, pore size offers the MOFs a
great advantage in targeting specific difficult gas separations. Gases with a clear difference
in molecular size, vapour pressures and other properties, such as CO2/N2, CO2/CH4,
CO/CO2, O2/N2 can be separated due to their different interaction with the MOF struc-
ture [8,10,12,19,45,46]. Gases with very similar molecular weights and vapor pressures
(C3H4/C3H6/C3H8) are very difficult to separate using traditional methods. In the case
of C2H2/C2H4, C2H4/C2H6, C3H4/C3H6 and C3H8 system, cryogenic distillation is used
with a huge number of theoretical plates to achieve a good gas separation and purity. The
most challenging separation is related to C3H4 and C3H6. For example, the kinetic diameter
difference between C2H2 (3.3 Å) and C2H4 (4.84 Å) is 0.9 Å. In the case of C3H4 (4.2 Å)
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and C3H6 (4.6 Å) the 0.4 Å small difference in the kinetic diameter can result in a very
energy-intensive separation process as suggested by Li et al. [22]. The separation of propy-
lene from propyne requires a material with specific molecular sieving ability an affinity
towards propyne over propylene with a high adsorption capacity at ultralow pressures.
Such materials are not well available or documented in the literature. Anion pillared HUMs
are typically three-dimensional coordinated networks of anions such as Ni, Cu or Zn that
are well connected to two-dimensional networks of metal nods. SiF6

2− (SIFSIX), NboF5
2

and ALF5
2− are examples of anion pillar materials that form bridges with organic linkers

in the MOF structure and are reported to have potential application in gas separations such
as C3H6/C3H8 and other lower alkene/alkane separations. The development of a new
class of materials to achieve this particular energy-intensive separation is required.

MOFs distinguish themselves from other porous materials by their modular setup and
framework flexibility which offers a strong π-complexations between these metal sites and
the olefin molecules which can be advantages in e.g., fixed-bed adsorption applications.
Because of the high purity of the olefins needed for polymerization, the desirable high
recovery rates and the accompanying energy, time and capital consuming multi-bed/-step
separation/purification are required. Two basic steps are required in commercial adsorption:
preferential adsorption and regeneration which can be achieved via cyclic adsorption processes
such as pressure (PSA) [3,47–50], vacuum (VSA) [51–56] and temperature (TSA) [57]. SA as a
stand-alone or hybrid combination has been investigated in different studies [32,51,55,58–60].
In PSA at least four to five beds in 4–6 steps are reported. It can be seen that the applicability
and development of effective materials are tightly related to the separation system design,
its configuration, and energy requirements. Fixed bed adsorbed configuration are most
studies given their simplicity, ease of design and versatile ability to screen a large number of
new sorbents compared to fluidized beds. In a typical pressure (vacuum) swing operation
pressurization, adsorption, blowdown and purge are the basic benchmark cyclic operation.
The rinse stage is also added to ensure a high purity product [61]. Changes to the operational
parameters can greatly dictate the purity and recovery of the product.

Using metal-organic frameworks for the specific separation of propyne/propylene is still
at the early stages with few reported studies in literature and the studies of propyne/propylene
separation on metal-organic frameworks are lacking [22]. No reports have been published
on the use of SiFSIX-3-Ni MOF for the separation of propyne/propylene using PSA/VSA or
TSA applications. Such studies are essential to assess the performance of the benchmark MOF
materials in realistic industrial application settings. The aim is to bridge the gap between
material design and real-world engineering applications. In addition, as earlier reports [12]
indicate that C3H4 and C3H6 are strongly absorbed within the MOF structure, VSA appli-
cation has the advantage of the recovery of such strongly bond gas under sub-atmospheric
conditions. Accordingly, in this investigation, the experimental work related to the separation
of propyne from propylene mixture is investigated. Firstly, the synthesized MOF is character-
ized by morphology and pore structure. In addition, single gas adsorption uptake behaviour
on the adsorbent was established under various temperatures (300–360 K) and a variety of
pressures (10–100 kPa) using Rubotherm manganic balance. Isotherms were fitted to two
main isotherms (Langmuir and Toth models). The investigation also considered the kinetic
breakthrough for 30:70% (v/v) C3H4/C3H6 gas mixtures in a single fixed-bed column set
up. Once the base equilibrium and dynamic behaviour of the single and multi-gas mixtures
were established, the VSA system consisting of 6 steps (adsorption, depressurization, rinsing,
blowdown, purge and pressurization) was tested. Effect of different operation times of purge
and blowdown stages were tested with respect to the product (propylene) purity, recovery
and productivity. The energy requirements were established to assess the trade-off conditions
required to best operate the system for optimal recovery and separation of propylene.

2. Materials and Methods

All used reagents and chemicals were of analytical grade purity mostly supplied by
Sigma-Aldrich. Single pure gases were supplied by Buzwair Inc. Qatar supplied from with
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99.99% purity. Synthesis of SIFSIX-3-Ni (Ni(pyrazine)2SiF6)n -SIFSIX-3-N: SIFSIX-3-Ni is
one of the hybrid ultra-microporous class of MOFs reported recently and they combine
ultramicropores (<0.7 nm). It is mainly formed from transition metals linked by organic
ligands and inorganic anions [62].

(size D1:5.03, D2:3.75, D3:4.6 Å3), is pyrazine-based metal-organic frameworks and
was prepare following the method described in earlier work [63,64]. In short 3 mol of
Ni(NO3)2, 6 mmol pyr., 3 mmol of (NH4)2SiF6

2− were dissolved in 4 mL of deionized
water and stirred for 2 days. The slurry was then filtered under a vacuum then submerged
in methanol for 24 h. The samples were then dried in a convection oven at 150 ◦C overnight.
The resultant blue powder was then degassed to activate the sorbent ahead of experimental
work. An illustration showing the linkers and pyrazine is shown in Figure 1.
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Figure 1. Illustrative structure of SIFSIX-3-Ni.

Morphology and microporosity: Brunauer–Emmett–Teller (BET) analysis were con-
ducted using liquid nitrogen. After 3 h of degassing, the adsorption and desorption
under vacuum conditions were conducted at 150 ◦C. The BET surface area was established
and was found to be around 368 (m2·g−1). Pore size and pore volumes were 0.36(nm)
and 0.167 (cm3·g−1), respectively. Full experimental details are described in detail in
Khraisheh et al. [63].

Powder X-Ray diffraction patterns were collected using Panalytical Empyrean diffrac-
tometer. Continues scanning mode was used (Cu Kα = 1.54 Ǻ) with an operating power of
40 Kv and fixed divergence slit of 0.76 mm. Thermogravimetric analysis (TGA) were con-
ducted under N2 gas. Fourier-transform infrared spectroscopy (FTIR) (using Bruker Vertex
80) for the adsorbents was conducted in the range of 4000–400 cm−1. The SEM analyses
were conducted following standard protocols and discussed in detail in Khraisheh et al. [63].

Single pure gas adsorption uptake experiments were conducted using Rubotherm
Prazisionsmesstechnik (GmbH, Bochum, Germany). The system was equipped with a
magnetic suspension balance (MSB) and integrated gas dosing system (GDS). Adsorption
and desorption were facilitated by an automated Teledyne pump (Isco 260D) allowing
pressurization and depressurization up to a max 35 MPa. An illustration of the system
and its components are shown in Figure S1. The change in temperature and pressure
occurs in a stepwise controlled fashion. The system is also equipped with the required
pressure transducers and temperature sensors. Ahead of any equilibrium experiments, the
system and the sample (typically around 0.1–0.2 g) are evacuated under helium at 400 K
for few hours under vacuum conditions until no weight change is detected and the system
is assumed to have reached equilibrium. The required operating temperature can also be
adjusted and the adsorption isotherms for propylene (propylene) and propyne (propyne)
at 300, 320, 340 and 360 K.

The dynamic breakthrough and the vacuum swing uptake adsorption for single and
multicomponent gases were conducted using a fixed-bed stainless steel column config-
uration packed with around 87 g MOF (bed porosity: 0.4; bulk density 389 kg·m−3) as
shown in Figure 2. The vertical column was 0.20 m in diameter and 0.60 m in height.
The temperature was controlled by placing the column is a convection oven that facilitates
the control of the outside temperature. The gas feed in the column was regulated via flow
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controllers. The temperature inside the column was monitored using K-type thermocouples
at three different locations alongside the height of the vertical column at 0.15, 0.4 and 0.6 m
from the bed inlet side (designating, the bottom, middle and top of the column near-wall
respectively). The flow of the gases in and out of the column was regulated using solenoid
valves. The required mix of the binary gas was created by controlling the mass flow of the
pure gases ahead of the column. Mass flow controllers were used to achieve gas purge
(propyne) and rinse (propylene) as indicated in the locations illustrated in Figure 2. Pres-
sure control valves were used to control the column pressure. Gases were analyzed using a
gas chromatograph connected to the apparatus. Temperature, pressure and flow rate were
recorded using a data acquisition system. Breakthrough isotherms for the single gas were
conducted with a 1.2 SLPM (at 100 kPa and 273 K) of a pure gas (propylene or propyne).
The bed is initially flooded with helium at 1 SLPM, 340 K and 150 KPa. When equilibrium is
attained after each experiment, the column is again degassed with helium without having
to change the bed temperature or pressure and to ensure complete degassing and full
regeneration of the bed. For binary systems, the breakthrough was also attained using the
same conditions but the desired gas feeds were obtained via controlling the mass flow of
the pure gases. The molar fraction of propylene to propylene was 30:70% v/v at a flow rate
of 1.2 SLPM. The adsorption bed itself with the packed solid was heated overnight to 423 K
with helium flow ahead of the breakthrough experiments.Energies 2020, 13, x FOR PEER REVIEW 6 of 21 
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Nijverheidsstraat, The Netherlands).

Vacuum pressure swing (VPS) experiments were conducted to effectively separate a
binary 30:70% mixture of propyne and propylene with high propylene purity. The VSP
cycle consisted of 5–6 cycles depending on whether propyne recovery is the main goal or
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propyne and propylene. If both gases are to be recovered the system will have a rinse step.
Similar set-ups were used for the N2 propylene recovery [49,52] and no-rinse was used for
the separation of propane and propylene. Different stages were used in various studies
with VSA cycles were formed using four [34,56,65], five [66] or six [49] steps depending
on the required purity of the product and the nature of the binary system. The 6 steps
cycle of the VSA is then repeated as expressed in S2. The 6 main steps include feed or
adsorption, depressurization/rinse, blowdown, purge and pressurization are presented
in Figure 3. The depressurization was conducted in the countercurrent operational mode.
The experimental conditions in a given VPS cycle are given in Table 1. The first cycle is the
feed step into the adsorption column where the gases are introduced at the entrance of the
bed. The bed at this step was operated at high pressure (250 kPa). The step is followed by
a low-pressure countercurrent depressurization step operated at 100 kPa. To obtain high
purity propylene, a rinse step is used and is operated with no change of pressure from
the previous step. The propylene is obtained in the blowdown step which operates at low
pressure (10 kPa). The purge with propyne is carried out at 10 kPa. The outlet gas stream
from this step can be recovered, recycled or purged as a waste product. The pressurization
takes place using the propyne product until the bed pressure reaches 250 kPa and the
cycle can start again. A trade-off between the low pressure (vacuum) and the purity of the
product is required with respect to increased energy costs. In the rinse and purge stages,
pure gases were used as required.
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Table 1. Experimental operating conditions for typical vacuum pressure swing (VPS) cycles.

Cycle Step Cycle Time (s) Pressure (kPa) Flow Rate (SLPM)
Composition

PROPYNE PROPYLENE

Adsorption 800 250 1.2 0.7 0.30
Depressurization 100 100 -

Rinse 600 100 1.2 1.0 -
Countercurrent

Blowdown 100 (150–250) * 250 down to 10 - - -

Low pressure
Purge 600 10 1 1.0

Countercurrent
Pressurization 50 10–250 1.2 - 1.0

* Blowdown time and purge time indicated inside brackets are used to estimate the effect of those two operational tomes on purity, recovery
and productivity.
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3. Results and Discussion

The SEM analysis of the prepared MOF is shown in Figure 4. Powders consisted
of multi-sized agglomerations that range from 100–600 nm in size. Smooth and uniform
particle shapes were observed with voids present between granules. Small crystal sizes are
very desirable in fixed bed applications as they minimize the mass transfer resistance and
increase the surface area per volume [66]. The prepared materials were tested to ascertain
their bulk purity, identities and crystalline structure using XRD of a set wavelength. A scat-
tering pattern results when a microcrystalline sample is hit by X-Rays, which can be used to
characterize the ordering of the crystalline structure. Figure S3 shows the characterization
of SISFIX-3-Ni in terms of XRD before and after activation as well as FTIR patterns. It can
be seen that XRD was consistent with the reported crystal structure suggesting that the
required phase purity was achieved during the experimental preparation with the required
synthesized framework. The peak 12.4◦ at 2θ corresponded to 100 planes in the SIFSIX-3-Ni
crystal lattice. The peak is more visible and intense than other peaks. It can be inferred that
readily exposed one-dimensional channels are available for the passage of the gas within
the SIFSIX-3-Ni.
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Thermogravimetric analysis TGA was performed to establish the thermal stability of the
material. Tests were performed in temperatures reaching 750 ◦C in the presence of nitrogen gas
(Figure S4). It can be observed that a steeper change in material weight was observed between
280–300 ◦C, resulting in around 15% decrease in mass. The TGA patterns were in agreement
with reported TGAs [43,67,68]. The initial evaporation of water and other volatiles is the most
likely reason for the observed initial loss of mass, however, the larger drop in weight of the
sample at higher temperature can be attributed to the decomposition of the material and the
loss of wall and structural integrity [44,69,70]. Figure S5 shows the N2 adsorption-desorption
isotherm. The shape of the adsorption and desorption isotherms indicated a reversible Type-I
isotherm following IUPAC categorization. This typically is indicative of the formation of
uniform narrow mesopores and a wider distribution of the pores [69–71]. The initial steep rise
in the N2 adsorption-desorption isotherm at the low relative pressure (P/Po less than 0.001)
is typically associated with the formation of established microporosity. The high-adsorbed
volume values at relative pressures higher than 0.8 are reported to be attributed to the N2
capillary condensation in the antiparticle pores and indicating a possible expandable pore and
a flexible structure which may lead to what is known as the gate-opening effect [9,21,22,72].
The N2 adsorption-desorption isotherms did not indicate the presence of a clear hysteresis
loop at a low P/Po ratio. A slight hysteresis effect is present at a higher P/Po ratio.
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3.1. Adsorption of Pure Compounds on SIFSIX-3-Ni

Pure gas-solid adsorption isotherms were determined for temperatures of 300, 320,
340 and 360 K. The uptake values of the two pure gases on SIFSIX-3-Ni are represented
in Figure 5a in mmol·g−1 at pressures ranging from 1–120 kPa. The isotherm trends of
the uptake values vs. the pressures reflects a clear difference in the adsorption ability
of the solid towards the two pure gases. That is, the smaller gas molecule of propyne
was absorbed faster (steeper curves) and in larger uptake quantities compared to those of
propylene in all temperature ranges (300–360 K). The maximum adsorption for propyne
were 3.32, 3.12, 2.97 and 2.43 mmol·g−1 at 300, 320, 340 and 360 K, respectively. The values
for propylene for the same temperature range were 2.73, 2.64, 2.31 and 1.84 mmol·g−1,
respectively. Yang et al. [12] reported on the adsorption uptake values using three different
types of SIFSIX (SIFSIX1-Cu, SIFSIX-2-Cu-i and SIFSIX-3-Ni. The prepared materials
showed steep adsorption at low pressures and temperatures around 298 K. The authors
reported that under low pressure and 700 ppm C3H4 the recorded maximum adsorption
was 2.0 mmol·g−1 for SIFSIX-3-Ni. In this study, the performance of the prepared SIFSIX
MOF is superior when compared to other materials reported in the literature under the
current experimental conditions (Table 2). It can also be noted that a steep increase in the
adsorption capacity at the lower pressure range is more apparent in the case of propyne
and SIFSIX combination at all temperature ranges in comparison with the rest of the
adsorbent/adsorbate systems (Figure 5a). In all cases, the adsorption of propyne is higher
than that for propylene at all temperature ranges and in both adsorbents. A similar
result was reported but, in the propylene, and C3H8 systems on different metal-organic
frameworks [13]. These higher affinity and uptake values can also be related to the better
BET surface area and pore structure of the SIFSIX metal-organic frameworks. The kinetic
diameter of the molecule will have a major effect on the selectivity of one gas over another.
The linear propyne molecule (4.16 × 4.01 × 6.51 Å) is smaller than the larger curve-shaped
propylene (4.64 × 4.16 × 6.44 Å) [22]. Besides, the existence of the methyl group in both
gases makes their kinetic diameter quite close (4.2 and 4.6 Å for propyne and propylene,
respectively). This small difference in kinetic diameter is one of the main reasons for
the difficulty and energy intensity of the separation of the two gases in general and the
large number of theoretical stages needed in the traditional cryogenic distillation used
for the separation. The micropores analysis of the SIFSIX and kinetic diameter (average
4.2 Å) will allow both propyne and propylene to enter the pores. Nonetheless, it seems
that the availability of a large number of anions (SiF6

2−) in the pores and channels of the
framework [22] have a better binding ability for alkynes as compared to alkenes creating
a preferred sieving effect towards propyne. The maximum equilibrium adsorption value
reported here for the SIFSIX MOF was higher than that reported for the same material
and propyne separation (1.87 mmol·g−1) [22]. The difference may be attributed to the
different v/v% ratios used in the reported study. In addition, the value recorded in our
work is similar to the benchmark uptake value reported for UTSA-200 ([Cu(azpy)2(SiF6)]n;
azpy = 4,4′-azopyridine) in the recent work by Li et al. [22]. The main reason for the good
reported selectivity is the small aperture size of the UTSA-200 (3.4 Å) meaning that size
exclusion is the only dominating mechanism in this case compared to stronger interactions
between SIFSIX and the propyne gas. Yang et al. [12] reported that the precise tuning of
the size of the inorganic anion hybrid ultramicroporous materials based on SiF6

2− serves
as a single molecule trap towards propyne. The clear difference in the uptake capacity
at the same temperature and pressures above 10 kPa between propyne and propylene is
indicative of the ability to use this solid to effectively separate the two gases given the
adsorption preference and selectivity of the SIFSIX.

Figure 5a depicts as well the profound effect of the temperature on the adsorption
of the pure gases. Temperatures in the range of 300–360 K were used for pressures up to
100 kPa. The ability of the material to adsorb the gas decreases (for both gases) with the
increase in temperature. The gap between the adsorption uptakes of the solid between the
300–320 K are not as large as those at elevated temperatures (340–360 K). Other adsorption
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systems such as propylene and C3H8 reported in studies showed similar trends with respect
to uptake values vs. temperature [13]. In addition, a study of the adsorption-desorption
behaviours for propyne and propylene on SIFSIX (Figure S6) is essential to ascertain the
reversibility, hence the release of the gases upon generation. It is also evident that the
hysteresis effect is more pronounced in propyne adsorption compared to that for propylene.
This indicated a strong affinity and molecular interactions between propyne molecules
and the structure of the sorbents. For propylene, a small hysteresis is observed. A similar
effect was reported in a recent study by Lin et al. [45] where solids such as SIFSX-1-Cu,
SIFSIX-2-Cu-i, ELM-12 interacted strongly with propyne at pressures less than 20 kPa.
These strong interactions were exhibited in a steep adsorption uptake isotherm at a fixed
temperature over propylene with reported benchmark uptake values [22].
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Table 2. Reported uptake values of propyne and propylene on metal-organic frameworks (MOFs).

Material
Adsorption

Uptake
(mmol·g−1)

Ref Temp (K) Pressure (kPa)

propyne
SIFSIX-3-Ni 3.32 This study 300 10

SIF-Six-2-Cu-i 1.73 [8] 273 0.1
SIFSIX-3-Ni 2.7 [8] 273 0.1
SIFSIX-1-Cu 0.19 [12] 298 0.1

SIFSIX-2-Cu-i 0.2 [12] 298 0.1
SIFSIX-3-Ni 2.65 [12] 298 0.1

[Cu(dhbc)2(4,4′-
bipy)] 0.25 [9] 298 0.1

NK-MOF-Ni 1.83 [8] 273 0.1
NK-MOF-Cu 1.76 [8] 273 0.1

Adsorption isotherms were measure at all temperature ranges, however, only trends
obtained at 300 K were reported in Figure 5b for simplicity. Many models are reported in
the literature to describe the adsorbent capacity for a certain species. The most commonly
used in the case of a gas-solid adsorption system are Langmuir, Freundlich, Sips and
Toth isotherms [13]. The first two models are known as the two-parameter models while
the later models are a hybrid combination of the two-parameter models. Here only the
Langmuir and the Toth are used to fitting the experimental data. The first due to its
simplicity and widespread application and the second (Toth) due to its accuracy over a
large range of data points and experimental conditions. The Langmuir model assumes
monolayer adsorption with similar energy used for all sites on the solid sorbent. In this
isotherm, the saturation adsorption capacity is in Equation (1) (Table 3). The two main
factors of Equation (1) are estimated from experimental data and used to establish the
model fit of the data to the isotherm. The applicability of the isotherm is typically related
to another factor that is associated with the Langmuir model as described in Equation (2)
(Table 3). The value of the separation factor Rl is indicative of the ability of the model to fit
the experimental data. The Toth isotherm [70] (Equation (3), Table 3) is a dual-site isotherm
based on the Langmuir and Freundlich isotherms. A value of n close to 1 is an indication
of the system heterogeneity; a value of 1 reduced the Toth equation back into Langmuir
isotherm. The applicability of this model in a good range of system pressure application
resulted in its wider application in gas-solid adsorption systems.

Statistical analyses were used to evaluate the fit of the experimental data to the
various models. The most-reported parameter used is based on the average absolute
relative deviation (AARD), coefficient of determination (R2). Experimental data are fitted
to isotherms to help predict the general behaviours of the adsorbent adsorbate interactions
and uptake values. The system’s affinity for adsorption is indicated by the value of the
constants calculated. In the case of Langmuir, the linearized form of the Equations (1)
and (3) is used to estimate the equilibrium adsorption uptake amount (qsat) under a given
pressure and temperature system. It is also related to the maximum adsorbed amount
Q. Experimental results obtained for the two gases were analyzed by regression analyses
and all model fits are represented in Figure 5b. From the trends shown in Figure 5b,
it can be seen that the Langmuir had a varied degree of representation of the system with
better presentation of the adsorption of the propylene compared to the propyne system
as reflected by lowered AARD (Table 4) for the range of pressures for the case of SIFSIX
and propyne systems. The Toth model regression offered a better fit of the experimental
data over the entire range of pressures. The representation and fitting of the models are
important to estimate the energy in the form of the isosteric heats of adsorption that is based
on the Clausius–Clapeyron equation. The calculation of the isosteric heats of adsorption
(Qst (kJmol−1)) is essential for the understanding of the strength of the interactions between
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the solid surface and the adsorbate in addition to any energetic heterogeneity in the solid
surface as given in Equation (5) and Table 3.

Table 3. Mathematical expressions used for the representation of experimental data.

Equation Parameter Definition Equation

Langmuir isotherm Q = qsat
kl P

1+kl P

Q (mmol·g−1): adsorption capacity; qsat
(mmol·g−1): equilibrium uptake capacity of the

gas species;
P: system pressure (kPa); kl: isotherm constant

related to the energy of adsorption.

(1)

Separation Factor Rl =
1

1+kl P
Rl separation factor (2)

Toth Isotherm Q = qsat

{(
(kt P)

n

(1+kt)
n

)} 1
n

kt and n are Toth constants specific for
adsorbate-adsorbent pairs; n indicates the

affinity of the adsorption
(3)

average absolute
relative deviation AARD(100%) = 100

N

N
∑

i=1

∣∣∣Qexp−Qpred
Qexp

∣∣∣ Qpred: predicted amounts; Qexp values of Q
obtained experimentally; N: number of the

experimental data points used in the isotherm fit.
(4)

Isosteric heats
of sorption Qst = RT2

(
∂lnP
∂T

)
qsat

P: pressure; T: temperatures; qsa: saturated
equilibrium uptake amount (mmol·g−1). (5)

Purity P C3H6 =
∫ tendpurge

tblowdown FC3H6dt

∑i
∫ tendpurge

tblowdown Fidt

Fi: the molar flow rate of component i (C3H6 and
C3H4) (mol s−1); QF: the volumetric flow rate at

the bed outlet (m3 s−1); Fi = QFCi

(6)

Recovery R C3H6 =
∫ tendpurge

tblowdown FC3H6dt∫ tendpurge
0 FC3H6dt

t: end of purge cycle; QF: the volumetric flow
rate at the bed outlet (m3 s−1) (7)

Productivity
Pd C3H6 =∫ tendpurge

tblowdown FC3H6 MC3H6dt−
∫ tendpurge

trinse FC3H6 MC3H6dt
tcyclems

MCO2: the molecular weight of C3H6 (kg mol−1);
tcycle: the total time of one repeated cycle (h);
[purge, blowdown, rinse]; ms: the adsorbent

mass (kg)

(8)

Power consumption
EVSA =∫ γ

γ−1
QFεtotCRT

η

[(
Pmax
Pmin

) γ−1
γ − 1

]
dt

η: the compressor efficiency; γ: the specific heat
capacity of the gas, C: the gas concentration (mol

m−3); QF: the volumetric flow rate at the bed
outlet (m3 s−1); εtot: the total bed porosity

(9)

Table 4. Isotherm model fitting parameters.

Langmuir Toth

Parameter C3H4 C3H6 Parameter C3H4 C3H6
qsat

(mmol/g) 3.32 2.93 qsat
(mmol/g) 4.09 3.98

kl 0.23 0.21 kt 0.042 0.076
Rl 0.82 0.65 n 0.203 0.019

AARD (%) 13.7 12.2 AARD (%) 0.03 0.04

The isosteric heats of sorption as a function of adsorbed amounts are shown in Figure 5c.
At zero uptake, the maximum value of Qst is attained. For SIFSIX and propyne system, the Qst
zero was around 45 kJ·Kmol−1 and for propylene system, the maximum value was around
30 kJ·Kmol−1. The higher isosteric heat value is related to the strong interactions between
the solid and the gas which is higher for propyne than propylene under the experimental
conditions used. In addition, the general trend for all cases is that Qst decreases gradually
with the increase in uptake rate of the gases on the pore structure of the solids. The continuous
decrease at a similar rate indicates the homogeneity of the pore environment; typically,
as Qst increases with higher uptake rates, heterogeneity of the surface is usually present [13].
In addition, the differences between the propyne and propylene are a good indication of the
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separation possibilities of the two gases. It can also be inferred that the highest value of Qst
was recorded for the lower adsorbate loading (Figure 5c).

3.2. Breakthrough Adsorption

The dynamic breakthrough was established and represented in terms of molar flow
rate values vs. operation time in Figure 6 a for binary mixtures of C3H4/C3H6 (30:70 v/v)).
It can be seen from the trends in Figure 6a that the heavier propylene molecules were
eluted first from the column compared to the lighter propyne molecules upon adsorption
on SIFSIS-3-Ni. This also confirms earlier findings of the stronger bindings and affinities
found between propyne and the SIFSIX adsorbent. The gab showed between the C3H4 and
C3H6 breakthrough lines is a good indication of the ability to separate the two compounds
using SIFSIX MOF confirming the potential application of SIFSIX-3-Ni for the separation.
Figure 6b gives the temperature histories of the column at the various thermocouple
locations (set at the bottom, mid and top of the adsorption vertical column). Around 3500 s,
the desorption starts, and a sharp increase in the outlet molar flow rate of the two gases
is observed. Figure 6b shows that the temperature increases rabidly at the first stages of
operation followed by a return to feed temperature.
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3.3. Vacuum Pressure Adsorption (VPA)

For the VSA, the 6-cycle process depicted in Figure 3 was used for the recovery of
high purity C3H4 and C3H6. The duration of the adsorption (feed) step was set for 800 s
followed by a 100 s depressurization. The rinse and purge time were around 600 s while
50 s were used to increase the pressure in the system (Table 1). Four-column VSA units
(see Figure 3) were required to continues the feed operation of the system under the given
operational conditions. The feed flow rate at each stage was controlled and is given in
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Table 1. The pressure change history in the system is given in Figure 7a while the outlet
flow rate is depicted in Figure 7b. In the adsorption and depressurization cycle, the C3H4
is eluted and the outlet will only have propyne in it. In the rinse stage, no breakthrough
of C3H6 was observed (Figure 7b). In the blowdown stage, the main constituent of the
outlet stream was propylene as well as significant amounts of C3H6 leaves the column at
the purge stage of the VSA cycle which is recovered to the main propylene stream.

Figure 8 shows the temperature and concentration (mol·m−3) of gas as obtained at
the end of each of the cycles at steady-state conditions. At the end of the adsorption and
depressurization operations, the trends can be considered to be similar (Figure 8a,b) to those
in Figure 6. It can be seen that the concentration fronts are sharper. Similar observations
were made for a cycle of N2 and C3H6 [49]. In the rinse cycle (Figure 8c), the C3H6 is fed to
the column and C3H4 is withdrawn. It can be seen that the system is operated in a way to
ensure two-stage fronts of C3H6. Both gases merge near the last stages of the rinse cycle
where the cycle is stopped before the breakthrough of C3H6. The temperature is observed
to increase towards the last third of the column (Figure 8c). Immediately before the end
of the rinse cycle, C3H6 is introduced to the column in the blowdown stage (Figure 8d).
A slight decrease in C3H6 concentration can be seen at the end of the blowdown stage and
the subsequent purge stage (Figure 8e). The end of the VSA cycle is the pressurization
stage where the column is filled with C3H4.
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Figure 9 shows the four VSA cycles (as described in Figure 3) represented here as the
outlet molar flow rate (mmols−1) with respect to cumulative operation time (min). The
figure clearly indicated that cyclic repeatability and consistency was achieved over the four
VPA cycles. A very slight variation was noticed only at the start of the first cycle until the
system attains its steady-state conditions. Propylene molar flow rate at the beginning of the
blowdown stage is at its maximum value before declining with pressure. This steady-state
condition and attainment for more than one cycle operation are advantageous. However,
purity, productivity and recovery are the most common key indicators used to evaluate the
ability of the VSA system to separate the two gases effectively with the required high-grade
purity. The mathematical representation of the three indicators is given in Table 3.

The VSA system was tested with respect to changing blowdown time and purge time
as indicated in Table 1. In addition, the estimated energy requirements were estimated
using Equation (9) (Table 3). In the calculations of the energy consumed, the efficiency of
the compressors and the vacuum pump was assumed to be 70%. In reality, the efficiency,
especially for the vacuum pump, can be lower but the 70% range is acceptable for cal-
culations and a 72% was reported by Qasem [59]. The calculations were made with the
assumptions that the systems attained equilibrium.
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3.4. Energy Consumption, Purity, Recovery and Productivity

Figure 10a,b show the purity and recovery and productivity as a function of different
blowdown cycle times. The trends indicate that the longer the blowdown time the higher
the C3H6 recovery but on the account of decreasing purity. Accordingly, a trade-off time
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can be selected (shorter time of 100 s) which was deemed suitable for operation in the VSA
cycles. This is well supported by the productivity trend (Figure 10b) that supports a shorter
blowdown time (100 s) where the productivity value was highest. Figure 10c represents
the changes of purity and recovery with respect to the purge cycle time (600–750 s) while
Figure 10d depicts the impact of the changing productivity with respect to change in purge
time. The increase in purge time had a positive effect on C3H6 recovery but reduced
productivity and recovery. Accordingly, under the experimental conditions used in this
study for VSA, the purge time of 600 s was considered a suitable trade-off time for purging.
Figure 10e,f shows the power consumption used in the VSA system under consideration
with respect to the changes in purge and blowdown time respectively. The increase in
the blow downtime (at 600 s Purge) resulted in nearly the same energy consumption
requirement. On the other hand, a vast difference was noticed in the energy requirements
when the purge time increased from 600 to 750 at a blowdown time of 100 s. Although the
amount of desorbed C3H6 was not changed with the prolonged purge time, the overall
time for the completion of the VSA will change in addition to the energy requirements.
Recovery up to 99%, purity of 98.5% were achieved at a purge time of 600 s. Maximum
achieved purity and recovery were 97.4% and 98.5% at 100 s blowdown time. Energy and
power consumption varied between 63–70 kWh/ton at the range of purge and blowdown
time used. The times given here were suitable for use with the bed dimensions and in
agreement with those suggested in other studies [52]. A much shorter purge time was
reported for a CO2 and N2 separation system where the blowdown time was 100 s and
purge time was changed between 50–150 s [38,59,73]. The smaller reported purge time was
consistent with the small adsorption bed that has a length of 0.07 m and an inner diameter
of 0.4 cm. The bigger columns in addition to the times employed in this study are in more
agreement with scaled-down industrial application cycles and represent more realistic
operating conditions.
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time; (d) productivity of C3H6 with change in purge time; (e) power consumption with respect to different blowdown times
and purge of 150 s; (f) power consumption as a function of blowdown time for 600 s purge time.
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4. Conclusions

In this work benchmark SIFSIX-3-Ni uptake removal of C3H4 from a stream of C3H6
was achieved with a value of 3.32 mmol·g−1 under the experimental conditions and set
us used in this study. Toth mathematical isotherm represented the adsorption data well
over the full range of pressures and for both gases. High isosteric heats of adsorption were
obtained for propyne (45 kJ·Kmol−1) compared to around 30 kJ·Kmol−1 for propylene
indicating a strong affinity for the C3H4 on the MOF. Breakthrough experiments ascertained
the ability of the MOF to separate the two materials with the heaviest molecule being eluded
first from the top of the fixed bed. 6-step vacuum pressure swing adsorption process was
used to develop and test the separation under real industrial conditions to facilitate the
understanding of the performance and effectiveness of MOF for the C3H4/C3H6 separation.
C3H6 can be successfully separated under controlled VSA cycle conditions with the best
purity, recovery and productivity at blow downtime of 100 s and a purge time of 600 s. At
such conditions, recovery up to 99%, purity of 98.5% were achieved. While a maximum
achieved purity and recovery were 97.4% and 98.5% at 100 s blowdown time. Energy and
power consumption varied between 63–70 kWh/ton at the range of purge and blowdown
time used.
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