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Abstract: This paper proposes an energy management system (EMS) of direct current (DC) microgrid.
In order to implement the proposed EMS, the control and operation method of EMS is presented in
this work. While most of the studies have individually examined the grid-connected mode used in
building and the stand-alone operation mode applicable to the island, the proposed EMS allows it to
be used in both grid-connected mode and stand-alone mode with 10 modes. In order to determine
each mode in EMS, not only the amount of generated power, load power, and the state of charge
(SOC) of the battery, but also the rated power of the energy storage system (ESS) converter that
performs charging and discharging operations is additionally considered. Thus, various uncertainties
that may occur in the actual DC microgrid environment can be improved. A laboratory-scale DC
microgrid is fabricated to conduct experimental validation of proposed EMS. Experiments of DC
microgrid with proposed EMS were performed for each mode, and the experiment waveforms of
each power conversion device are included in detail.

Keywords: energy management system; DC microgrid; grid-connected; stand-alone; distributed
generation; centralized control

1. Introduction

In today’s modern society, various types of loads increase exponentially, and the
expansion of power generation, transmission and system facilities are required every year.
However, as a global energy issue, a new paradigm is shifting from two perspectives. The
first is to develop and expand alternative energy based on renewable energy sources (RESs)
such as wind and solar energy. Another is a study on direct current (DC) microgrid that can
improve distribution efficiency by reducing power conversion stages along with designing
a high-efficiency power conversion device to cope with the increasing demand for digital
loads. For this reason, research on distributed energy resources (DERs) using eco-friendly
energy and research on DC microgrids is increasing rapidly around the world.

DC Microgrid using low voltage direct current (LVDC) generally has a voltage range
of up to 1500 Vdc and is for distribution networks used in daily life, such as light emitting
diode (LED), office-based electronic devices, and battery charging stations [1,2]. In such a
DC microgrid, various distributed energy resources (DERs) are applied, and these are used
in connection with RESs, which are recently spotlighted as distributed generation (DG).
In this case, since intermittent power generation occurs, uncertainty of power supply in
the DC microgrid occurs [3]. In addition, since the load in the DC microgrid is instanta-
neously variable, severe fluctuations in the power and voltage of the DC microgrid are also
inevitable. In order to improve this, an energy management system (EMS) was required to
apply the energy storage system (ESS) to DC microgrid for smart and stable operation.
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For the control structure of the EMS to control DC microgrid, there exist decentralized
control and centralized control methods [4]. These Centralized and Decentralized control
structures are shown in Figure 1. In the case of centralized control, there is a central
controller, and based on the digital communication line (DCL), it transmits a reference to
control the power conversion device in the DC microgrid and communicates to receive
data signals for monitoring. This has the advantage of high reliability, but requires cost
and complexity to build DCL [5–7]. In the decentralized control scheme, since DCL does
not exist, it is independent from complex communication technologies. Therefore, a
communication noise problem can be avoided [8–10]. The decentralized control method is
typically performed based on the droop control method [11]. The local controller controls
the converter by itself, but at this time, there is a limitation of the control performance
because information of other power conversion devices cannot be obtained.
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The EMS transmits reference signal for instantaneous operation with power conversion
devices in the DC microgrid. EMS is generally composed of a hierarchical control structure
belonging to the centralized control method [12]. Many studies have been conducted
based on this hierarchical control structure [13–15]. There are three control layers in the
hierarchical control structure, which are divided into tertiary control, secondary control,
and primary control. Through this EMS structure, it is possible to operate by monitoring
and controlling the status of the DC microgrid in consideration of the power generation
of DERs. The reliability and stability of the DC microgrid can be improved with this
EMS structure.

These EMSs were studied for various purposes, depending on the location, size, and
application of the system [16–18]. Camps built in military units or rural areas have offered
hybrid energy systems to replace fuel supplies from diesel engine power generation, but
lacked explanation for the operation method [19]. In order to implement EMS, a study
using linear programming and rule-based control was carried out in DC microgrid and
EV applications [20,21]. It is possible to operate in consideration of the utility cost of DC
microgrid through linear programming applied as a mathematical optimalization method.
In addition, rule-based control is operated by applying predefined rules for operation.
Moreover, there are 36 different modes of study for the operation of DC microgrids,
but the state of charge (SOC) of batteries is not considered and mode implementation
is complex [22]. In addition, there is a study on the centralized control strategy of the
laboratory scale for microgrid, but it is necessary to deal with details on how to control and
operate the system [23].
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However, the limitations of most studies on DC microgrid and EMS are as follows: (1)
there is a lack of explanation of individual power conversion devices and control methods
for integrated operation of DC microgrid. (2) The implementation of EMS is complicated
by using too many modes with complex theories, or the contents of the operation method
of EMS are simplified. (3) The laboratory scale of DC microgrid is difficult to implement,
so there is a tendency to include only simulation results and there is a lack of research
integrating actual experiment cases. (4) It contains only the contents of grid-connected
systems, such as buildings, or only the stand-alone mode used in remote areas. This
paper proposes an EMS based on power electronics and power system area for operating
smart DC microgrid. It includes the integrated control and operation of each power
conversion devices such as photovoltaic (PV) converter, wind turbine (WT) converter and
ESS. Proposed EMS consider both grid-connected and stand-alone situations. Furthermore,
it is described as determining the amount of charge and discharge power by considering
the rated power and SOC of ESS through the EMS under distributed power generation and
load power variation. To verify the feasibility and stability of the proposed EMS, the DC
microgrid of the laboratory scale was built and verified by experiment.

2. Control and Operation Method of Proposed Energy Management System for
DC Microgrid

This section describes the control and operation method of proposed EMS. This
research try to use master controller of multi-level inverter (MLI) without using additional
controllers in order to implement centralized control. To implement these central controls,
they are divided into hierarchical control structures. It consists of a master controller
and local controllers used for each power conversion system, where the reference signal
required to be performed by each local controller and the information to be sent to the
master controller differ from each other. Figure 2. shows the configuration of DC microgrid
with EMS.
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To operate DC microgrid, AC power is supplied through conventional AC grid. At
this time, the DC bus is connected with AC grid after converting AC power to DC power
using the interfacing converter (IFC). This method is used in grid-connected mode where
the AC grid and IFC is maintained stably [24]. In grid-connected mode, the DC microgrid
can receive the required power from the AC grid. In addition, bi-directional power control
will be possible using surplus power to regenerate to the AC grid or to perform reactive
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power compensation. On the other hand, if an accident occurs on the AC grid or the power
supply is cut off from the utility operator, it will operate in a stand-alone operation mode
and control the DC bus voltage based on the WT converter. To construct laboratory scale
DC microgrid similar to actual system, the WT system is composed as follows. The motor
generator (MG) set was constructed using the permanent magnet synchronic generator
(PMSG) and DC motor. MG set is used as a source for power control of WT converter [25].

2.1. Control Method of Proposed Energy Management System for DC Microgrid

This subsection covers the control method of each power conversion devices for the
proposed EMS. Figure 3 shows the control block diagram of power conversion devices
with proposed EMS.
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This shows how the input and output signals through the proposed EMS are related
to each power conversion devices of DERs. The hierarchical control structure used in this
paper is divided into three layers. The master controller of the multi-level inverter is a
tertiary controller that continuously receives power and status information from each local
controller to manage the power flow of DC microgrid. At this point, the reference signal is
transmitted to the local controller after determining the reference power value and mode
that each DERs should be responsible for. In addition, the DC bus voltage is continuously
monitored, and reference for maintaining the voltage are also calculated and sent to the
secondary controller. Since the IFC and WT converter control the DC bus voltage, the
controller used in these power conversion devices acts as a secondary controller.

The secondary controller continuously receives reference DC bus voltage signal from
the tertiary controller, and performs control for stable DC bus voltage. In addition, primary
control, which is the lowest level control for the operation of the IFC, is performed as AC
current control for DC bus voltage, power factor, and reactive power control. At this time,
if the IFC is broken and the DC bus voltage cannot be maintained, the tertiary controller
sends an instruction to perform this secondary control by the WT converter rather than
the IFC. As a result, in the event of failure of the IFC, the WT converter not only controls
DC bus voltage, but also performs the secondary and primary control simultaneously to
maintain the DC bus voltage. The controller used for the PV converter is the primary
controller, which controls the voltage and current with perturbation & observation based
maximum power point tracking algorithm [26]. The controller used in the ESS converter
is also a primary controller that determines the charge and discharge by the power and
currents determined by the tertiary controller, based on which the control to charge or
discharge the battery is carried out.

As a result, the DC microgrid can be controlled through the control method of the
power conversion devices of each DERs. In order to implement this control and operation
of DC microgrid, it requires the EMS to determine the reference values according to the
generated power, load power and SOC of battery, and so on.

2.2. Operation Method of Proposed Energy Management System for DC Microgrid

This subsection deals with the operation methods for determining the the mode and
reference signal values according to the generated and load power of various DERs and
SOC. Figure 4 shows flowchart for proposed EMS of the DC microgrid.

In order to operate EMS using the master controller of a multi-level inverter, there
is a part that stores basic information of the power conversion devices that make up DC
microgrid. Then there is the temporary storage portion of information and instantaneous
power received. Information from the components that make up DC microgrid can be
divided into rated power and SOC of battery SOCbat. The rated power of a multi-level
inverter PMLI_rated is 10 [kW], the rated power of a PV converter PPV_rated is 1.8 [kW], the
rated power of an ESS converter PBAT_rated is 5 [kW], and the rated power of a WT converter
PWT_rated is 13.3 [kW], and the rated power of a DERs that make up a DC microgrid
is controlled by the master controller. In addition, to prevent overcharging and over-
discharge of batteries, the maximum SOC and the lowest SOC were defined as SOCbat_max
and SOCbat_min, as 90 [%] and 20 [%], respectively.

The information received by each power conversion device is the amount of output
power of DERs. The output power of PV converter PPV, WT converter PWT and battery
charge/discharge of ESS PBAT will be received as the master controller from each local
controller. In addition, SOCbat is received from the ESS converter which is calculated by
coulomb counting method [27]. Depending on the failure of the interfacing converter or
AC system, a StateGrid signal is received to distinguish grid-connected from stand-alone
mode to determine the fault condition.
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In order to control the power flow of DC microgrid, the generated power and load
power of the DERs must be calculated. Based on the output power of PV converter PPV
and output power of WT converter PWT, the generated power PDG and load power PLoad
are calculated as below.

PDG = PPV + PWT
PLoad = PMLI + PDCL

}
(1)

where, PMLI is output power of multi level inverter and PDCL is output power of DC
load. After receiving the information and instantaneous power of each power conversion
device, it is classified as grid-connected mode for StateGrid = 1 and stand-alone mode for
StateGrid = 0. Figure 5 shows the flowchart of proposed energy management system for
operation method in grid-connected mode.
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When operating in grid-connected mode, the amount of generated power of DERs PDG
in the DC microgrid is firstly compared to the amount of load power PLoad. If the amount of
generated power is greater than the load power (PDG > PLoad) is classified into the charging
mode (Mode 1) or export power mode (Mode 2, 3), which is determined by the SOCbat,
amount of charging power (PDG − PLoad) and rated power of ESS converter PBAT_rated.

2.2.1. Grid-Connected Mode

If the SOCbat, becomes smaller than the maximum SOC limitations of the battery, the
EMS will determine that the battery is capable of charging, so the battery charging mode
(mode 1) is executable. The charging power is then determined by comparing the surplus
power (PDG − PLoad) to the rated power of the ESS converter PBAT_rated. If the surplus power
is less than or equal to PBAT_rated (PDG − PLoad ≤ PBAT_rated), the ESS converter performs
charging operation as much as amount of the reference power of ESS P*

BAT. P*
BAT is

calculated as Equation (2).

P∗
Bat = PDG − PLoad = (PPV + PWT)− PLoad > 0 (2)

In the event of surplus power above PBAT_rated (PDG − PLoad > PBAT_rated), the battery
must be limited in charge, so it must be operated in charging and export mode (mode 2)
which regenerates surplus power to the AC grid with battery charging. At this time, the
P*

BAT is the determined as Equation (3).

P∗
Bat = PBat_rated (3)

In this case, surplus power is generated, and since the interfacing converter performs DC
bus voltage control, the power corresponding to Equation (4) is regenerated to the AC system.

PIFC = PDG − PLoad − PBat_rated > 0 (4)

If the SOCbat is larger than SOCbat_max, the battery cannot be charged any more for
avoiding overcharging. Therefore, export power mode (mode 3) is selected in order to
regenerate the surplus power to the AC grid. In this case, the ESS converter does not perform
the charging and discharging operation, and the power of Equation (5) is regenerated to the
AC system through the DC bus voltage control of the interfacing converter.

PIFC = PDG − PLoad > 0 (5)

As a result, when the PDG of the DERs is higher than the load power PLoad in the grid
connection mode, EMS determined the mode among the battery charging mode (mode
1), the charging & Export power mode (mode 2) and export power mode (mode 3). The
EMS determines the mode and transmits the corresponding reference power, and the EMS
keeps sending the reference power until the next information is received.

On the other hand, there is a case in which the load power PLoad is higher than the
generated power PDG due to the intermittent output of the DERs in the grid connection
mode. In this case, the SOCbat and SOCbat_min are compared to determine whether the
battery can perform the discharge operation. If the value of SOCbat is higher than SOCbat_min,
the discharge operation can be performed. Next, it is compared as to whether the value
of required power for discharge is greater than or equal to the negative rated capacity
PBAT_rated of the ESS converter. The required amount of power supply can be calculated
by subtracting PLoad from the PDG. In this case, since the amount of load power is higher,
the amount of surplus power has a negative value. In other word, insufficient power is
generated. When this is compared with −PBAT_rated and the value is larger, the operation
is performed as a battery discharge mode (mode 4) in which all the amount of power
supplied through the battery can be supplied.

P∗
Bat = PDG − PLoad = (PPV + PWT)− PLoad < 0 (6)
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However, if the power supply is required with a negative value smaller than the
rated capacity that the ESS converter can discharge −PBAT_rated, it operates in the battery
discharge and import power mode (mode 5) where the discharge amount is limited as
shown in Equation (7).

P∗
Bat = −PBat_rated (7)

The additionally required amount of power is imported from the AC grid, and the
required power is as shown in the following Equation (8), and the intefacing converter
imports power from the AC grid while performing DC bus voltage control.

PIFC = PDG − PLoad − PBat_rated < 0 (8)

If SOCbat is smaller than SOCbat_min, the battery cannot be discharged any longer, and
thus the operation is performed as an import power mode (Mode 6). In this case, the
ESS converter does not perform the charging and discharging operation, and the power
of Equation (5) is imported from the AC grid through the DC bus voltage control of the
intefacing converter.

PIFC = PDG − PLoad < 0 (9)

Therefore, when the generated power PDG is less than the load power PLoad in the grid
connection mode, ESS takes the discharge mode of the battery or an Import power mode.
According to the rated capacity of the ESS converter, EMS determines the battery discharge
mode (mode 4), discharge and import power mode (mode 5), and import power mode
(mode 6) to operate the DC microgrid.

2.2.2. Stand-Alone Mode

Interfacing converters generally perform DC bus voltage control. If DC microgrid discon-
nects from the AC grid due to a grid accident, the grid connection mode cannot be maintained
anymore. In this case, the grid-connected can no longer be performed by the method of
detecting overvoltage and overcurrent of the AC grid among the internal slave control of the
intefacing converter. The grid-connected operation is stopped to protect the DC microgrid,
and a signal of StateGrid = 0 is generated to deliver the information to EMS. Through this, EMS
determines the operation as a stand-alone mode, and performs the operation algorithm of the
DC microgrid in the stand-alone operation mode as shown in Figure 6.

When the stand-alone mode is determined, the generated power PDG and the load
power PLoad are compared as in the grid connection mode. When the generated power
PDG becomes larger than the load power PLoad, the battery operates in the charging mode
(mode 7). In the case of the battery charging mode in mode 7, it is the same as in the
grid-connected mode. In case of stand-alone mode, when PLoad is higher than the PDG, EMS
determines among the battery discharge mode (mode 8) or discharging & load constraint
mode (mode 9) or load constraint mode (mode 10).

In the case of the battery discharging mode (mode 8), the mode 8 occurs under the
same conditions as the grid-connection mode (mode 1). When the amount of required
power by the load in the DC microgrid exceeds the rated capacity −PBAT_rated, the discharge
power of the battery is limited as −PBAT_rated. The additionally required load power is
operated in discharge & load constraint mode (Mode 9), which is limited as shown in the
following Equation (10).

P∗
Bat = −PBat_rated

P∗
Load_limit = −(PDG − PLoad + PBat_rated)

}
(10)

where, P*
Load_limit is the limited load power reference of the multi-level inverter, by checking the

load power PLoad from the master controller instantaneously and reducing the speed reference
value in a ramp form to limit it as the limited load power reference P*

Load_limit. As the power
amount PLoad is limited and some amount of power is regenerated from the AC load, it operates
as a constraint mode that can prevent a sudden drop in voltage at the DC bus side.
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However, when the amount of load power is larger than the amount of generated power,
if the SOC of the battery SOCbat becomes smaller than the SOCbat_min, the discharge operation
cannot be performed anymore and the load power cannot be supplied anymore. In order to
prevent a voltage drop at the DC bus side, it operates in a load constraint mode (mode 10) in
which the output power of the load is controlled to zero and the operation is stopped.

In this stand-alone operation mode, since DC microgrid is not connected to the AC
grid, it is not possible to receive power from the AC grid to supply load power when the
ESS can not discharge anymore. In order to operate DC microgrid in stand-alone mode,
proposed EMS determines the mode to control ESS operation and the amount of load
power in stand-alone mode. It is possible to perform stable operation of the DC microgrid
under generated power and load variation with operation method of EMS.

3. Experiment Results

In order to confirm the validity of the proposed EMS, experiments were conducted on
DERs, multilevel inverters and energy storage system. Figure 7 shows the configuration
diagram of the entire experimental system to verify the proposed energy management system.
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The configuration of each power conversion device for experimental set is as follows.
First, Figure 8 is an experimental configuration of an interfacing converter. It consists of two
3-phase AC/DC PWM converters. There is a magnetic contactor (MC) and a control relay
for the electrical connection and isolation between the AC grid and DC bus. In addition,
there is an LCL filter to improve the power quality of the AC grid.
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and a resistive load is used as the AC load. 

Figure 8. Experiment configuration of interfacing converter.

Figure 9a shows the experimental configuration of an ESS converter. Battery is made
to form 240 V by connecting 12 V in series of 20 EA. Figure 10b shows the composition of
a wind turbine system. Here, a 13.3 kW PMSG-based MG set was used. It also shows a
WT converter.

Figure 10a shows the experimental configuration of a PV converter. It shows that the
voltage and current sensors of the PV input side are added to control the PV converter with
MPPT. Figure 10b shows a multi-level inverter. It is composed of 9 power modules and a
resistive load is used as the AC load.

To confirm the validity of the proposed EMS, the generated power and load power
profile of the DC microgrid was simulated for each mode and stable operation is verified
in each mode. The experiment was conducted by dividing into grid-connection mode and
stand-alone mode.
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Figure 10. Experiment configuration of power conversion devices (a) PV converter, (b) MLI.

3.1. Grid-Connected Mode

Figures 11–13 show the experimental waveform in the mode 1. At this time, the
output power of each power conversion device is shown in Table 1. In the First period I,
the interfacing converter that controls the DC bus voltage was operated and the DC load
was connected. At this time, 3.4 kW of DC load power was consumed, and the generated
power was changed by controlling the reverse torque reference of the WT converter. When
the reverse torque reference becomes −332 Nm, wind power generates about 6.6 kW in
period II. Therefore, when the reverse torque reference reaches −332 Nm, the multilevel
inverter using 5 kW of load power and the PV converter generates 1.8 kW.
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Table 1. Output power of each power conversion devices in mode 1.

Components
Output Power [kW]

Components
Output Power [kW]

I II III I II III

Interfacing Converter 3.4 0 0 ESS Converter 0 0 1

PV Converter 0 1.8 1.8 Multi-Level Inverter 0 5 5

WT Converter 0 6.6 7.6 DC Load 3.4 3.4 3.4

At this period II, the total generated power of the DERs is about 8.4 kW and the load
power is also about 8.4 kW, so no power is supplied from the AC grid. In the period III,
if the reverse torque reference is changed to −382 Nm, the surplus power becomes 1 kW,
and the EMS of the multilevel inverter master controller transmits the reference power to
the ESS converter, thereby surplus generated power is charged by ESS converter as shown
in Figure 13. Therefore, the DERs is responsible for all the power used by the load. Since
the surplus generated power does not exceed the rated power of ESS converter, all of the
surplus generated power is charged to the ESS in mode 1.

Figures 14–17 shows the experimental waveform in operation mode 2. At this time,
the output power of each power conversion device is shown in Table 2. As in the previous
operation mode 1, when 6.6 kW of power is generated by changing the reverse torque
reference of the WT converter to −332 Nm, the PV converter generates 1.8 kW power as
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shown in Figure 17. In this period II, the ESS converter charges 5 kW. After that, if the
reverse torque reference is changed to −382 Nm again, the WT converter generates 7.6 kW
power, 1 kW of surplus power is exported to AC grid in period III.
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Table 2. Output power of each power conversion devices in mode 2.

Components
Output Power (kW)

Components
Output Power (kW)

I II III I II III

Interfacing Converter 3.4 0 −1 ESS Converter 0 5 5
PV Converter 0 1.8 1.8 Multi-Level Inverter 0 0 0
WT Converter 0 6.6 7.6 DC Load 3.4 3.4 3.4

As a result, if the load is less than the generated power and the surplus power is larger
than the rated power of the ESS, 1 kW remained power is regenerated to AC grid in mode 2.

Figures 18–21 shows the experimental waveform in mode 3 situation. At this time,
the output power of each power conversion device is shown in Table 3. The mode 3
is the same as the previous operation modes until the 6.6 kW power generation of WT
power generation in the period II. At this time, when the EMS receives that the SOC of
the ESS exceeds SOCbat_max, it commands the ESS not to charge excess power anymore.
Therefore, if the reverse torque reference of the WT converter is changed to −433 Nm, the
generated power of the WT power generation becomes 8.6 kW. The remained power 2 kW
is regenerated to the AC grid in the period III.
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Table 3. Output power of each power conversion devices in mode 3.

Components
Output Power (kW)

Components
Output Power (kW)

I II III I II III

Interfacing Converter 3.4 0 −2 ESS Converter 0 0 0
PV Converter 0 1.8 1.8 Multi-Level Inverter 0 5 5
WT Converter 0 6.6 8.6 DC Load 3.4 3.4 3.4

Figures 22–25 shows the experimental waveform in mode 4. The output power of
each power conversion device is shown in Table 4. In the period II, WT converter generates
6.6 kW and multi-level inverter and DC load power are 5 kW and 3.4 kW respectively. PV
converter generates 1.8 kW. If the reverse torque reference of WT converter is changed to
−282 Nm and the power generation is lowered to 5.6 kW in period III, EMS confirms that
the SOC is greater than SOCbat_min, and then the insufficient power is provided by the ESS
converter. Therefore, ESS converter discharges when the generated power decreases due to
the change of the reverse torque reference of WT converter as shown in Figure 25.
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Table 4. Output power of each power conversion devices in mode 4.

Components
Output Power (kW)

Components
Output Power (kW)

I II III I II III

Interfacing Converter 3.4 0 0 ESS Converter 0 0 −1
PV Converter 0 1.8 1.8 Multi-Level Inverter 0 5 5
WT Converter 0 6.6 5.6 DC Load 3.4 3.4 3.4

Figures 26–29 shows the experimental waveform in mode 5. The output power of
each power conversion device is shown in Table 5. In the period I of mode 5, WT converter
generates 6.6 kW and multi-level inverter and DC load power are 5 kW and 3.4 kW
respectively. PV converter generates 1.8 kW. In the period II, if the reverse torque reference
of WT converter is changed to −282 Nm and the power generation is lowered to 5.6 kW,
EMS determines the discharging power reference as much as −1 kW. After that, the reverse
torque reference of WT converter is changed to −80 Nm and the power generation power
is lowered to 1.6 kW in the period III then generated power becomes the same as PBAT_rated,
the rated power of ESS. In the period IV, if the load connected to the multi-level inverter
is changed from 5 kW to 7.3 kW as shown in Figure 28, the amount of the load power
becomes more than the maximum amount of generated power and ESS discharging power,
so additionally required power is imported from the AC grid. Therefore, 2.3 kW of power
flows into the DC microgrid.
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suming 5 kW. In the period 3, the DC load was changed from 3.4 kW to 6.8 kW as shown 
in Figure 32. At this time, if EMS checks that SOCbat is less than SOCbat_min, the ESS converter 
commands not to discharge anymore. Therefore, 3.4 kW of load power, which is less than 
the generated power, is imported from the AC grid system as shown in Figures 30 and 31. 
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Figure 28. Experiment waveforms of DC load and multi-level inverter in mode 5.
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Table 5. Output power of each power conversion devices in mode 5.

Components
Output Power (kW)

Components
Output Power (kW)

I II III IV I II III IV

Interfacing Converter 0 0 2.3 2.3 ESS Converter 0 −1 −5 −5
PV Converter 1.8 1.8 1.8 1.8 Multi-Level Inverter 5 5 5 7.3
WT Converter 6.6 5.6 1.6 1.6 DC Load 3.4 3.4 3.4 3.4

Figures 30–33 shows the experimental waveform in mode 6 situation. At this time,
the output power of each power conversion device is shown in Table 6. In the period II of
mode 6, the reverse torque reference of WT converter is given −332 Nm to generate 6.6 kW.
At this time, the PV converter is generating 1.8 kW and multilevel inverter is consuming
5 kW. In the period 3, the DC load was changed from 3.4 kW to 6.8 kW as shown in
Figure 32. At this time, if EMS checks that SOCbat is less than SOCbat_min, the ESS converter
commands not to discharge anymore. Therefore, 3.4 kW of load power, which is less than
the generated power, is imported from the AC grid system as shown in Figures 30 and 31.
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Table 6. Output power of each power conversion devices in mode 6.

Components
Output Power (kW)

Components
Output Power (kW)

I II III I II III

Interfacing Converter 3.4 0 3.4 ESS Converter 0 0 0
PV Converter 0 1.8 1.8 Multi-Level Inverter 0 5 5
WT Converter 0 6.6 6.6 DC Load 3.4 3.4 6.8

3.2. Stand-Alone Mode

When a problem occurs in the AC grid, the WT converter replaces the interfacing
converter to perform secondary and primary control. In order to perform mode 7, the
grid-connected mode is switched to the stand-alone mode. The mode 7 operates in grid-
connected mode before switching to stand-alone mode. In this case, PV converter generates
1.8 kW power. The 6.8 kW for DC load and 5 kW for multi-level inverter is consuming
respectively. Therefore, when 10 kW of power from the AC grid is flowing into the DC
microgrid, a fault signal was given to the EMS as AC grid problem. Table 7 shows the
output power of each power conversion devices in mode 7. In EMS, the magnetic contactor
connecting the interfacing converter and the DC bus is opened, and at the same time, the
WT converter is supervised to maintain the the DC bus voltage as shown in Figure 34.

Table 7. Output power of each power conversion devices in mode 7.

Components
Output Power (kW)

Components
Output Power (kW)

I II I II

Interfacing Converter 10 0 ESS Converter 0 1
PV Converter 1.8 1.8 Multi-Level Inverter 5 4
WT Converter 0 10 DC Load 6.8 6.8
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Through this, it was verified that the stand-alone mode switching and the operation of 
mode 7 were performed stably. 

 
Figure 35. Experiment waveforms of DC load and multi-level inverter in mode 7. 

Figure 34. Experiment results of mode transition from grid-connected mode to stand-alone mode (a)
configuration of experiment set-up, (b) waveforms of interfacing converter and WT converter.



Energies 2021, 14, 581 22 of 26

In the period I, it is assumed that the interfacing converter is operating in grid-
connected mode, and the AC grid is disconnected at the point 1 At this time, the StateGrid is
changed to zero, and the WT converter performs DC bus voltage control for stand-alone
mode operation. Interfacing converter stops operating at the same time. The MC #1 which
is used to connect between the interfacing converter and DC bus is separated. At the
point 2, the MC #3 on the AC grid side is separated. As a result, interfacing converter is
completely disconnected from the DC microgrid. At the point 3, the MC #2 is turned on to
discharge the remaining DC capacitor voltage of the interfacing converter.

After that, when the DC microgrid operates stably, the power consumed by the
multilevel inverter is reduced from 5 kW to 4 kW as shown in Figure 35. Therefore, 1 kW of
surplus power remains, so this power is charged to the ESS as shown in Figure 36. Through
this, it was verified that the stand-alone mode switching and the operation of mode 7 were
performed stably.
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In mode 8, the experiment was conducted in a stand-alone mode in which WT con-
verter maintains the DC bus voltage. Table 8 shows the output power of the power
conversion device in mode 8. In Mode 8, WT converter and PV converter generating 0 kW
and 1.8 kW respectively. The DC load power is 6.8 kW and the multi-level inverter power
is 5 kW. At this time, if the output power of the multilevel inverter is changed to 6 kW as
shown in Figure 37, the insufficient power of 1kW is commanded by EMS to supply from
the ESS converter as shown in Figure 38.
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Table 8. Output power of each power conversion devices in mode 8.

Components
Output Power (kW)

Components
Output Power (kW)

I II I II

Interfacing Converter 10 0 ESS Converter 0 −1
PV Converter 1.8 1.8 Multi-Level Inverter 5 6
WT Converter 0 10 DC Load 6.8 6.8
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termines that there is no additional power because it already uses all the power of the 
generation and ESS, and sends reference to stop the operation of the multilevel inverter 
as shown in Figure 40. This load constraint mode can also cut off the load under the mode 
10. 
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In operation mode 9, the PV converter generates 1.8 kW and the ESS discharges
1.6 kW. At this time, 3.4 kW DC load is connected. Table 9 shows the output power of each
power conversion device. If the DC load of 3.4 kW is changed to 6.8 kW, the ESS discharges
the maximum rated power of 5kW as shown in Figure 39. After that, even if you try to
use the load power additionally by operating the multilevel inverter, the EMS determines
that there is no additional power because it already uses all the power of the generation
and ESS, and sends reference to stop the operation of the multilevel inverter as shown in
Figure 40. This load constraint mode can also cut off the load under the mode 10.
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Table 9. Output power of each power conversion devices in mode 9.

Components
Output Power (kW)

Components
Output Power (kW)

I II I II

Interfacing Converter 10 0 ESS Converter −1.6 −5
PV Converter 1.8 1.8 Multi-Level Inverter 0 0
WT Converter 0 10 DC Load 3.4 6.8
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Through the experimental results in stand-alone mode, it was verified that DC mi-
crogrid is stably operated with proposed EMS under various generated power and load 
power. Since the AC grid is not connected with DC microgrid in the stand-alone mode, it 
is important to supply power to the load and perform stable operation using power con-
version devices in the DC microgrid. Therefore, load constraint mode is required in stand-
alone mode. In order to implement stand-alone mode operation in the actual DC mi-
crogrid, it is considered that the type of load is classified into critical loads and non-critical 
loads. As a results, it was verified that the proposed EMS operates stably in experiment 
results when the various situations that can be occurred in both grid-connected mode and 
stand-alone mode depending on the amount of generated power, load power, and SOC. 

4. Conclusions 
In this paper, EMS for DC microgrid was proposed. In order to implement the pro-
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The reference signals controlled by each power conversion device are described through 
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Through the experimental results in stand-alone mode, it was verified that DC mi-
crogrid is stably operated with proposed EMS under various generated power and load
power. Since the AC grid is not connected with DC microgrid in the stand-alone mode,
it is important to supply power to the load and perform stable operation using power
conversion devices in the DC microgrid. Therefore, load constraint mode is required in
stand-alone mode. In order to implement stand-alone mode operation in the actual DC mi-
crogrid, it is considered that the type of load is classified into critical loads and non-critical
loads. As a results, it was verified that the proposed EMS operates stably in experiment
results when the various situations that can be occurred in both grid-connected mode and
stand-alone mode depending on the amount of generated power, load power, and SOC.
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4. Conclusions

In this paper, EMS for DC microgrid was proposed. In order to implement the
proposed EMS, each power conversion device and control method is defined and described.
The reference signals controlled by each power conversion device are described through
the operation method of the proposed EMS. The operation method of the EMS determines
modes and reference power of ESS by considering the generated power, load power, SOC,
and the rated capacity of the ESS. In order to verify the proposed EMS, laboratory scale
DC microgrid for integrated operation of renewable energy sources such as PV and WT,
ESS, multi-level inverter, and interfacing converters was fabricated and experiment is
conducted. For experimental verification of proposed EMS, situation of each mode was
implemented. Through this, it was verified through an experiment that the proposed EMS
operates stably in each operation mode even if the generated power and load power is
fluctuated. In addition, it can be confirmed that the operation of the proposed EMS is
stably performed from the viewpoint of the both power system and power electronics. It is
considered that many experiment waveforms in this research will be helpful in reader’s
future work. This paper involves study with the following significance: (1) This study
described combined with explanation of individual power conversion devices and control
methods for integrated operation of DC microgrid. (2) The operation method of proposed
EMS can be simply implemented comparing with conventional complex research. (3) The
laboratory scale of DC microgrid is fabricated and proposed EMS is verified in actual
experiment cases. (4) Proposed EMS contains both of grid-connected and stand-alone
mode so that it is practical and feasible in real application of DC microgrid installed
in building, island, rural area. This study was thanks to support from Korea institute
of energy technology evaluation and planning (KETEP) for research and development
of LVDC distribution system and DC microgrid. This was great help in fabricating a
laboratory-scale DC microgrid and conducting this research. In the future, various ideas
and activation of research about DC microgrid and EMS are expected based on the control
and operation method of proposed EMS.
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