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Abstract: Heavy-duty trucks contribute approximately 20% of fuel consumption in the United States
of America (USA). The fuel economy of heavy-duty vehicles (HDV) is affected by several real-world
parameters like road parameters, driver behavior, weather conditions, and vehicle parameters, etc.
Although modern vehicles comply with emissions regulations, potential malfunction of the engine,
regular wear and tear, or other factors could affect vehicle performance. Predicting fuel consumption
per trip based on dynamic on-road data can help the automotive industry to reduce the cost and time
for on-road testing. Data modeling can easily help to diagnose the reason behind fuel consumption
with a knowledge of input parameters. In this paper, an artificial neural network (ANN) was
implemented to model fuel consumption in modern heavy-duty trucks for predicting the total and
instantaneous fuel consumption of a trip based on very few key parameters, such as engine load (%),
engine speed (rpm), and vehicle speed (km/h). Instantaneous fuel consumption data can help to
predict patterns in fuel consumption for optimized fleet operations. In this work, the data used for
modeling was collected at a frequency of 1Hz during on-road testing of modern heavy-duty vehicles
(HDV) at the West Virginia University Center for Alternative Fuels Engines and Emissions (WVU
CAFEE) using the portable emissions monitoring system (PEMS). The performance of the artificial
neural network was evaluated using mean absolute error (MAE) and root mean square error (RMSE).
The model was further evaluated with data collected from a vehicle on-road trip. The study shows
that artificial neural networks performed slightly better than other machine learning techniques such
as linear regression (LR), and random forest (RF), with high R-squared (R2) and lower root mean
square error.

Keywords: heavy-duty vehicles; center for alternative fuels engines and emissions; average fuel
consumption; machine learning; linear regression; random forest; artificial neural network

1. Introduction

The fuel efficiency of heavy-duty trucks can be beneficial not only for the automotive
and transportation industry but also for a country’s economy and the global environ-
ment [1,2]. The cost of fuel consumed contributes to approximately 30% of a heavy-duty
truck’s life cycle cost. Reduction in fuel consumption by just a few percent can significantly
reduce costs for the transportation industry [3,4]. The effective and accurate estimation
of fuel consumption (fuel consumed in L/km) can help to analyze emissions as well as
prevent fuel-related fraud. As per Environmental Protection Agency (EPA) reports, 28%
of total greenhouse gas emissions come from transportation (heavy-duty vehicles and
passenger cars) [5]. The United States Environmental Protection Agency (US EPA) has
introduced Corporate Average Fuel Economy (CAFÉ) standards enforcing automotive
manufacturers to be compliant with standards to regulate fuel consumption [6,7]. US EPA
regulations enacting fuel economy improvements in freights released in 2016 target truck
fuel efficiency, which is predicted to improve by 11–14% by 2021 [8]. Most states have now
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mandated that truck fleets update their vehicle inventory with modern vehicles due to air
quality regulations.

Several studies have been presented in the past for evaluating the fuel efficiency of
vehicles using simulation-based models and data-driven models. A simulation model
was developed based on engine capacity, fuel injection, fuel specification, aerodynamic
drag, grade resistance, rolling resistance, and atmospheric conditions, with simulated
dynamic driving conditions to predict fuel consumption [9]. A statistical model which is
fast and simple compared to the physical load-based approach was developed to predict
vehicle emissions and fuel consumption [10]. The impact of road infrastructure [11],
traffic conditions [12–14], drivers’ behavior [15], weather conditions [16–18], and the
ambient temperature on fuel consumption were studied, and it was determined that
fuel consumption can be reduced by 10% with eco-driving influences. The era of big
data and artificial intelligence has enabled the modeling of huge volumes of data for
companies to reduce emissions and fuel consumption. Machine learning techniques such as
support vector machine (SVM) [19], random forest (RF) [20], and artificial neural networks
(ANN) [21,22] are widely applied to turn data into meaningful insights and solve complex
problems. These techniques have been applied to estimate emissions and fuel consumption
in motor vehicles [23], trucks [24], ships [25], and aircraft [26]. A comparison of previous
studies has been shown in Table 1.

While the current approaches determine the fuel consumption of the vehicle, combin-
ing these techniques with data helps to identify parameters that may cause anomalies, such
as malfunctions due to wear and tear of the engine, improper maintenance, engine failure,
exhaust after-treatment system, and external factors like climate, traffic, road conditions,
etc. Most studies in the literature have been limited to passenger cars [21,27], light-duty
vehicles [28], heavy-duty vehicles [29], or were based on a huge number of parameters or
limited dynamic data collected during on-road trips. The relative importance of various
factors influencing fuel consumption was reviewed in the past [30,31]. However, modeling
modern heavy-duty trucks with very few parameters is much more complicated.

This current study models fuel consumption in modern heavy-duty trucks based on
portable emissions monitoring system (PEMS) data collected during on-road testing. An
artificial neural network was developed to predict the total fuel consumed by a vehicle
on a trip based on very few key parameters, such as engine load (%), engine speed (rpm),
and vehicle speed (km/h). The model also provides the trend in fuel consumption for the
trip, which give insights into the diagnostic performance of the truck affected by the input
parameters. The model can predict the total fuel consumed more accurately with a mean
absolute error of 0.0014 and root mean square error of 0.0025 compared to other techniques
such as linear regression [32] and random forest [20].

Table 1. Comparison of research results from previous studies.

Predicted Variable Input Parameters Method (Hidden
Neurons Per Layer) Result Reference

Fuel Consumption in
passenger cars

Cubic Capacity,
Quantity of cylinders,
Quantity of valves,
Maximum Power,
Maximum Torque,
Compression Rate,
Kerb Weight of Vehicle,
Type of Engine,
Fuel Injection,
Type of charge,
Gearbox,
Drivetrain.

ANN (22-10-3)
ANN (20-10-3)

R2 ≥ 0.98; RMSE = 5–8%
R2 ≥ 0.98; RMSE = 6–10%

[23]
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Table 1. Cont.

Predicted Variable Input Parameters Method (Hidden
Neurons Per Layer) Result Reference

Fuel Consumption in
trucks

Road Gradient,
Torque% at the start,
Torque% at the end,
Average Acceleration,
Gross Vehicle Weight,
Road curvature radius,
Longitudinal Profile Variance at 3 m,
Longitudinal Profile Variance at 10
m,
Longitudinal Profile Variance at 30
m,
Vehicle Speed,
Cruise control,
Used Gear.

SVM
RF
ANN

R2 = 0.83; RMSE = 5.12;
MAE = 3.56
R2 = 0.87; RMSE = 4.64;
MAE = 3.21
R2 = 0.85; RMSE = 4.88;
MAE = 3.46

[24]

Fuel Consumption based
on floating vehicle data

Driver Gender,
Driver Age,
Transmission Type,
Fuel Type,
Weight,
Mileage,
Speed, Time,
Location

ANN (9-4-1)
ANN (9-6-1)
ANN (9-8-1)
ANN (9-10-1)
ANN (9-12-1)

MSE = 0.00032692
MSE = 0.00037202
MSE = 0.00019523
MSE = 0.00009996
MSE = 0.00025849

[33]

Brake Specific Fuel
Consumption and Exhaust

Temperature in Diesel
Engine

Engine Speed,
Brake Mean Effective Pressure,
Injection Timing.

ANN (3-7-2)

Mean Relative Error for
BSFC = 1.93%
Mean Relative Error for
Exhaust Temperature =
2.36

[34]

Fuel Consumption

Engine Size,
Distance,
Fuel Type,
Speed,
Weight.

Radial Basis Function
Neural Network (RBFNN)
(5-15-1)

Maximum Error
Percentage = 0.024
Absolute Average Error =
0.022071

[35]

2. Methodology

Regression analysis was performed using Machine Learning techniques such as Ar-
tificial Neural Network, Linear Regression, and Random Forest to estimate the fuel con-
sumption of modern heavy-duty trucks using PEMS data. The preprocessed dataset, which
related to a single vehicle, contained 672,658 rows of actual torque (Nm), vehicle speed
(km/h), and engine speed (rpm), which were used as inputs for the models. The im-
plementation stages of the artificial neural network for fuel consumption modeling are
as described:

• Creating a database with data collected using PEMS devices during on-road testing of
modern heavy-duty vehicles;

• Eliminating test trips that are less than 5 min duration as the trips may not capture
information sufficient for the model to generalize well;

• Selecting the parameters that affect the fuel consumption based on parameters col-
lected and domain knowledge;

• Performing correlation analysis on the input parameters selected to eliminate multi-
collinear variables;

• Developing the neural networks and identifying the network with best-performing
hyperparameters. The hyperparameters include the number of hidden layers, number
of hidden neurons per layer, learning rate, and optimization function;

• Calculating the correlation coefficient on the reduced database using the best-performing
model selected;

• Perform the generalization analysis of the model by calculating the performance
measures such as MAE, RMSE, and R2;
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• Evaluating the performance of the model by comparing the predicted values with the
actual values collected during on-road testing.

Figure 1 shows the overall workflow for this work.
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2.1. Data Collection and Pre-Processing

Data collection methods such as onboard emission measurement [36], laboratory
measurement, and tunnel study [37] have been used in past. An on-road data collection
method using PEMS is increasingly being used, which makes it possible to collect real-
world fuel consumption and emission data [38], and has proved to be reliable [39]. The
data used in the current study was collected using a PEMS device mounted on the vehicle
during on-road testing at a frequency of 1Hz. PEMS software outputs for the sensor ports
were used to process second by second data into a comma-separated values (CSV) file
for each trip. Over 100 parameters such as fuel rate (L/h), engine speed (rpm), speed
(km/h), gas temperature, CO2, NOx, GPS altitude, GPS longitude, GPS latitude, etc.
were collected for each trip based on data logger settings. Data were collected from two
modern heavy-duty trucks with the same make/model of diesel engine manufactured in
Detroit in 2016 were used in this study. The trucks were Cascadia models manufactured
by Freightliner with DD13 engines and used as goods movement trucks. The on-road
tests were performed in California, the fuel consumption during these on-road tests were
recorded, and the cumulative fuel consumed per trip was calculated by summing the
values. The vehicles were tested for multiple on-road trips with different routes, drivers,
and conditions. However, modeling with too many parameters might overfit the ANN
model resulting in poor performance. Hence, a subset of 10 features based on previous
studies and domain knowledge was selected. These features included trip number, engine
speed (rpm), trip distance (km), vehicle speed (km/h), fuel temperature (◦C), fuel rate
(L/s), accelerator pedal position (%), actual torque (Nm), power (kW), and engine load (%).

For better modeling of the neural network, the data collected must be representative.
The raw dataset contains noise/missing values, redundant values, and outliers due to
failure in the sensor or the sensor not having been enabled for recording. With feature
engineering, the raw data is transformed into features that better represent the relation
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between features to the predictive model, resulting in better performance accuracy. The
interpretation of the regression model is complex when independent variables are multi-
collinear. Highly correlated independent variables overfit the model as a change in one
variable causes significant change to another. Hence, to identify the multi-collinear vari-
ables, a correlation matrix that determines the correlation coefficient of each variable with
every other variable in data is shown in Figure 2.
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The last four rows and columns of the correlation matrix indicate that the independent
features accelerator pedal position (%), actual torque (ft−lb), power (bhp), and engine load
(%) are highly correlated to each other with a correlation coefficient of 0.85 and higher.
Hence, to prevent overfitting of the model, only engine load (%) of the four parameters
was used in modeling. Feature dimension can further be reduced by identifying the highly
correlated features with the target variable fuel rate (L/s). The recursive feature elimination
(RFE) method was used to identify and plot the feature importance scores. RFE determines
the features based on the desired number by searching the subset of features starting
with all features and recursively removing features. Feature importance of the remaining
features, including engine load (%), accelerator pedal position (%), fuel temperature (deg
C), vehicle speed (km/h), trip distance (km), and engine speed (rpm) concerning fuel
rate (L/s), was determined with the RFE technique, and the top three features with the
highest scores were selected for modeling. Based on the feature analysis, three independent
features, namely engine load (%), vehicle speed (km/h), and engine speed (rpm), with
high importance were selected for modeling the dependent feature fuel rate (L/s) and to
identify patterns in fuel consumption.

2.2. Artificial Neural Network

Artificial neural networks is a machine learning technique inspired by biological
neurons to create an accurate time-efficient predictive model [40]. ANN consists of multiple
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neurons which are computational, and the connections between neurons determine the
functionality of the network [41]. The building block for a neural network is a neuron that
represents the weighted sum of inputs passed through a non-linear activation function.
The multi-layer perceptron (MLP) network is a type of neural network that consists of
the input layer, one or more hidden layers, and an output layer. The initial layer takes
the parameters/features as inputs to the network. At least one hidden layer is used to
perform computations on input data by applying a non-linear activation function. The
final output layer displays the output based on the task the network is trained for. ANN
has gained popularity due to its adaptive learning ability and approximating non-linear
functions to make predictions [42]. In this study, a feed-forward neural network [43] where
data is transmitted from the input layer to output layer in a forward direction assigning
weights to the connection between layers with a backpropagation algorithm [44], ReLU [45]
activation, and the mean square error function, was used. The backpropagation algorithm
is a learning method used to optimize the weights of neurons in a neural network by
repeatedly adjusting the weights to minimize the error of prediction. The network used for
this work has three inputs to the input layers, two hidden layers with six and eight neurons
in the respective layers, and an output layer with a single neuron as shown in Figure 3.
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The available dataset of vehicle 1 was divided into train and test sets, with 70%
to train the network, and 30% as a validation dataset, to test the generalization of the
network [46]. The trained model weights were then used to make predictions on unseen
test data (a single trip from vehicle 2). The performance of a neural network depends
on many hyperparameters like the learning rate, number of epochs for training, initial
weights, number of hidden layers, and the number of neurons in hidden layers. Multiple
experiments were performed with different hyperparameters and the best results for the
optimal network are presented in the results section.

2.3. Multiple Linear Regression

Linear Regression (LR) is the most well-known regression technique where the data
is fitted to a straight line to predict output by minimizing a cost function or error. In
this study, a multivariable linear equation given by Equation (1) is used due to multiple
input parameters.

y = θ0 + θ1x1 + θ2x2 + θ3x3 (1)

where, y is the output and x1, x2, x3 are the input variables with θ0, θ1, θ2, θ3 being
parameters to learn.
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2.4. Random Forest

Random Forest (RF) is an ensemble machine learning method for regression and
classification tasks. This method uses many decision trees, and the outcome is based on
predictions of these decision trees. Thus, the accuracy of the model can be improved by
increasing the number of trees, making it robust to outliers. In this study, the random
forest was trained with 100 trees, as the performance with more than 100 trees did not
significantly improve accuracy and is computationally expensive.

3. Performance Measures

The performance of the machine learning model for the regression problem was
evaluated using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R-
Squared (R2).

3.1. Mean Absolute Error

Mean Absolute Error (MAE) is the measure of error between the predicted value and
the actual value given by Equation (2).

MAE =
1
N

N

∑
t=1
|ypred,t − yactual,t| (2)

where, ypred,t is the predicted value and yactual,t is the measured fuel consumption at the
same instant of time.

3.2. Root Mean Squared Error

Root Mean Squared Error (RMSE) is the square root of the average squared difference
between the predicted value and the actual value given by Equation (3). The smaller the
value, the closer the predicted values to actual values.

RMSE =

√√√√ 1
N

N

∑
t=1

(ŷ− y)2 (3)

where, ŷ is the predicted value and y is the measured fuel consumption at the same instant
of time.

3.3. R-Squared

R-Squared (R2) is the statistical measure of variance for the dependent variable ex-
plained by the regression model given by Equation (4).

R2 = 1− SSres

SStotal
(4)

where, SSres is the sum of squares of residuals and SStotal is the total sum of squares.

4. Results and Discussion

This study presents the fuel consumption modeling for modern heavy-duty vehicles
using PEMS data under various driving conditions, different routes, and external factors.
Engine Load (%), Engine Speed (rpm), and Vehicle Speed (km/h) were used as inputs
for the ANN. Based on the hyper-parameter tuning, the neural network was trained for
100 epochs with a learning rate of 0.00001. During each epoch, the loss for each data
item/batch in the training dataset and validation dataset was calculated. The loss plots
shown in Figure 4 indicate the mean absolute error (MAE) and mean square error (MSE)
on both training data and validation data.



Energies 2021, 14, 8592 8 of 12

Energies 2021, 14, x FOR PEER REVIEW 8 of 12 
 

 

3.3. R-Squared 

R-Squared (R2) is the statistical measure of variance for the dependent variable ex-

plained by the regression model given by Equation (4). 

𝑅2 = 1 − 
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
 (4) 

where, 𝑆𝑆𝑟𝑒𝑠  is the sum of squares of residuals and 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 is the total sum of squares. 

4. Results and Discussion 

This study presents the fuel consumption modeling for modern heavy-duty vehicles 

using PEMS data under various driving conditions, different routes, and external factors. 

Engine Load (%), Engine Speed (rpm), and Vehicle Speed (km/h) were used as inputs for 

the ANN. Based on the hyper-parameter tuning, the neural network was trained for 100 

epochs with a learning rate of 0.00001. During each epoch, the loss for each data item/batch 

in the training dataset and validation dataset was calculated. The loss plots shown in Fig-

ure 4 indicate the mean absolute error (MAE) and mean square error (MSE) on both train-

ing data and validation data. 

  

(a) (b) 

Figure 4. Neural network performance plots. (a) Mean absolute error and (b) mean square error plots during ANN training 

for training and validation data. 

The minimum generalization gap of training and validation data loss plots indicates 

a good fit. The generalization of the neural network was tested on test data collected from 

a single trip of another vehicle. From Figure 5, the data points close to the line indicate the 

neural network model can accurately predict the fuel consumption with few outliers. The 

points far away from the regression line indicate outliers in data that were not captured 

by the neural network due to sudden transitions in vehicle speed (km/h) and engine speed 

(rpm) where fuel consumption was high. 

To determine the total fuel consumed by vehicle, the cumulative fuel consumption 

was calculated by adding the instantaneous fuel rate values for every second. The perfor-

mance measures described in Section 3 were used to evaluate the model and the values 

obtained are MAE: 0.0009, RMSE: 0.0021 for the training data. The R2 value of 0.7806 on 

the test data and 0.7762 on the train data indicate that the neural network model is gener-

alized well for unseen data. 
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for training and validation data.

The minimum generalization gap of training and validation data loss plots indicates a
good fit. The generalization of the neural network was tested on test data collected from a
single trip of another vehicle. From Figure 5, the data points close to the line indicate the
neural network model can accurately predict the fuel consumption with few outliers. The
points far away from the regression line indicate outliers in data that were not captured by
the neural network due to sudden transitions in vehicle speed (km/h) and engine speed
(rpm) where fuel consumption was high.
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Figure 5. Comparison of instantaneous fuel for the predicted data and the actual measured data.

To determine the total fuel consumed by vehicle, the cumulative fuel consumption was
calculated by adding the instantaneous fuel rate values for every second. The performance
measures described in Section 3 were used to evaluate the model and the values obtained
are MAE: 0.0009, RMSE: 0.0021 for the training data. The R2 value of 0.7806 on the test data
and 0.7762 on the train data indicate that the neural network model is generalized well for
unseen data.

The cumulative fuel consumption with distance was plotted against the actual data
to determine how well the neural network predicted total fuel consumption. To evaluate
the performance, the neural network predictions were compared with predictions of linear
regression and random forest. The performance metrics MAE, RMSE, R2 are compared in
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Table 2. Figure 6 shows the plots for comparison of cumulative fuel consumed for distance
traveled for all models. The neural network prediction was closer to the actual measured
data when compared to the linear regression model, which overestimated, and random
forest, which underestimated the cumulative fuel consumed. The neural network model is
better compared with other models because of its ability to predict values close to actual
values. Also, the neural network model can be fine-tuned without developing a new model
to perform the same task for complex learning on other vehicle types.

Table 2. Comparison of performance on test dataset.

Model MAE RMSE R2
Fuel

Consumed (L)
(Measured)

Fuel
Consumed (L)

(Predicted)
% Error=( Measured−Predicted

Measured )

Artificial
Neural

Network
(3-6-8-1)

0.0014 0.0025 0.7806 10.05 10.05 0

Linear
Regression 0.0018 0.0029 0.7340 10.05 10.57 −0.05

Random Forest 0.0018 0.0030 0.7210 10.05 9.55 0.04Energies 2021, 14, x FOR PEER REVIEW 10 of 12 
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Figure 6. Comparison of total fuel consumed with different models.

Based on the input features that were modeled it is easy to determine the parameter
affecting the fuel consumption in case of anomaly. This study presents an efficient and
practical method of estimating fuel consumption per trip, based on very few parameters for
which data is easily available. The cost incurred in modeling the data is very low compared
with other simulation methods that also consume more time.

5. Conclusions

In conclusion, the study demonstrates the modeling of fuel consumption in modern
heavy-duty vehicles with an artificial neural network using very few technical parameters.
An attempt was made to develop a model using very few parameters collected under
different conditions. Data from modern heavy-duty trucks with the same make and model,
driven by different persons on various routes under different external conditions, were
used for training the artificial neural network. The model relies on very few parameters that
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could be obtained quickly and easily from a vehicle during a trip, unlike other parameters
such as road grade, latitude, longitude, traffic information, etc. Moreover, the three
parameters used were able to capture a minimum of 78% of the variance in the fuel
rate compared to other studies where many parameters are used. Adding more input
parameters would improve the performance of ANN, but collecting such data might require
additional equipment setup. The performance measures MAE, RMSE, and R2 indicate that
accurate prediction can be obtained with the model. The data modeling can help to identify
the trend in instantaneous fuel consumption and to calculate the total fuel consumed by
the vehicle for each trip, which can further help in diagnosing vehicle performance in the
case of abnormalities. Models that are accurate, fast, and able to predict in real-time will
enable the optimization of fuel consumption. The model can be fine-tuned easily to model
more complex data from other vehicles with different makes and models that do not have
the amount on-road data needed to train a network. This work can be extended to include
other factors such as time, traffic information, road information, GPS data, etc. that affect
fuel consumption, and to estimate vehicle exhaust emissions.
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23. Ziółkowski, J.; Oszczypała, M.; Małachowski, J.; Szkutnik-Rogoż, J. Use of Artificial Neural Networks to Predict Fuel Consumption

on the Basis of Technical Parameters of Vehicles. Energies 2021, 14, 2639. [CrossRef]
24. Perrotta, F.; Parry, T.; Neves, L. Application of machine learning for fuel consumption modeling of trucks. In Proceedings of the

IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 5 September 2021; pp. 3810–3815. [CrossRef]
25. Kim, Y.-R.; Jung, M.; Park, J.-B. Development of a Fuel Consumption Prediction Model Based on Machine Learning Using Ship

In-Service Data. J. Mar. Sci. Eng. 2021, 9, 137. [CrossRef]
26. Baumann, S.; Neidhardt, T.; Klingauf, U. Evaluation of the aircraft fuel economy using advanced statistics and machine learning.

CEAS Aeronaut J. 2021, 12, 669–681. [CrossRef]
27. Wang, H.; Fu, L.; Zhou, Y.; Li, H. Modelling of the fuel consumption for passenger cars regarding driving characteristics. Transp.

Res. Part D Transp. Environ. 2008, 13, 479–482. [CrossRef]
28. Zeng, I.Y.; Tan, S.; Xiong, J.; Ding, X.; Li, Y.; Wu, T. Estimation of Real-World Fuel Consumption Rate of Light-Duty Vehicles Based

on the Records Reported by Vehicle Owners. Energies 2021, 14, 7915. [CrossRef]
29. Schoen, A.; Byerly, A.; Hendrix, B.; Bagwe, R.M.; Santos, E.C.d.; Miled, Z.B. A Machine Learning Model for Average Fuel

Consumption in Heavy Vehicles. IEEE Trans. Veh. Technol. 2019, 68, 6343–6351. [CrossRef]
30. Zhou, M.; Jin, H.; Wang, W. A review of vehicle fuel consumption to evaluate eco-driving and eco-routing. Transp. Res. Part D

Transp. Environ. 2016, 49, 203–218. [CrossRef]
31. Zacharof, N.; Fontaras, G.; Ciuffo, B.; Tsiakmakis, S. Review of in Use Factors Affecting the Fuel Consumption and CO2 Emissions of

Passenger Cars; EUR 27819 EN; Publications Office of the European Union: Luxembourg, 2016. [CrossRef]
32. Freedman, D.A. Statistical Models: Theory and Practice; Cambridge University Press: Cambridge, UK, 2009; p. 26.
33. Du, Y.; Wu, J.; Yang, S.; Zhou, L. Predicting vehicle fuel consumption patterns using floating vehicle data. J. Environ. Sci. 2017, 59,

24–29. [CrossRef]
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