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Abstract: Underground mining machines, such as wheel-tyre drilling rigs, are articulated and
equipped with booms that project far beyond the undercarriage. Such a structure makes these
machines prone to losing stability. Hence, it is necessary to analyse the distribution of masses and
geometry as well as their broadly understood stability during the entire design process, taking into
account many factors resulting from the manner and conditions of their operation. However, there
are no appropriate computational models that would enable analytical tests to be carried out for
machines with this kind of construction. This article is concerned with the author’s computational
model, which allows the stability of single- and twin-boom drilling rigs to be quickly assessed. The
model makes it possible to perform analyses without having to solve differential equations that are
present in dynamic models or using specialist software based on CAD and CAE tools. The developed
model allows determination of the pressure of wheels and jacks as a function of many important
parameters and variables. Additionally, the distances of the centre of gravity from the tipping edge
are calculated. The developed computational model was verified by comparing the obtained results
with the results of the full dynamic model, the results of model tests carried out in the CAD/CAE
program, and the results of empirical tests of wheel and jack pressures on the ground for the selected
drilling rig. The model was subjected to verification and validation, which proved that it was fully
correct and useful. The model was used to prepare a practical and user-friendly calculation sheet.
Apart from the numerical values, the calculation sheet contains a graphical representation of the
machine, the location of the centre of gravity, the tipping edges, as well as graphs of the wheel and
jack pressures. Next, analytical tests of the stability of the selected drilling rig were carried out. The
obtained calculation results are consistent with the results of empirical research. The computational
model and the spreadsheet provide handy tools used during the design process by one of the Polish
company’s producing drilling rigs.

Keywords: stability of drilling rigs; drilling rig dynamics; model tests; dynamic model; physical
model; mathematical model; simulation tests; CAD/CAE tools

1. Introduction

Self-propelled mining machines, such as wheel drilling rigs, have an articulated
structure, which due to the use of long booms, working conditions, and requirements
regarding the turning radii is prone to losing stability. Figure 1 shows a diagram of a
single-boom drilling rig. In Figure 1a, the side view is presented, whereas in Figure 2b,c,
the rear view. The drilling rig consists of a rear body 1 seated on an oscillation axle 5
(Figure 1b). Between the rear body 1 and the oscillation axle 5, there is a joint 6 with
a horizontal axis. The articulated oscillation axle enables driving on an uneven surface
(Figure 1c). The rear body 1 is connected to the platform 2 by means of a joint with a
vertical axis 4. The articulated connection of the rear body and the platform together with
appropriate hydraulic cylinders is responsible for the turning of the machine. One or two
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booms 3 are attached to the platform. More booms, three or, less frequently, four, are used
only in the case of very big rigs.
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taking bends, the machine is turned by an angle of up to 40° and, additionally, in narrow 
workings, the booms swing sideways, sometimes by more than 10°. During operation, the 
booms extend far beyond the outline of the machine chassis and allow holes to be made 
in underground workings with a cross-section of several dozen square meters. Typically, 
the booms tilt 45° upwards, 25° downward, and 35° to 55° sideways. In addition, during 
operation, the telescopic booms extend by approximately 1.5 m. Therefore, during both 
manoeuvring and operation, these machines tend to lose stability. The stability of self-
propelled mining machines is a key issue, especially in the process of developing new 
solutions that meet the high demands of users and difficult working conditions. 
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Figure 2. Example of a twin-boom Face Master 2,3 drilling rig produced by Mine Master (Mine Master 2021), (a) view of the
machine, (b) arrangement during a cornering manoeuvre.

Figure 2a shows a Face Master 2,3 drilling rig produced by Mine Master [1], whereas
Figure 2b presents its arrangement when driving in excavations. The total length of drilling
rigs reaches ca 11–14 m, the width is approximately 1.8–2.5 m, and the height is 1.5–3.0 m.
The total weight ranges from 13 tons to even 30 tons. The wheelbase is approximately
3–4 m, and the booms extend more than 6 m beyond the front axle. When taking bends,
the machine is turned by an angle of up to 40◦ and, additionally, in narrow workings, the
booms swing sideways, sometimes by more than 10◦. During operation, the booms extend
far beyond the outline of the machine chassis and allow holes to be made in underground
workings with a cross-section of several dozen square meters. Typically, the booms tilt
45◦ upwards, 25◦ downward, and 35◦ to 55◦ sideways. In addition, during operation, the
telescopic booms extend by approximately 1.5 m. Therefore, during both manoeuvring
and operation, these machines tend to lose stability. The stability of self-propelled mining
machines is a key issue, especially in the process of developing new solutions that meet the
high demands of users and difficult working conditions.
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Such a machine is stable when its centre of gravity is inside the triangle defined by
the centres of the front wheels and the centre of the oscillation axle (Figure 3a). The lines
connecting these points are called the edges of tipping. During cornering manoeuvres, the
centre of the oscillation axle moves and, at the same time, the resultant centre of gravity
of the machine shifts strongly towards the tipping edge, thus reducing the stability of the
machine (Figure 3b). The situation is worsened by inclined excavations and boom swing.
An incorrectly designed machine can be prone to losing its stability.
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Currently, modern methods and tools are used to design and test working machines,
including mining machinery [2–6]. Computer-aided design (CAD) and computer-aided
engineering (CAE) programs have been applied, and theoretical models and research
stands have been developed [7–10]. Ergonomics and occupational safety are gaining
increasing importance [11]. Increasingly more new solutions of machines and machine
elements are being developed on an ongoing basis [12–15]. From the very beginning of the
drilling rig design process, it is necessary to analyse the values of the mass, geometry, and
the location of the centres of gravity of key components while simultaneously assessing
the stability of the machine. Stability is influenced by the longitudinal and transverse slope
of the excavation, the turning of the machine body, and the rotation of booms. In addition,
sudden braking and driving on uneven terrain should be taken into account. Currently,
theoretical models enabling quick analyses and assessment of the stability of such machines
are not available. It is possible to perform simulation tests using CAD/CAE tools, for
example, the Dynamic Simulation module in Autodesk Inventor Professional. However,
such studies are time-consuming and require the. Development of appropriate models
for each machine, which limits the possibility of conducting a comprehensive analysis for
many variants of parameters. It is also possible to create a dynamic model, but it must be
developed for each machine separately, and the results can be obtained after solving the
differential equations.

Information on the stability of the machine can be obtained by conducting test runs and
empirical tests on truck scales Practice shows that for this type of machine, the minimum
pressure of one wheel on the ground above 1000 kg guarantees the stability of the machine.
However, such measurements on the finished machine, for obvious reasons, cannot be
performed at the design stage. Besides, at the time of test runs and empirical research, the
possibility of making any changes is greatly reduced in practice, as it boils down to loading
the machine with ballast in the form of steel sheets.

The stability of various types of working machines is a well-known problem, which
has been extensively described in the literature. Generally speaking, the problem of rollover
stability comes down to analysing the location of the machine’s centre of gravity in relation
to the tipping edge [16]. In addition, especially in the case of cranes, the overturning and
stabilizing moments as well as the tipping stability factor are calculated.
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Machines that are typically prone to overturning, such as cranes, are frequently the
subject of research and articles [17–20]. However, they are based on completely different
design solutions, which usually work after levelling and when the machine is idle.

Solutions applied in articulated machines are closer to those found in the drilling
rigs subjected to analysis. There are general theoretical models for the four-wheel chassis
itself [21] or for vehicles with multiple axles [22]. An interesting articulated machine, but
on a caterpillar chassis, has been presented in one of the articles. The authors showed a
complex dynamic theoretical model and the results of analytical research [23].

Many studies concern agricultural machines, articulated machines, and ones with
rigid frames. Due to machine operation on a terrain with longitudinal and transverse
slopes, there is also a problem of stability. The authors present various static and dynamic
models as well as the results of empirical research [24–26].

As regards articulated mining machines, there are a number of studies on load-haul-
dump (LHD) loaders. In one of the articles, the problems of working machines’ rollover
stability have been presented, with a special emphasis on the various solutions applied in
LHD loaders [27]. The authors focused on the proprietary research stand, which enables
empirical assessment of the stability and the verification of theoretical models. The stand
allows simulation of the inclination of an articulated machine model while measuring
the pressure of the wheels on the ground. In another article, the same authors conducted
a comprehensive study of a loading machine stability and developed an appropriate
theoretical model. As a result, they proposed changes positively influencing the stability of
an articulated wheel loader [28].

Similarly, another team studied the stability of an articulated LHD loader in several
subsequent articles [29–31]. Various dynamic models and several scale versions of the
loader have been developed. The results provided by theoretical models were verified by
the test results. Apart from typical situations, driving over obstacles of various shapes
and sizes was also analysed. As regards the contact of wheels or jacks with the ground,
there are numerous studies on the mechanical properties of rocks determined by various
methods and under different conditions [32–34].

The above quoted studies are devoted to machines of a different design and contain
descriptions of dynamic models, empirical research, or simulation tests. They also concern
underground mining but are limited to much simpler machines, such as LHD loaders.
Moreover, the aim of the works in question was to create a universal parametric computa-
tional model for assessing the stability of single- and double-boom drilling rigs. The model
must enable calculations to be performed in a spreadsheet. The presented calculation
methodology was developed due to the lack of available parametric theoretical models
that would enable assessment of the stability of drilling rigs.

2. Methodology

The aim of the works in question was to create an accessible calculation sheet that
would allow reliable results of calculating the stability of articulated single- and double-
boom drilling rigs to be obtained. In the first stage, a physical model of the machine
was developed based on the analysis of the drilling rigs’ documentation and information
obtained from the project team. A number of assumptions were specified, taking into
account the requirements and recommendations of the future user of the calculation sheet.
Next, the physical model was saved as a mathematical model. A static computational
model was created. The model was saved as a transparent spreadsheet in MathCad Prime
Express. Then, the model was saved in the form of an accessible calculation sheet in
Microsoft Excel. Entering complex calculation models and formulas in Excel is onerous.
Moreover, it entails the risk of making simple errors because the pattern is written in one
line, and frequently in many cells. Besides, Excel does not verify the compliance of the units
or convert them. Therefore, the Mathcad spreadsheet was used to compare the obtained
results. This approach made it possible to eliminate all errors when creating an Excel sheet.
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The next stage involved verification and validation of the developed model on the
basis of 3 machines: Face Master 2.3 single-boom, Face Master 2.3 double-boom, and
Face Master 2.8 double-boom. For the purposes of verification, 3D models of drilling rigs
were created in the Autodesk Inventor Professional environment. The 3D models allowed
verification of the correctness of the formulas for global coordinates, coordinates of the
centres of gravity of components and the entire machine, as well as the distances of the
centre of gravity from the tipping edge.

Then, dynamic simulations were performed in Inventor, Dynamic Simulation and the
values of the wheel pressure forces were determined, which were next compared to the
results from the Excel spreadsheet. Various machine and boom settings were analysed.

In addition, the results from the Excel spreadsheet were compared with those from
the report prepared for the dynamic model. The report was prepared by an independent
research unit. For the purposes of this report, an external scientific unit used specialized
a proprietary dynamic study developed for each machine. The comparison concerned
selected configurations of machine parameters.

Validation of the model saved in the form of an Excel spreadsheet involved comparing
the calculation results with the results of empirical research. The empirical tests, which
were carried out by an external certified unit, consisted in measuring the pressures of
wheels and jacks on the scales for each machine: straight, twisted, and for various positions
of the booms.

In each case, the same data was adopted for each model in terms of the geometry of
the rigs, masses, and positions of the centres of gravity, and variables, such as the turning
angle or boom rotation angles. In this article, the results are shown on the example of the
Mine Master Face Master 2.8 (FM 2.8) machine.

3. Theoretical Computational Model

In order to develop a physical and, next, a mathematical model, assumptions and
guidelines, including appropriate acceptable simplifications, were defined. Then, formulas
and equations were derived to calculate the location of the centre of gravity of the machine, its
distance from the edge of tipping, as well as the pressure of wheels and jacks on the ground.

3.1. Assumptions for the Computational Model

Due to the need to develop an analytical model enabling a quick assessment of
machine stability, a number of assumptions for such a methodology were specified in an
Excel spreadsheet. First of all, the model must allow calculation of the pressure of wheels
and jacks on the ground as well as the location of the centre of gravity and its distance
from the tipping edge without necessarily having to solve differential equations. Based on
the analysis of the construction of drilling rigs, it was assumed that the model would be
developed for an articulated machine with an oscillation axle on a wheel-tyre chassis. The
elasticity of wheels is simplified to a linear relationship in the model.

Single- and twin-boom solutions for moving in workings with a longitudinal slope of
up to 20◦ and a transverse slope of up to 10◦ were designed. Dynamic forces acting on the
machine due to braking and driving over a drop were taken into account. The centrifugal
force was neglected as it contributes to the stability of these machines. The zero value of
the centrifugal force, i.e., stopping the machine while turning, is the least favourable case,
hence a model was created for this situation. Moreover, it was assumed that dynamic forces
due to braking and driving on an uneven terrain take the form of static forces influencing
the stability of the machine.

For each simplification, analyses and comparative calculations were carried out in
order to determine their influence on the obtained results. The adopted assumptions and
simplifications do not have a negative impact on the results. The elasticity of the wheels
lowers the machine’s centre of gravity. The deflection of the wheels reached 20–50 mm.
The lowered centre of gravity has a positive effect on the stability of the machine, especially
in the case of an inclined excavation. The use of a linear relationship instead of a quadratic
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function has a slight influence on the results for this deflection range. The reduction of the
longitudinal and transverse slope of the excavation results from the user’s requirements
and the machine operating conditions. It allowed some components of the forces that
had little impact on the calculation results to be ignored but allowed their significant
simplification. From the point of view of stability, replacing the inertia forces with static
forces is a favourable simplification. The model ignores the mass moments of inertia, hence
the machine shows a greater margin of stability than the results from the calculations.
The last assumption was disregarding the centrifugal force. The centrifugal force has a
beneficial effect on the machine stability, so the least favourable case occurs when the car is
stopped on a curve. Such a case was adopted in the model.

Determining the location of the centre of gravity of a drilling rig requires distributing
its mass into individual components, which perform relative motion. In accordance with
the assumptions, the rig was presented in terms of the masses and locations of the centres
of gravity of: the rear body, the oscillation axle, the platform, and two booms. The most
important geometrical parameters are the distances between the wheels and the machine’s
joint and the quantities describing the position of the two pivot points of the boom for
the horizontal and vertical axes. Additionally, the turning angle of the machine as well
as the angle of boom rotation must be taken into consideration. The listed quantities are
presented in the diagram shown in Figure 4.
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3.2. Determination of Global Coordinates

The above-mentioned geometric parameters are described in a diagram in a way that
facilitates their error-free and relatively easy determination. The positions of the centres
of gravity as well as the positions of the centres of the wheels and oscillation axle change
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depending on the chassis turning angle and boom rotation angles. For the purpose of
analysing the entire rig, it is necessary to assign the values of the x, y, and z coordinates in
the global system. Based on the design of the rig and the defined assumptions, the centre
of gravity was linked as follows:

• The centre of the coordinate system in the top view is in the joint;
• The x and y axes are identical to the x and y axes of the platform;
• The floor plane, defined by the contact of the tyres with the floor, is the xy plane;
• The z axis is perpendicular to the floor and, therefore, it is in line with the vertical axis

of the machine.

Therefore, appropriate formulas for x, y, and z in the global system were derived
for each coordinate related to the centre of gravity and for the position of the booms, the
position of each wheel, and the position of the oscillation axle centre. When deriving the
formulas, the previously adopted subscripts were used, with the additional “c” denotation.
In addition to the previously adopted subscripts, the “x” wheel numbers from 1 to 4
(without “c”) and the “xo” coordinate for the oscillation axle were also assigned. Several
examples of coordinates are shown in Figure 5.
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The below formulas derived for the analysed case enable determination of the global
coordinates. Standard transformations as well as formulas for vector transformations and
rotations were used in the process.

Coordinates of the rear body’s centre of gravity:

xtc = −(lt + xt) · cos(γ)− yt · sin(γ) (1)

ytc = −(lt + xt) · sin(γ) + yt · cos(γ) (2)

ztc = zt (3)

Coordinates of the oscillation axle’s centre of gravity:

xkc = −(lt + xk) · cos(γ)− yk · sin(γ) (4)

ykc = −(lt + xk) · sin(γ) + yk · cos(γ) (5)

zkc = zk (6)

Coordinates of the platform’s centre of gravity:

xpc = lp + xp (7)

ypc = yp (8)

zpc = zp (9)

Coordinates of the right boom’s centre of gravity:

xwpc = lwβ +
(
lwα − lwβ

)
· cos

(
βwp

)
+lww · cos

(
αwp

)
· cos

(
βwp

)
−hw · sin

(
αwp

)
· cos

(
βwp

) (10)

ywpc =
−bw

2 −
(
lwα − lwβ

)
· sin

(
βwp

)
−lww · cos

(
αwp

)
· sin

(
βwp

)
+hw · sin

(
αwp

)
· sin

(
βwp

) (11)

zwpc = zw + lww · sin
(
αwp

)
+ hw · cos

(
αwp

)
(12)

Coordinates of the left boom’s centre of gravity:

xwlc = lwβ +
(
lwα − lwβ

)
· cos(βwl) +lww · cos(αwl) · cos(βwl)

−hw · sin(αwl) · cos(βwl)
(13)

ywlc =
−bw

2 −
(
lwα − lwβ

)
· sin(βwl) −lww · cos(αwl) · sin(βwl)

+hw · sin(αwl) · sin(βwl)
(14)

zwlc = zw + lww · sin(αwl) + hw · cos(αwl) (15)

Coordinates of the location of the contact of the wheel marked with number 1:

x1 = −lt · cos(γ) +
bt

2
· sin(γ) (16)

y1 = −lt · sin(γ)− bt

2
· cos(γ) (17)

Coordinates of the location of the contact of the wheel marked with number 2:

x2 = −lt · cos(γ)− bt

2
· sin(γ) (18)

y2 = −lt · sin(γ) +
bt

2
· cos(γ) (19)
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Coordinates of the contact of the wheel marked with number 3:

x3 = lp (20)

y3 =
bp

2
(21)

Coordinates of the location of the contact of the wheel marked with number 4:

x4 = lp (22)

y4 = −
bp

2
(23)

Coordinates of the location of the oscillation axle (marked with number “0”):

x0 = −lt · cos(γ) (24)

y0 = −lt · sin(γ) (25)

3.3. Influence of the Longitudinal and Transverse Slope of the Excavation

According to the assumptions, the excavation can be inclined on the longitudinally–
longitudinal inclination angle α or transversely–transverse inclination angle β. The trans-
verse and longitudinal angles are measured in perpendicular directions, from the vertical
(Figure 6). The xyz system is a local system related to the centre of gravity of the analysed
self-propelled mining machine. Due to the limited values of the longitudinal (≤20◦) and
transverse (≤10◦) angles, simplified calculations were applied.
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Based on the analysis of the distribution of gravity, formulas for its individual compo-
nents were expressed as follows:

Gx = G sin(α) (26)

Gy = G sin(β) (27)

Gz = G
√

cos2(α)− sin2(β)

or Gz = G
√

cos2(β)− sin2(α)
(28)

WG =
√

cos2(β)− sin2(α) (29)

Gz = G · WG (30)

For an excavation with a longitudinal and transverse slope, the development of new
formulas is required for calculating the pressure of wheels on the floor. When both slopes
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are considered at the same time, the components of the gravity force of the rear axle with
an oscillation axle and the rest of the machine can be expressed as follows:

CGcpwx = CGcpw · sin(α) (31)

CGcpwy = CGcpw · sin(β) (32)

CGcpwz = CGcpw · WG (33)

CGkx = CGk · sin(α) (34)

CGky = CGk · sin(β) (35)

CGkz = CGk · WG (36)

Knowing the gravity components that load the machine, we can derive the following
formulas for the components of forces loading the system and the forces of wheel pressure
on the ground (Figures 7–9):

m0z =
CGcpwz ·

(
x3 − xcpw

)
+ CGcpwx · zcpw

x3 − x0
(37)

m0y =
CGcpwy ·

(
x3 − xcpw

)
x3 − x0

(38)

m2n =
m0z · (y0 − y1) + CGkz · (ykc − y1) + CGky · zkc + m0y · zko

y2 − y1
(39)

m1n = CGkz + m0z − m2n (40)

m3n =
CGcpwz ·

(
ycpw − y4

)
+ CGcpwy · zcpw − m0y · zcpw − m0z ·

(
y0 − yy

)
y3 − y4

(41)

m4n = CGcpwz − m0z − m3n (42)
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3.4. Influence of Emergency Braking

The analysed self-propelled mining machines, due to their long booms, are prone to
losing stability in the event of sudden braking. For the needs of this static analytical model,
the force of inertia in the case of braking was taken into account. Braking described as
braking deceleration ah acts on each of the centres of gravity, which can be expressed as the
Mh braking torque in relation to the axis defined by the contact of wheels 3 and 4 with the
floor (Figure 10):

Mh =

(
CGt · ztc + CGk · zkc + CGp · zpc + CGwp · zwpc
+CGwl · zwlc

)
· ah (43)

The above formula is identical to the formula describing the action of the same
deceleration on the centre of gravity of the entire machine, which allows the braking force
and the braking torque to be expressed as follows:

Fh = CGc · ah (44)

Mh = Fh · zc (45)
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The braking force was considered as a static force represented by the mh mass sus-
pended on the ∆wh arm (xh global coordinate) in the xz plane of the system so that its
influence could be taken into account in a simplified manner while ignoring the moments
of inertia and the full dynamic model:

xh = lp + ∆wh (46)

mh =
Mh

∆wh · g
(47)

Therefore, the location of the apparent centre of gravity of the entire machine while
taking into account the influence of braking can be expressed as follows:

xch =
CGt · xtc + CGp · xpc + CGk · xkc + CGwp · xwpc + CGwl · xwlc + mh · xh

CGt + CGp + CGk + CGwp + CGwl + mh
(48)

ych =
CGt · ytc + CGp · ypc + CGk · ykc + CGwp · ywpc + CGwl · ywlc + mh · yh

CGt + CGp + CGk + CGwp + CGwl + mh
(49)

zch =
CGt · ztc + CGp · zpc + CGk · zkc + CGwp · zwpc + CGwl · zwlc + mh · zh

CGt + CGp + CGk + CGwp + CGwl + mh
(50)

Next, the location of the CGcpwh mass and the apparent centre of gravity of the rear
body, platform, and boom assembly can be expressed as follows:

xch =
CGt · xtc + CGp · xpc + CGwp · xwpc + CGwl · xwlc + mh · xh

CGt + CGp + CGwp + CGwl + mh
(51)

ych =
CGt · ytc + CGp · ypc + CGwp · ywpc + CGwl · ywlc + mh · yh

CGt + CGp + CGwp + CGwl + mh
(52)

zch =
CGt · ztc + CGp · zpc + CGwp · zwpc + CGwl · zwlc + mh · zh

CGt + CGp + CGwp + CGwl + mh
(53)

CGcpwh = CGt + CGp + CGwp + CGwl + mh (54)

Knowing the gravity components that load the machine, we can derive the following
formulas for the components of forces loading the system and the forces of wheel pressure
on the ground:

m0h =
x3 − xch
x3 − x0

· CGcpwh (55)

m3h =
CGcpwh · (ych − y4)− m0h · (y0 − y4)

y3 − y4
(56)

m4h = CGcpwh − m0h − m3h (57)
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m2h =
m0h · (y0 − y1) + CGk · (ykc − y1)

y2 − y1
(58)

m1h = CGk + m0h − m2h (59)

3.5. Influence of Driving over a Drop

Driving on an uneven floor was considered as driving over a perpendicular drop with
the hu height from which the front axle falls, generating a dynamic force in the centre of
gravity of each subassembly (Figure 11). The pivot point of the machine in this case is the
axis going through the point of contact of wheels 1 and 2 with the floor. When the front
axle hits against the floor, the machine tries to rotate, due to the Mup torque overbalancing
the machine in relation to the axis going through the points of contact of wheel 3 and 4
with the floor. Due to the slight rotation, it was assumed that the forces act perpendicularly
despite the fact that the rig moves on an arc. Additionally, the Mub torque that overbalances
the machine to the sides can be determined. The presented derivation takes into account
several assumptions and simplifications, which enables a quick calculation of the impact of
the drop. However, it should be corrected at the stage of simulation or empirical dynamic
tests, especially with respect to damping and the effect of smooth driving over a drop
instead of the assumed sudden impact.
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Depending on the distance of the centre of gravity from the axis of rotation 1–2, the
corrected equivalent mass of the machine can be expressed as follows (Figure 11):

mzast = CGt · xtc−xsr
x3−xsr

+CGk · xkc−xsr
x3−xsr

+ CGp ·
xpc−xsr
x3−xsr

+CGwp ·
xwpc−xsr
x3−xsr

+ CGwl · xwlc−xsr
x3−xsr

(60)

where xsr is identical to point x0, but it can also be expressed as:

xsr =
x1 + x2

2
(61)

For the equivalent mass described in this way and the hu height of the drop, the energy
of the machine when the wheels are in contact with the floor can be expressed as:

Eku = mzast · g · hu (62)



Energies 2021, 14, 8588 14 of 29

When the wheels are in contact with the floor, the machine energy is converted into the
potential energy of wheel elasticity, which for ko = 2*kopony, stiffness can be expressed as follows:

Eps =
ko · x2

uop

2
(63)

It should be noted that tyre deflection means that the machine represented as an
equivalent mass is lowered by this deflection, releasing additional potential energy:

Epu = mzast · g · xuop (64)

Hence, the energy equivalence can be expressed as follows:

Eps = Epu + Eku (65)

By substituting appropriate formulas and performing transformations, the following
equation of a quadratic function can be obtained:

ko · x2
uop − 2 · mzast · g · xuop − 2 · m · g · hu = 0 (66)

The solution of this quadratic equation provides a deflection formula. Due to the
physical interpretation and the assumptions made, only a positive result is acceptable:

xuop =
mzast · g +

√
m2

zast · g2 + 2 · ko · mzast · g · hu

ko
(67)

Knowing the value of deflection and assuming a linear relationship between the force
and the deflection, which is correct near this point, we can express the formula for the force
acting on the front axle of the rig as follows:

Fu = ko · xuop (68)

Therefore, it is possible to calculate the au deceleration acting on the rig as follows:

ausk =
Fu

mzast
(69)

It is deceleration caused by springs and must be reduced by the value of gravitational
acceleration g so as to obtain the resultant deceleration. In addition, the formulas were
corrected so that for a given zero value of the drop, its effect would be equal to zero. Thus,
it was possible to eliminate the influence of gravity, which is taken into account separately
when calculating the location of the centre of gravity. Due to the different distances of the
centres of gravity from the axis of rotation 1–2, the factor determining the influence of this
distance should be calculated as follows:

iut =
ausk

g
· xtc − xsr

x3 − xsr
(70)

iuk =
ausk

g
· xkc − xsr

x3 − xsr
(71)

iup =
ausk

g
·

xpc − xsr

x3 − xsr
(72)

iuwp =
ausk

g
·

xwpc − xsr

x3 − xsr
(73)

iuwl =
ausk

g
· xwlc − xsr

x3 − xsr
(74)
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Knowing the masses and coordinates of the centres of gravity and the above presented
coefficients, we can derive a formula for the torque attempting to overbalance the machine
in relation to axis 3–4 as follows:

Mup = g ·

 −CGt · (x3 − xtc) · iut − CGk · (x3 − xkc) · iuk
−CGp ·

(
x3 − xpc

)
· iup + CGwp ·

(
xwpc − x3

)
· iuwp

+CGwl · (xwlc − x3) · iuwl

 (75)

Additionally, the formula for the torque overbalancing the rig to the side is:

Mub = g ·
(

−CGt · ytc · iut − CGk · ykc · iuk − CGp · ypc · iup
−CGwp · ywpc · iuwp − CGwl · ywlc · iuwl

)
(76)

Another problem was determining the effect of the drop on the machine’s behaviour
when the set value of the drop is lower than the static deflection of the front axle (mean
deflection of the front wheels). In such a case, despite the existence of a drop, the tyres
are still resiliently deformed. Therefore, the above quadratic equation was derived for
respective energy values at the beginning and end of the drop phase.

The ∆zp front axle deflection as the mean deflection of both tyres can be expressed as follows:

∆zp =
∆z3 + ∆z4

2
(77)

For the hu < ∆zp drop height, we can write the machine’s potential energy, which is
converted into the potential energy of wheel elasticity. It should be noted, however, that
the tyres are initially deflected, and this deflection stores the elastic energy in the tyres.
Taking the above into account, the equivalence can be expressed as follows:

mzast · g ·
(
xu − ∆zp + hu

)
+

ko ·
(
∆zp − hu

)2

2
=

ko · x2
u

2
(78)

The respective formulas are used depending on whether the drop is greater than the
deflection of the front axle.

As before, the torque caused by the drop was considered as a static force represented by
the mu mass suspended on the ∆wu arm (xu global coordinate) in the xz plane of the system:

xu = ∆wu + lp (79)

mu =
Mup

∆wu · g
(80)

Knowing the mu mass and the Mub torque, we calculated the yu coordinate of this
mass. Therefore, similarly to the previous considerations, the location of the apparent
centre of gravity of the entire machine while taking into account the braking effect can be
expressed as follows:

xcu =
CGt · xtc + CGp · xpc + CGk · xkc + CGwp · xwpc + CGwl · xwlc + mu · xu

CGt + CGp + CGk + CGwp + CGwl + mu
(81)

ycu =
CGt · ytc + CGp · ypc + CGk · ykc + CGwp · ywpc + CGwl · ywlc + mu · yu

CGt + CGp + CGk + CGwp + CGwl + mu
(82)

zcu =
CGt · ztc + CGp · zpc + CGk · zkc + CGwp · zwpc + CGwl · zwlc + mu · zu

CGt + CGp + CGk + CGwp + CGwl + mu
(83)
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Next, the CGcpwu masses and the apparent centre of gravity of the rear body, platform,
and booms assembly were calculated:

xcu =
CGt · xtc + CGp · xpc + CGwp · xwpc + CGwl · xwlc + mu · xu

CGt + CGp + CGwp + CGwl + mu
(84)

ycu =
CGt · ytc + CGp · ypc + CGwp · ywpc + CGwl · ywlc + mu · yu

CGt + CGp + CGwp + CGwl + mu
(85)

zcu =
CGt · ztc + CGp · zpc + CGwp · zwpc + CGwl · zwlc + mu · zu

CGt + CGp + CGwp + CGwl + mu
(86)

CGcpwu = CGt + CGp + CGwp + CGwl + mu (87)

Knowing the gravity components that load the machine, we can derive the following
formulas for the components of forces loading the system and the forces of the wheel
pressure on the ground:

m0u =
x3 − xcu

x3 − x0
· CGcpwu (88)

m3u =
CGcpwu · (ych − y4)− m0u · (y0 − y4)

y3 − y4
(89)

m4u = CGcpwu − m0u − m3u (90)

m2u =
m0u · (y0 − y1) + CGk · (ykc − y1)

y2 − y1
(91)

m1u = CGk + m0u − m2u (92)

3.6. Determining the Pressure of Jacks on the Floor

In the working position, the drilling rig is directed straight ahead and placed on jacks.
Hydraulic jacks level the rig in the excavation. From the point of view of statics, a rigid
body with four parallel jacks is a statically indeterminable system. The values of jack
pressures on the floor were determined by a unique graphic method, which is correct for
a rectangle [35]. Therefore, the model assumes the height of the rectangle as the average
spacing of jacks. It should be noted that this is a favourable assumption, because increasing
the spacing of the front jacks increases the stability of the machine, so the analysis concerns
a less favourable case.

The rectangle with a height H and length B is supported at four points on the ground.
Inside the outline of this rectangle, it is acted on by a perpendicular force applied at the
point having coordinates b and h, with point 0.0 being described in the lower left corner.
For the so-adopted system, assuming the consistency of the denotations adopted in this
study, formulas for H, B, h, and b (Figure 12) can be expressed as follows:

H =
bpt + bpp

2
(93)

B = lpt + lpp (94)

h = yc +
H
2

(95)

b = xc + lpt (96)
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Hence, it is possible to calculate the pressure of jacks on the floor from the following formulas:

m1p = CGc ·
(B − b)(H − h)

H · B
(97)

m2p = CGc ·
(B − b) · h

H · B
(98)

m3p = CGc ·
b · h
H · B

(99)

m4p = CGc ·
(H − h) · b

H · B
(100)

3.7. Computational Model and Spreadsheet

Based on the above considerations and formulas derived, a uniform theoretical model
was created, taking into account the influence of all factors. The theoretical model was
saved in the form of a transparent spreadsheet in MathCad. Next, a spreadsheet in
Microsoft Excel was developed. For the purpose of calculating additional quantities,
formulas describing the tipping edges or the distance of the centre of gravity from the
tipping edge, the generally known mathematical relationships were applied. As a result,
an easy-to-use calculation sheet was obtained, which, after entering a number of values,
enables evaluation of the stability of drilling rigs for several variables and parameters. In
the next step, the computational model and the spreadsheet were verified and validated
based on the example of a specific drilling vehicle.

4. Verification and Validation of the Developed Model

The computational model was verified and validated on the basis of data concerning
the Mine Master Face Master 2.8 drilling rig (hereinafter referred to as FM 2.8).

Verification and validation were performed by comparing the results with those
obtained for the dynamic model, the Dynamic Simulation module in Autodesk Inventor
Professional programme and empirical tests on truck scales.

4.1. Parameters of the Analysed Drilling Rig

Verification and validation were carried out for the FM 2.8 twin-boom drilling rig, for
which all the necessary values are listed in the tables below (Tables 1–4).
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Table 1. Geometric sizes of FM 2.8.

Machine Geometry–Parameters

No. Quantity Denotation Value [mm]

1. Total width of the machine bc 2250

2. Front wheel track bp 1900

3. Front axle distance lp 1650

4. Rear wheel track bt 1900

5. Rear axle distance lt 1650

6. Front jacks spacing bpp 1900/2800

7. Front jacks distance lpp 2500

8. Rear jacks spacing bpt 1900

9. Rear jacks distance lpt 2500

10. Boom joint spacing bw 1500

11. Distance of boom joints α lwα 2000

12. Distance of boom joints β lwα 1800

13. Boom joint height zw 1800

14. Wheel outer radius R 600

Table 2. Mass of FM 2.8 components.

Centres of Gravity of the Machine Components–Mass

No. Component Denotation Value [kg]

1. Rear body without the
oscillation axle assembly CGt 12,500

2. Platform CGp 6900

3. Oscillation axle assembly CGk 1700

4. Right = left boom CGw 3570

Table 3. Location of the centres of gravity of PM 2.8 components.

Centres of Gravity of Machine Components–Location

No. Component Denotation x [mm] y [mm] z [mm]

1. Rear body without the
oscillation axle assembly CGt–xt, yt, zt 500 20 1350

2. Platform CGp–xp, yp,
zp

−540 −10 1300

3. Oscillation axle assembly CGk–xk, yk, zk 0 −50 600

4. Right = left boom–min CGw–lwmin 2650

5. Right = left boom–max CGw–lwmax 3650

6. Right = left boom–max CGw–hw 300
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Table 4. Variables of FM 2.8 components.

Machine Kinematics–Variables

No. Quantity Denotation Range

1. Machine turning angle γ −40◦–+40◦

2. Boom lift αw −25◦–+45◦

3. Boom swing βw
−35◦–+35◦

−55◦–+55◦-for αw+ = max

4. Telescopic jib extension ∆w 0–1350 mm

4.2. Verification of the Theoretical Model

By substituting the data for FM 2.8, several hundred simulations were carried out to
analyse the influence of individual data on the obtained results. In particular, typical situations,
such as the turning of the machine and the rotation of the booms, were analysed. Next, the
influences of the longitudinal and transverse slope, braking, and drop were analysed.

The results provided by the model in question are consistent with the results obtained
from the full dynamic model (Table 5). Additionally, special models were created for
the needs of model studies in Dynamic Simulation in Autodesk Inventor Professional
programme. The obtained results correspond with those provided by the developed
model. Figures 13 and 14 show examples of analyses of the location of the centre of gravity.
Figure 15 presents examples of the results of a dynamic simulation of wheel pressure on
the ground, whereas Figure 16 shows examples of results calculated by the developed
spreadsheet. Apart from the graphic interpretation of the arrangement of the machine and
booms, the location of the centre of gravity, wheel pressure values, and distance of the
centre of gravity from the tipping edge are shown. In the presentation of the pressures and
the centre of gravity, the influence of the excavation slope and dynamic forces was taken
into account. Figure 16 shows the machine diagram in blue and the tipping edges in red.
Additionally, the centre of gravity is marked with triangles and the values of individual
wheel’s pressure are presented in the bar chart. The blue colour corresponds to the location
of the centre of gravity and the values for the horizontal excavation, the green colour for
the inclined excavation, whereas the red one refers to the values regarding the inclined
excavation and the influence of the braking inertia force and driving over a drop.

Table 5. Distribution of wheel pressures: comparison of results provided by the AGH model and the full dynamic model.

No. Configuration Model m1 [kg] m2 [kg] m3 [kg] m4 [kg]

1. Machine straight ahead
Booms straight ahead

AGH 5879 5798 8339 8191

2. Dynamic 5856 5780 8362 8210

3. Machine 40◦ to the right
Booms straight ahead

AGH 5485 5404 4776 12,544

4. Dynamic 5655 5239 4723 12,591

5. Machine 40◦ to the left
Booms 15◦ to the left

AGH 5551 5470 14,915 2271

6. Dynamic 5232 5809 15,190 1987
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4.3. Validation of the Theoretical Model

In the last stage, the model was validated with the data obtained during tests on truck
scales (Figure 17). Validation was carried out for the pressure of wheels (Figure 17a) and
jacks (Figure 17b) on the ground.
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The calculations were performed for the FM 2.8 data and compared with the results
obtained during the tests in the following comparable cases:

• Machine straight ahead, booms straight ahead (Table 6);
• Machine turned 40◦ to the left, booms straight ahead (Table 7);
• Machine turned 40◦ to the left, booms turned 15◦ to the left (Table 8).

Table 6. Comparison of the results of the model and empirical tests: machine and booms straight ahead.

No. Component m1 [kg] m2 [kg] m3 [kg] m4 [kg]

1. Measurement on scales 6780 6760 8700 7900

2. Theoretical model 6775 6758 8 710 7897

Absolute error [kg] 5 2 −10 3

Relative error [%] 0.07% 0.03% −0.11% 0.04%

Table 7. Comparison of the results of the model and empirical tests: chassis turned to the left, booms
straight ahead.

No. Component m1 [kg] m2 [kg] m3 [kg] m4 [kg]

1. Measurement on scales 6090 6440 13,810 3760

2. Theoretical model 6171 6153 13,733 4084

Absolute error [kg] −81 287 77 −324

Relative error [%] −1.33% 4.46% 0.56% −8.62%

Table 8. Comparison of the results of the model and empirical tests: chassis turned to the left, booms
to the left.

No. Component m1 [kg] m2 [kg] m3 [kg] m4 [kg]

1. Measurement on scales 6140 6430 15,600 1930

2. Theoretical model 6278 6263 15,999 1603

Absolute error [kg] −138 167 −399 327

Relative error [%] −2.25% 2.60% −2.56% 16.94%

The results provided by the theoretical model are consistent with the results of the
empirical research. The results of the jack pressure obtained during empirical tests cannot
be considered reliable. Due to the design of the machine, it is possible to obtain different
pressures depending on the extension of the jacks. The centre of gravity of the machine
is not in the geometric centre of the jacks, so in an extreme case, one of the jacks may not
be in contact with the ground and the machine is still stable. The analysis of the results
obtained during empirical studies and their comparison with the wheel pressures on the
ground from the same empirical studies clearly indicate that they are not fully consistent
(Table 9). However, the differences in the results are acceptable for the assessment of the
stability of the machine on jacks. Additionally, Figure 18 presents selected results of the
stability assessment obtained from the developed spreadsheet. As in the case of Figure 16,
the geometry of the machine with booms presented in the graph in Figure 18 is marked in
blue. The tipping edges defined by the jacks in the minimum position are marked in red,
and in the maximum position in yellow. The bar charts also show the values for jacks in
the minimum and maximum positions. The location of the machine’s centre of gravity is
marked in the graph with a blue triangle. In the case of an on-site analysis, the machine is
placed horizontally.
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Table 9. Comparison of the pressure of wheels and jacks from the empirical and model tests.

No. Component m1 [kg] m2 [kg] m3 [kg] m4 [kg]

1. Jack pressure–measurement on scales 7990 6220 9190 6790

2. Wheel pressure–measurement on scales 6780 6760 8700 7900

3. Jack pressure–computational model 6721 7087 8382 7951
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4.4. Discussion

The presented verification results indicate that the developed model is correct. The
values of the coordinates of the centres of gravity and the values of the wheels’ and jacks’
pressure forces change as expected.

A comparison of the calculation and measurement results also confirms the correctness
of the model. For the machine straight ahead, the relative error is negligible and slightly
exceeds 0.1%. For a twisted machine and tilted booms, the error is greater, reaching nearly
9% and 17%. It is important that the error of 9% and 17% applies to the least loaded wheels,
and the absolute error reaches 324 and 327 kg, respectively. The maximum relative error
does not exceed 400 kg, which is acceptable for a machine of this mass and for the needs of
stability assessment.

It should be clearly emphasized that the error does not result from improper operation
of the model, but from inaccurate determination of the mass and the location of the centres
of gravity of subassemblies, i.e., the data that affect the calculation results. At the design
stage, the mass and the centre of gravity are determined on the basis of the 3D model.
However, not all elements are included in the 3D model. For example, the masses of
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hydraulic oil, lubricant, and fuel are ignored. Moreover, the mass of commercial elements
is based on catalogue data, which is sometimes inaccurate.

5. Results of Analytical Tests of the Drilling Rig Stability

Next, qualitative tests were carried out to check whether the model responded cor-
rectly to change of the input parameters. In total, several hundred different analyses
were conducted for the full computational model with the booms rotating independently
in two planes; first, for various combinations of parameters and separate cases, such as
horizontal excavation, longitudinally inclined excavation, transversely inclined excavation,
braking in a horizontal excavation, drop in a horizontal excavation, and, then, for the listed
combinations (Tables 10–15). The wheel loads are marked in red when their value had
dropped below 1000 kg.

Table 10. Results of selected analyses: wheel pressure-horizontal excavation.

No. Case m1 [kg] m2 [kg] m3 [kg] m4 [kg]

1. Straight ahead, booms straight ahead 6 563 6 545 8 922 8 109

2. Straight ahead, booms 15◦ to the left 6 665 6 648 11 503 5 325

3. Straight ahead, booms 15◦ to the left, extended 5 638 5 621 13 479 5 402

4. 40◦ turn to the right, booms straight ahead 6 207 6 190 4 593 13 150

5. 40◦ turn to the left, booms 15◦ to the left 6 046 6 028 16 678 1 388

6. 40◦ turn to the left, 15◦ to the left, extended 4 883 4 866 20 079 312

Table 11. Results of selected analyses: wheel pressure longitudinally inclined excavation.

No. Case m1 [kg] m2 [kg] m3 [kg] m4 [kg]

1. α = 0◦, straight ahead, booms straight ahead 6563 6545 8922 8109

2. α = 12◦, straight ahead, booms straight ahead 7781 7764 7365 6570

3. α = −12◦, straight ahead, booms straight ahead 5057 5040 10,089 9294

4. α = 12◦, 40◦ turn to the left, booms straight ahead 7343 7326 10,677 4136

5. α = −12◦, 40◦ turn to the right, booms straight ahead 4529 4512 4325 16,115

6. α = 12◦, 40◦ turn to the right, booms 15◦ to the right 7728 77,710 2048 11,995

Table 12. Results of selected analyses: wheel pressure transversely inclined excavation.

No. Case m1 [kg] m2 [kg] m3 [kg] m4 [kg]

1. β = 0◦, straight ahead, booms straight ahead 6563 6545 8922 8109

2. β = 6◦, straight ahead, booms straight ahead 5979 7057 10,288 6651

3. β = −6◦, straight ahead, booms straight ahead 7075 5961 7459 9479

4. β = 6◦, 40◦ turn to the right, booms straight ahead 5498 6831 6041 11,605

5. β = −6◦, 40◦ to the right, booms straight ahead 6849 5480 3094 14,551

6. β = −6◦, 40◦ to the right, booms 15◦ to the right 6977 5583 458 16,957
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Table 13. Results of selected analyses: wheel pressure longitudinally and transversely inclined excavation.

No. Case m1 [kg] m2 [kg] m3 [kg] m4 [kg]

1. α = 0◦, β = 0◦, straight ahead, booms straight ahead 6563 6545 8922 8109

2. α = −12◦, β = 6◦, straight ahead, booms straight ahead 4473 5552 11,454 7835

3. α = −12◦, β = 6◦, 40◦ turn to the right, booms straight ahead 3581 4852 18,621 2259

4. α = −12◦, β = 6◦, 40◦ turn to the right, booms
15◦ to the right 3680 4978 20,973 −318

Table 14. Results of selected analyses: wheel pressure braking on an inclined plane.

No. Case m1 [kg] m2 [kg] m3 [kg] m4 [kg]

1. Braking 0 m/s2, α = 0◦, β = 0◦ 6563 6545 8922 8109

2. Braking 3.5 m/s2, α = 0◦, β = 0◦ 4169 4152 12,129 11,274

3. Braking 3.5 m/s2, α = 12◦, β = 0◦ 5514 5496 10,428 9592

4. Braking 3.5 m/s2, α = −12◦, β = 0◦ 2643 2626 13,299 12,463

5. Braking 3.5 m/s2, α = −12◦, β = −6◦ 2962 2260 11,292 14,339

Table 15. Results of selected analyses: wheel pressure–drop, braking on an inclined plane.

No. Case m1 [kg] m2 [kg] m3 [kg] m4 [kg]

1. Drop 0 mm, braking 0 m/s2, α = 0◦ 6563 6545 8922 8109

2. Drop 150 mm, braking 0 m/s2, α = 0◦ 4155 4137 12,242 11,200

3. Drop 150 mm, braking 0 m/s2, α = 12◦ 5500 5483 10,539 9519

4. Drop 150 mm, braking 3.5 m/s2, α = 0◦ 1761 1744 15,448 14,364

5. Drop 150 mm, braking 3.5 m/s2, α = 12◦ 3232 3215 13,602 12,541

6. Drop 150 mm, braking 3.5 m/s2, α = −12◦ 214 197 16,620 15,559

In the first stage of the research, calculations were made for a horizontal excavation
(Table 10). In subsequent variants of calculations, different positions of the rig and the
booms were taken into account. Only in one case, a pressure below 1000 kg was obtained.
However, the setting of the machine in this case, i.e., tilted and extended booms, is not
used in practice.

In the next stage, the longitudinal (Table 11) and transverse (Table 12) slopes of the
excavation as well as the combinations of both slopes simultaneously (Table 13) were
taken into account. Various combinations of parameters were analysed. In the case of
longitudinal inclination, the machine was fully stable, regardless of whether it was straight
or twisted to the maximum. In the case of the transverse slope and the combination of both
slopes, a pressure below 1000 kg was obtained. This occurred when the machine was fully
twisted, and the rotation of the booms reached 15◦. It is therefore recommended not to
exceed the value of 10◦.

The last stage of the analyses involved taking into account the inertia force resulting
from braking (Table 14) as well as simultaneous braking and driving over a drop (Table 15).
The drilling rig does not lose its stability in the event of braking to the deceleration value
of 3.5 m/s2, even for the longitudinal and transverse slopes of the excavation. However,
simultaneous braking and driving over a drop in an inclined excavation causes the pressure of
the rear wheels to decrease significantly below 1000 kg. It is therefore advisable to be careful
on a road with bumps and drops and to avoid sudden braking under such conditions.
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The above simulation test results prove the correct behaviour of the model. With
respect to the analysis of driving over a drop, the model needs to be further verified and
validated so as to take into account the actual stiffness of wheels.

First, verification of the pressure of jacks on the ground involved assessment of the
load of each of the jacks in relation to the load of individual wheels. For the same machine
position, the distribution of gravity on the jacks must be identical with that on the wheels.
Next, similarly to the verification of pressure on the wheels, typical cases were analysed,
i.e., different arrangements of booms (Table 16).

Table 16. Results of selected analyses: jack pressure.

No. Case m1 [kg] m2 [kg] m3 [kg] m4 [kg]

1. Booms straight ahead, retracted 6721 7087 8382 7950

2. Booms straight ahead, extended 6030 6358 9111 8641

3. Booms 15◦ to the left, retracted 5544 8400 9756 6439

4. Booms 15◦ to the left, extended 4602 7971 11,137 6430

5. Booms 15◦ to the left, extended 6041 8580 9108 6412

6. Booms 15◦ to the left and 30◦ upward, extended 5182 8250 10,261 6446

7. Left boom 15◦ to the left and 30◦ upward,
Right boom 15◦ to the right and 30◦ upward, extended 6539 6894 8575 8133

The results of the pressure on jacks are predictable. Appropriate rotation or extension
of the booms changes the pressure of individual jacks by changing the position of the centre
of gravity.

6. Conclusions

The stability of working machines, especially articulated ones, is a serious problem
that requires an appropriate approach from the very beginning of the design process. In
the case of drilling rigs, we deal not only with an articulated structure, but also with
long booms that extend far beyond the undercarriage. Due to the way of manoeuvring in
excavations and the arrangement of the booms, the machine may move or work on the
verge of stability. The developed methodology for assessing the stability of self-propelled
drilling rigs and the spreadsheet created on its basis enable quick and precise analytical
tests to be carried out. The methodology was verified in parallel with the developed 3D
virtual model in the Autodesk Inventor Professional environment and model tests carried
out in the Dynamic Simulation module. Moreover, the results were compared with the
results of stability analysis performed on the basis of the full dynamic model and with the
results of empirical tests on truck scales. All the obtained results indicate the correctness of
the developed computational model. Owing to the elimination of differential equations,
the model in question allows a quick assessment of the machine stability as a function of
many input parameters to be carried out.

It should be emphasized that the discussed methodology enabled the creation of a
spreadsheet with great possibilities in terms of analysing the influence of not only the
geometry and mass of the machine components, but also the impact of braking, driving on
an uneven floor, the longitudinal and transverse slope of the excavation, as well as analysis
of the jack pressure.

The accuracy of the obtained calculation results depends on the accuracy of the entered
data. It is therefore necessary to precisely estimate and update the machine geometry, mass
values, and the location of the centres of gravity.

One of the basic goals was to develop a universal parametric model that would allow
the use of an Excel spreadsheet to obtain results. The calculations made in Excel were
compared with those performed in the MathCad spreadsheet in order to eliminate errors.
Moreover, the calculation results in Excel were compared with the simulation results in the
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specialized Autodesk Inventor Professional programme and with the results obtained by
independent reports. It was confirmed that the developed model allows use of an Excel
spreadsheet instead of specialised software.

The use of the developed spreadsheet does not require specialized software or skills
in the field of modelling. The sheet enables determination of the load of wheels and jacks
as a function of many important parameters and variables. Additionally, the distances of
the centre of gravity from the tipping edge are calculated. The spreadsheet, in addition
to numerical values, also shows a graphical representation of the machine, the location of
the centre of gravity, the tipping edges, as well as graphs of wheel and jack loads. This
information is sufficient to clearly assess whether the machine is stable. Moreover, the sheet
enables a quick assessment of how the introduced structural changes affect the stability
of the machine. One of the Polish companies producing mining machines, including
drilling rigs, uses this calculation methodology and the calculation spreadsheet to assess
the stability of the manufactured machines. After several months of use, some changes and
improvements were made, enabling development of the second version of the methodology
discussed in this article. Currently, work is underway to create a similar methodology and
spreadsheet for self-propelled mining machines whose structure of the rear body differs
from that in classic drilling rigs.
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Glossary

Machine geometry:
bp front wheel track,
lp front axle distance,
bt rear wheel track,
lt rear axle distance,
bpp front jacks spacing,
lpp front jacks distance,
bpt rear jacks spacing,
lpt rear jacks distance,
bw boom joint spacing,
lw boom joint distance,
zw boom joint height,
zko rear axle joint height,
R outer radius of the tyre in free condition,
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Values of masses of the centres of
gravity:
CGt rear body mass,
CGp platform mass,
CGk oscillation axle mass,
CGw boom mass,
Local coordinates of the centres of
gravity:

xt, yt, zt
position of the centre of gravity of the rear body without
the oscillation axle assembly,

xp, yp, zp position of the centre of gravity of the platform,
xk, yk, zk position of the oscillation axle’s centre of gravity,
lwmin position of the boom’s centre of gravity (min),
lwmax position of the boom’s centre of gravity (max),
hw position of the boom’s centre of gravity,
Machine variables:

γ
machine turning angle (positive angle to the right, negative
angle to the left),

αw
boom lift (upwards-positive angle, downward-negative
angle),

βw

boom swing (outwards-positive angle, inwards-negative
angle, i.e., a positive angle swings the right boom to the
right and the left boom to the left),

lwmin position of the boom’s centre of gravity (min),
lwmax position of the boom’s centre of gravity (max).
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14. Ťavodová, M.; Kalincová, D.; Hnilicová, M.; Hnilica, R. The influence of heat treatment on tool properties mulcher. Manuf. Technol.
2016, 16, 1169–1173. [CrossRef]

15. Bołoz, Ł.; Biały, W. Automation and Robotization of Underground Mining in Poland. Appl. Sci. 2020, 10, 7221. [CrossRef]
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