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Abstract: Particle Swarm Optimization (PSO) is a member of the swarm intelligence-based on a
metaheuristic approach which is inspired by the natural deeds of bird flocking and fish schooling. In
comparison to other traditional methods, the model of PSO is widely recognized as a simple algo-
rithm and easy to implement. However, the traditional PSO’s have two primary issues: premature
convergence and loss of diversity. These problems arise at the latter stages of the evolution process
when dealing with high-dimensional, complex and electromagnetic inverse problems. To address
these types of issues in the PSO approach, we proposed an Improved PSO (IPSO) which employs a
dynamic control parameter as well as an adaptive mutation mechanism. The main proposal of the
novel adaptive mutation operator is to prevent the diversity loss of the optimization process while
the dynamic factor comprises the balance between exploration and exploitation in the search domain.
The experimental outcomes achieved by solving complicated and extremely high-dimensional opti-
mization problems were also validated on superconducting magnetic energy storage devices (SMES).
According to numerical and experimental analysis, the IPSO delivers a better optimal solution than
the other solutions described, particularly in the early computational evaluation of the generation.

Keywords: inverse problem; energy storage device; global optimization; PSO; adaptive mutation operator

1. Introduction

Recently, inverse problems, or real world design problems, have been recognized
as an active research topic in the fields of academia and engineering sciences, and the
optimal solution to such kinds of problems is difficult and hard due to the presence of
multimodal cost functions. Because traditional optimization methods are incapable of
resolving inverse or real-world problems, a wealth of studies has consequently contributed
to the development of nature-inspired algorithmic models, to improve computational
capabilities and diversity of the search space in engineering complex and complicated
problems. At the same time, researchers have tried to design various nature-inspired
algorithmic models in the state of the art to enhance the computational capabilities as well
as increase the diversity of search space in engineering optimization problems.

In this modern world of optimization, when one wishes to solve the engineering
optimization problems arising from electromagnetics, more devotion will be paid to opti-
mization techniques. From the previous work, we knew that the optimization problems
have more minima and one optimum solution, while the current existence of the stochastic
algorithm will try to reach the global optimum region or space. One of these methods’
limitations is that they have a slow rate of convergence or require additional computational
modifications. In order to relieve unnecessary computational engagement and develop a
robust method for the case study, such techniques play an imperative role in improving
and makes the algorithms more efficient while building a decent balance between clarity,
reliability, and computational performance.
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There are a series of metaheuristic algorithms in order to finds the global best solution
of inverse problems, but still, there is no evolutionary method to solve most of multimodal
optimization problems. Thus, many efforts of the scientist and researchers have been
made to optimize the general structure of the algorithm to resolve real-world engineering
optimization problems. In this regard, various algorithms have been developed as reported
in the following paragraph.

In the field of engineering, a variety of optimal optimization algorithms are used,
including ant colony optimization, differential evolution, glowworm swarm optimization,
artificial bee colony, genetic algorithm, cuckoo search algorithm, and particle swarm
optimization. Among all these methods, PSO is the most recent and simple algorithm [1].
In the search process of the PSO, each candidate shares information with other candidates
to expand the search area or space [2]. The PSO optimization algorithm aims to iteratively
optimize an issue, starting with a set or population of candidate solutions, referred to as a
swarm of particles in this perspective, in which each particle knows both the global best
position within the swarm (and its resultant worth in the perspective of the problematic), as
well as its personal best position (and its fitness cost) revealed so far during the search [3].
The particles travel randomly in the search space in an iterative process until the entire
swarm converges to the global minima.

The PSO comprises three parameters: one control parameter and two learning param-
eters. Each parameter plays a significant role in the search process. The constant cognitive
c1, and the social constant c2, give experiences to the personal pbest and global best gbest.
The inertia weight balances the exploration and exploitation search domain [4].

The fundamental equations for updating position and velocity in a PSO are:

Vk
i = wVk

i + c1r1.(pbestk
i − Xk

i ) + c2r2.(gbestk − Xk
i ) (1)

Xk
i = Xk

i + Vk
i (2)

where i denotes the ith particle, k is the generation number, vi
k is the ith particle’s velocity,

and Xi
k is its position. For the learning parameters, the cognitive constant represented by c1

and the social constant by c2, c1 attempting to bring the particle into Pbest where c2 pushing
the particle into gbest, and r1 and r2 are random values ranging from 0 to 1.

Many researchers and scientists developed various formulations and strategies for
the basic three parameters that were explained and described in [5]. When solving a high-
dimensional optimization issue, the basic PSO converges early because the parameters are
inappropriately chosen and the mutation operators are incapable to optimize the problems.
Researchers have recently modified the traditional PSO by adding mutation operators,
hybridization with other algorithms, changing the topological structure, and introducing
new inertia weight approaches for various problems and produced better results.

In order to control the premature convergence, many researchers have used different
mutation operators to make the optimal algorithm more robust and improve the capability
of exploration and exploitation searches of the particles. However, most of the strategies
are problem-oriented; for example, student “T” mutation is used in local search, but it may
fail if the distance between the current search and the optimal position is too wide [6]. The
literature illustrates that the performance of a PSO is related to three basic parameters, i.e.,
inertia weight w, cognitive constant c1, and social constant c2. However, in the basic PSO,
the values of w, c1, and c2 are not appropriately designed to keep a decent balance between
local and global search. Consequently, the values of the parameters must be correctly
adjusted. A new concept known as the smart particle swarm optimization (SPSO) process
is applied in [7] to address the aforementioned problems. The smart particle is based on
the convergence factor (CF) technique, which combines memory of particle positions, the
second stage is for comparison, and finally the leader declaration, to find the best optimal
solution. Furthermore, some researchers have worked on energy system management and
design algorithms for the purpose of developing smart artificial intelligence [8–13].
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In this paper, a new approach is proposed that is focused on dynamic inertia weight
with novel mathematical equations and mutation mechanisms. The mutation process is
followed by the personal best particle and global best particles by a unique design roulette
wheel selection method to overcome the premature convergence problem by developing
proper stability between the exploration and exploitation search.

The remaining of this paper is organized as: the related work of the research is
reviewed in Section 2; The novel IPSO is described in Section 3; The numerical results
analysis are given in Section 4; A discussion is presented in Section 5; The application of
the work is reported in Section 6; and the conclusion is given in Section 7.

2. The Related Work

The previous literature work is mainly categorized into the following four categories.

2.1. Proper Adjustment of Parameters

Researchers have modified the basic three PSO parameters to achieve a decent balance
between exploration and exploitation search. Eberhart and Shi first used an inertia weight
in the PSO algorithm to control the searching capabilities of the particles [4].

The velocity equation is modified after the incorporation of the inertia weight w:

Vk
i = wVk

i + c1r1(pbestk
i − Xk

i ) + c2r2(gbestk
i − Xk

i ) (3)

To control the diversity of the population and improve the performance of PSO, the
authors presented a tactic where the inertia weight can be determined based on Euclidean
distance [14]. In [15], an updated version of PSO that sought to solve the drawbacks
of traditional PSO in perspective of photovoltaics (PV) parameter estimation has been
reported. In this work two ways for controlling the inertia weight and an acceleration
coefficients are designed to improve the performance of PSO and to ensure an adequate
balance between local and global search, a sine chaotic inertia weight mechanism is first
used. Thus, in search of an optimal solution, a tangent chaotic technique is used to steer
acceleration coefficients. In [16], an improved multi-strategy particle swarm optimization
(IMPSO) approach is described. It proposes to optimize the structure and parameters for
better mapping the highly nonlinear characteristics of railway traction braking employing
multi-strategy evolution methods with a nonlinear decreasing inertia weight to enhance the
global optimizing performance of particle swarms. In the PSO velocity update equation,
an adaptive inertia weight factor (AIWF) is added. The main feature is that, unlike a
traditional PSO, where the inertia weight is held constant during optimization, the weights
are attuned adaptively built on the particle’s feat rate in reaching the optimum solution [17].

2.2. Mutation Methods

Many scholars have been working to update the traditional PSO by introducing
mutation operators to preserve the diversity of the population and solve the problem of
premature convergence. Some of the updated mutation mechanisms are reviewed in the
following paragraph. An adaptive mutation strategy is described using the extended non-
uniform mutation operator, in which adaptive mutation is used to help trapped particles
and extract them from local optima [18]. The hybridizing inertia weight modification
tactic, based on new particle diversity and adaptive mutation strategy, has been used
to escape local algorithm convergence in complex networks [19]. In [20], they applied
different mutation operators on particles in instruction to increase the search capability of
particles and avoid them stagnating. In [21], the author proposes a novel idea using an
adaptive mutation-selection strategy to conduct local pursuit of the global optimal particle
in the up-to-date population, which could help to improve the exploratory potential of the
search domain and speed up the convergence speed of the candidates. In [22], the work’s
aim is to find the best solution with a combination of stochastic methods and PSO with
an adaptive cauchy mutation method to design the new algorithm. In [23], the author
presents a multiple scale self-adaptive cooperative mutation strategy-based particle swarm
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optimization algorithm (MSCPSO) to address the two fundamental drawbacks of PSO. To
improve the capability of sufficiently searching the whole solution space, we use multi-
scale Gaussian mutations with varying standard deviations in the suggested approach.
Equations (4) and (5) are the mathematical representation:

Gd(t) = Gd(t− 1) +
N

∑
i=1

cid(t) (4)

in which

cid(t) =
{

0, vid(t) > Td
1, vid(t) < Td

if Gd(t) > k1 then

Gd(t) = 0; Td =
Td
k2

(5)

In [24], the authors proposed a novel approach to the learning parameters. According
to this idea, the two learning variables are dynamically modified in order to affect the
particles escaping from a local optimum and converge to the global optimal solution.
In [25], the application of Cauchy mutation and Gaussian mutation in the modified PSO is
investigated. The major aim is to obtain greater convergence and obtain the best results
in the solutions of various real-world problems. In the domain of swarm intelligence, the
PSO serves as a basis. The proposed PSO used an improved weight factor compared to the
traditional PSO to achieve better convergence.

2.3. Topological Structure

When dealing with complex and high-dimensional optimization problems, researchers
are currently working on changing the topological structure of particle swarm optimization
to escape the issue of premature convergence. In [26], an example-based learning PSO
has been reported to improve swarm and convergence speed diversity. According to the
ELPSO idea, many global best particles are set as examples to participate in the velocity
update equation, selecting from the current best candidates instead of the gbest particle.
The proposed work mathematically is shown as:

Vk
i = wVk

i + c1rand1k
i (pbestk

ri
− Xk

i ) + c2rand2k
i (gbestk

ri
− Xk

i ) (6)

In [27], instead of pbest and gbest particles, only the “historical best info” has been used
in the conventional PSO velocity update equation to maintain the population diversification.
In [28], the exact particles location and position were described and explained for the
purpose of adjusting the balance for exploration and exploitation in the search process and
is mathematically expressed as:

Xk+1
i = (1− β(t))pk

i + β(t)pr
g + α(t)Rk

i (7)

In [29], an advanced particle swarm optimization algorithm (APSO) approach is
presented. The algorithm uses an improved velocity to modify the equation to ensure
that the particles reach the best solution speedily as compared to traditional PSO. In [30],
PSO with combined Local and global expanding neighborhood topology (PSOLGENT) is
proposed that employs a novel expanding neighborhood topology. In [31], a local search
strategy was developed where every candidate tries to reach a better position during the
search process and then tries to get the best in the whole swarm.

2.4. Hybridization

Researchers also modified the PSO algorithm by combining it with other optimizers
for the purpose of enhancing the performance and expanding the search ability of the
particles during the evolution process. According to recent research work, when PSO
integrates with other evolutionary operators such as crossover, selection, and mutation, the
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efficiency of the PSO improves and the PSO is strengthened in terms of robustness, stability,
and convergence rate. In [32], the genetic algorithm (GA) is used to amend the decision
vectors using genetic operators, while the PSO is used to boost vector position. In [33], the
PSO algorithm is paired with the sine cosine algorithm (SCA) and levy flight distribution.
According to the SCA algorithm, the updating solution is based on the sine and cosine
functions, while levy flight is a random walk that uses the levy distribution to produce
search steps and then uses big spikes to search the exploration space more effectively. A
new hybrid algorithm is proposed that combines the exploitation capabilities of the PSO
with the integration of the exploration capabilities of the grey wolf optimizer (GWO). On
the basis of the idea, it combines two methods by substituting a particle from the PSO
with a low probability for a partially better particle from the GWO [34]. The hybridization
method of PSO and differential evolution (DE) has been reported in [35]. The main idea of
the proposal is to control diversity and keep a good balance between the local and global
searches of the candidates.

Indeed, PSO has been widely used in large areas of research such as in the application
of face recognition systems [36], artificial neural network [37], Internet of Things [38],
reliability engineering [39], power-system [40], indoor navigation [41], control-systems [42],
EEG signals [43], deep-learning [44], wireless sensor networks [45], cloud computing [46],
energy grid [47], Image segmentation [48], and electromagnetics [49,50].

3. The Proposed Work

As explained previously, the traditional PSO algorithm is facing challenges. The main
challenge in the PSO process is premature convergence and lack of diversity problems
due to unbalance between exploration and exploitation searches of the particles. The PSO
technique demands significant testing in order to establish the right parameters required to
address the aforementioned difficulties. Therefore, we developed a novel strategy for the
control parameter and presented a modified mutation mechanism for the personal best
and global best particles.

In the traditional PSOs, the inertia weight value is constant in the search process, so
the particles are unable to find the best solution. On the other hand, many researchers
are practices the maximum and minimum inertia weight values for exploration and ex-
ploitation searches respectively. As the values of inertia weight have an imperative role
in a dynamic environment, to solve real world problems in a dynamic environment, we
developed a novel strategy for the inertia weight which will try to maintain the best balance
between exploration and exploitation search of the candidates in the PSO process. Based
on global best function particle values, the inertia weight value is frequently changed
during the development process. In the search procedure, the proposed inertia weight
strategy is important and works with the current mutation mechanism, and this process
mathematically stated as:

wi =
Gbestvalue

Mg
(8)

where w is inertia weight, i denotes the ith particle, Gbest value is the best objective function
value of global best particle and Mg represents the maximum number of generation.

Furthermore, because of the presence of static fitness, the traditional PSO technique
experiences a lack of diversity problem in the early phases of the evolution process for
global best particle gbest and personal best particles pbest. During the search process, all
the particles follow the gbest particle, it may be possible that if the gbest does not know
the best solution, then all the particles are trapped in a local optimal region. During the
optimization process, the difference between the global best particle and the current particle
is so small due to the increasing number of generations that it causes the particles to become
static or stagnant, and as a consequence, the particle velocity is approaching zero, which
causes the algorithm to prematurely convergence.

To tackle the aforementioned issues and difficulties in the conventional PSO algorithm,
we introduced a new mechanism and strategy that chooses a different mutation operator
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based on the selection ratio. The mutation operators are accompanied by personal best
particles and global best particle for the purpose of enhancing the performance of the PSO
process as well as preserving the diversity of the swarm. The proposed adaptive mutation
operators are mathematically expressed by:

Q1 = pbest1
ij = pbestij + Rlyij (9)

Q2 = gbest1
j = gbestj

+ Rlyj (10)

Q3 = pbest1
ij = pbestij + stdij (11)

Q4 = gbest1
j = gbestj + stdj (12)

Q5 = pbest1
ij = pbestij + gamaij (13)

Q6 = gbest1
j = gbestj + gamaj (14)

The inspiration of the mutation operators is described in the following paragraph.
The basic PSO is inspired by the flocking of birds or school fishes, such as the birds

flying in the air randomly, and the learning rate of each particle in the PSO process is
randomized as well. Also, during the motion of birds, the wings of birds play an imperative
role in order to continue flight. At the same time, the wings of the birds need randomized
energy for their flight to spend more time in the air. Consequently, in the flying mode,
the wings of birds are tired due to the presence of less energy during a long journey, and
as a consequence, the birds are unable to explore more search space. Viewing the same
procedure in the PSO process, where the two particles play a primary role during the
search procedure, if the values of personal best and global best particles (energy of the
given particles) are less or reduced during the passing of computational time, the velocity
of the particles approaches zero, and as a result, the algorithm converges prematurely. In
order to avoid this kind of issue, we conducted the mutation operators on particles with the
purpose of improving the searching process of the PSO process and enabling the personal
and global best particle to explore more optima space. Thus, the novel mutation operators
generate random numbers that will provide more energy to the particles and explore more
space regions in the evolution process.

In the PSO optimization process, each mutation operator plays a key role in the
proposed strategy and has a self-determining selection ratio. The optimum proposed
ratios of Q1 and Q2 denoted by X, Q3 and Q4 by Y and Q5 and Q6 by Z respectively.
Where X, Y and Z are all set to 0.3 during the initial phases of the optimization process,
which ensures that each mutation is chosen an equal number of times. The mutation
ratio is updated during the search process depending on the previous mutation operator
success rate to summarize the information gained from the history of the objective function.
Explicitly, the following updated equations for the novel mutation of mechanism as:

X = l + (l − 3l)
outRly

outn
(15)

Y = l + (l − 3l)
outstd
outn

(16)

Z = l + (l − 3l)
outgama

outn
(17)

The number of successful mutations of unique mutation operators in the primary mu-
tation operations is represented by probability (out) in the above equation. The minimum
ratio of each mutation operator is predefined by a constant l, and its value is set to 0.04.
Furthermore, during the evolution process the values of X, Y and Z are updated after every
generation. The selection process of the best mutation is adapted to the roulette wheel
selection method on the basis of the selection ratio of mutation operators, as the roulette
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wheel selection mechanism is such that the ratio of mutation operators having a longer
stay (high selection ratio) will be chosen with a high probability.

4. Numerical Results Analysis

The proposed Improved PSO has been compared to five other well-known optimal
algorithms on ten mathematical test functions having dimensions 100. The details are given
as under:

• A Particle swarm optimization with adaptive mutation for multimodal optimization
(AMPSO) [20].

• A modified PSO algorithm with dynamic parameters for solving complex engineering
design problem (MPSOED) [24].

• Analysis of gaussian & cauchy mutations in modified particle swarm optimization
algorithm (GCMPSO) [25].

• Global Particle Swarm Optimization for High Dimension Numerical Functions Analy-
sis (GPSO) [27].

• Modified particle swarm optimization algorithm for scheduling renewable generation
(MPSO) [51].

• Modified particle swarm optimization with effective guides (MPSOEG) [52].

For the current research work, we use mathematical test functions for the purpose to
evaluate the novel method as well as other algorithms, as the said benchmark problems are
popular in the field of engineering and are normally considered benchmark problems. In
this paper, we employed ten mathematical functions to examine the effectiveness of particle
swarm optimization with parameter adjustment. All these are unimodal and multimodal to
validate the proposed IPSO algorithm’s performance, and the results are compared to the
various PSO variants such as, GPSO, AMPSO, MPSO, MPSOED, GCMPSO and MPSOEG,
in tabulated data and plots of various methods indicated from 1~10. Table 1 shows these
test functions along with the search space in which they are commonly optimized.

Table 1. High Dimensional Classical Benchmark Functions.

Function’s Name Mathematical Definition Range

Rastrigin f1(x) = 1
4000

n
∑

i=1
z2

i −
n
∏
i=1

cos
(

zi√
i

)
+ 1 [−600, 600] D

De Jong’s f2(x) =
n
∑

i=1
ix2

i
[−5.12, 5.12] D

Bent Cigar f3(x) = x2
i + 160

n
∑

i=2
x2

i
[−100, 100] D

Step f4(x) =
D
∑

i=1
(xi + 0.5)2 [−100, 100] D

Quartic f5(x) =
n
∑

i=1
x4

i + random(0.1) [−1.28, 1.28] D

Sphare f6(x) =
n
∑

i=1
x2

i
[−100, 100] D

Schwefel’s Problem 1.2 f7(x) =
D
∑

i=1

(
n
∑

I=1
zi

)2
+ fbias1

, z = x− 0

and fbias1
= 450

[−100, 100] D

HappyCat
f8(x) =

∣∣∣∣ n
∑

i=1
x2

i − n
∣∣∣∣ 1

4

+
(0.5

n
∑

i=1
x2

i +
n
∑

i=1
xi)

n + 0.5 [−100, 100] D

Alpine1 f9(x) =
n
∑

i=1
|xsin(xi) + 0.1xi| [−10,10] D

Griewank f10(x) = 1
4000

n
∑

i=1
z2

i −
n
∏
i=1

cos
(

zi√
i

)
+ 1 + fbias2 ,

z = x− 0 and fbias2 = −180

[−100, 100] D

“D” means search space Dimension.
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To judge a proper comparison among the various methods while analyzing the factual
analysis of these optimization functions, we employed the same parameter values for all
algorithms in the computational testing. The maximum generation was set to 2000 and
the dimension to 100. In 60 trial runs, Table 2 records and reports the best values while the
worst, mean, variance solution values for are available in Appendix A.

Table 2. Statistical Analysis of the Best Objective Function Values for 100 Dimensions Bench-
mark Problems.

Function IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

f1 −14.30 −3.10 −4.00 −2.60 −1.70 −5.40 −7.35

f2 −99.00 −2.80 −5.80 −22.00 −10.80 −26.10 −16.94

f3 −32.30 −10.30 −14.60 −7.68 −7.96 −15.20 −4.65

f4 −75.46 −14.50 −9.70 −17.28 −39.22 −26.30 −24.38

f5 −60.70 −26.71 −16.30 −47.93 −12.04 −26.70 −19.15

f6 −11.30 −2.80 −3.30 −7.48 −5.20 −2.20 −5.30

f7 −95.00 −72.00 −29.00 −32.40 −28.40 −46.20 −22.49

f8 −1.50 0.20 1.20 1.50 0.40 −0.40 −0.90

f9 −19.12 −3.80 −1.50 −7.00 −7.50 −4.80 −7.73

f10 −31.80 −18.10 −10.90 −10.80 −7.80 −21.30 −4.90

5. Discussion

On the basis of these comparable data metrics, we claim that our proposed approach
(IPSO) performs better as compared to the well-known other algorithms and strategies. The
following are the most complicated benchmark problems that are chosen for the validation
to recheck the performance of various algorithms. Consequently, the best objective function
values for various techniques and our proposed algorithm are indicated in Table 2, while
worst, mean and variance results are tabulated in the Appendix A.

Consider the test function, namely the “Rastrigin function”, which is a complex
multimodal function with a single global optimal solution and multiple local minima.
According to tabulation results, we know that our new approach surpasses other methods
such as GPSO, AMPSO, MPSO, MPSOED, GCMPSO, and MPSOEG. The test results of
Rastrigin function shows that our proposed method performed well as compared to other
ones, so it comes in the first category.

To recheck the stability and power of our proposed PSO, we validated the test function,
i.e., the “Alpine 1” test function. The Alpine is also a complicated and complex multimodal
function, having many local minima and one global optimal solution, while having the
range between [−10, 10]. The tabulation value of Alpine function indicates that our
algorithms gives minimum result as compared to others. We conclude that our novel
approach shows outclassed results on Alpine function as compared to other algorithms.

Similarly, if we check the results of our modified PSO (IPSO) on sphere function,
which is unimodal and complex, the global optimal solution of the sphere function is zero
and having the range of the search space is [−10, 10]. The tabulation results shows that our
modified PSO optimized the said function.

In addition, our modified method produced the top results on the HappyCat bench-
mark function. The HappyCat function is frequently used to validate the algorithms, due
to the presence of so many local minima and complicated structures. If we observe the
results of the Quartic function, it shows that our modified approach also gave the top
results as compared to the other ones. In summary, the Schwefel’s Problem 1.2 function
and De Jong’s, Bent Cigar, Step, Quartic, Alpine1, and Griewank were all these complex
and complicated optimization problems that are commonly used to validate algorithms. In
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short, our novel IPSO shows good results for most optimization problems as compared to
other well-known modified algorithms.

The convergence curve based on test functions f1, f5 and f7 is represented in Figures 1–3
respectively, while the curves for f2, f3 , f4, f6, f8, f9 and f10 are availble in appendix shows
the convergence characteristics for various algorithms. Viewing the critical study of test
function f 1 we notice that our approach finds the required solution space after 500 genera-
tions and other methods such as AMPSO, GPSO, MPSOED, and GCMPSO perform badly,
which indicates their low performance and robustness.

From the study of second test function plots, we understand the low performance
of other comparable methods and the efficacy of our proposed approach, as in the whole
search process, other well-defined methods could not converge to a global region, while
our novel modified approach finds the main region after 2000 generations. Similarly,
our observation on the third function f3 plot is reported as the said idea converged
before 600 generation, while other algorithms never found the optimal solution of the
said algorithms.

If we observe the plot of the sixth test function, we conclude that MPSO performs a
little bit better than AMPSO and while the IPSO (proposed approach) performs outclass
as compared to all other algorithms, which shows its stability and maturity. So, from the
plots, it is obvious that the novel algorithm shows the best performance.

Figure 1. Algorithms convergence plots on f1.

Figure 2. Algorithms convergence plots on f5.
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Figure 3. Algorithms convergence plots on f7.

In this article, we employ the logarithm values of the objective function for comparison.
From the graphical results of the test functions, the proposed IPSO converges to the global
optimal region faster than the GPSO, AMPSO, MPSO, MPSOED, GCMPSO, and MPSOEG.
The reasons are (1) the proposed novel adaptive mutation operator has prevented the
diversity loss of the optimization process, (2) the proposed dynamic factor comprises the
balance between exploration and exploitation in the search domain. Thus, we conclude
from the plots that the suggested approach convergence plots for various test functions
proves its superiority compared with others. From the convergence trajectories, it is clear
that the novel technique is more efficient, stable and robust. Viewing the numerical results,
the proposed IPSO’s final solution has significantly greater quality as compared to the
others, namely “GPSO”, “AMPSO”, “MPSO”, “MPSOED”, “GCMPSO” and “MPSOEG”.

6. Application

For better performance analysis of our proposed approach, we choose an engineering
electromagnetic device i.e., “TEAM workshop problem 22 (SMES)” as another case study.
The optimal design of a SMES device is a popular problem in computational electromag-
netics, and it is the 22nd benchmark problem for testing electromagnetic analysis methods
(TEAM 22) [53]. The SMES device stores energy in the form of magnetic fields which
is generated from the superconducting coils. The TEAM workshop problem 22, is also
known as an optimization case of the SMES that has been adapted as a magneto-statics
benchmark problem. The following diagram of TEAM 22’s design goal, as illustrated in
Figure 4, is that the main idea of the problem is to keep the stored energy as close as 180 M
Joule, while minimizing the magnetic stray field observed on lines a and b. The first coil
is charged to store energy, and the second should be built to reduce the first coil’s high
magnetic stray. In addition, to maintain the superconductivity of the inside and outside
coils, the quenching condition should not be violated. As, the manufacturing tolerance in
geometric variables (e.g., R2, d2 and h2 in Figure 4), as well as perturbation compensation
of the current controller, can lead to a faulty device.

According to the design procedure of the problem, it incorporates three parameters
related to the creation of SMES [54,55].{

min f = B2
stray/B2

norm +
∣∣∣Energy− Ere f

∣∣∣/Ere f

s.t (Ji < −6.4
∣∣(Bmax)i + 54)(A/mm2)(i = 1, 2)

(18)

Obviously, this SMES device is a single objective function design problem, but it
actually combines two objective functions to integrate magnetically stored energy in a
couple of coils Wm, Wer f = 180, M Joule, N = 22, and Bnorm = 3m Tesla.
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Figure 4. Schematic diagram of SMES device.

The mathematical equation for the stray magnetic field as follows:

OF =
B2

stray

B2
re f

+

∥∥∥wm − wm.re f

∥∥∥
wm.re f

(19)

B2
stray =

N
∑

i=1
B2

stray.i

N
(20)

The finite element method is applied to calculate the performance parameters in the
above two equations in current research work. When a magnetic field is created, it is
essential to keep the physical condition of coils in order to guarantee superconductivity
within the solenoids.

Because the current density is 22.5 A/mm2 then Bmax must be less than 4.92.

Ji < (−6.4|(Bmax)i|+ 54)
(

A
mm2

)
(21)

where, J1, indicates the coil’s current density, and Bmax, represents the maximum magnetic
flux density of the ith coil, while i, denotes the coil’s number.

The inner solenoid is fixed in this electromagnetic problem, optimization of SMES
device is; r1 = 2 m, d1 = 0.27 m and h1

2 = 0.8 m, whereas the outer-solenoid geometrical
dimensions is 0.6 ≤ r2 ≤ 3.4 m and 0.1 ≤ r2 ≤ 0.4 m are optimized.

The super conducting magnetic energy storage device conveys currents in opposing
directions, associated with radius, height, thickness, and search space of the stray field, as
demonstrated in Table 3. For the sake of fair comparison, we set all of the parameters to the
same values for IPSO, GPSO, AMPSO, MPSO, MPSOED, GCMPSO, and MPSOEG, and the
average value of the objective function was reported in Table 3. The results demonstrate
that the novel IPSO recorded output is superior to those of the others.

To synthesize a magnetic field with a desired distribution, appropriately designed
current-carrying coils can be used. There are several applications in biomedical engineering:
a uniform magnetic field is the background of nuclear magnetic resonance spectroscopy,
and a linear profile of the field is required for magnetic resonance imaging. Furthermore,
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in magneto-fluid hyperthermia (MFH), field uniformity aids in the uniform dispersion of
heat generated in the nano-particle fluid that was previously injected into the target region,
such as a tumor mass being treated. As a result, major practical applications influenced the
concept behind this benchmark problem.

Table 3. Results Comparison of IPSO with other variants on TEAM Workshop Problem 22.

Algorithm R2 h2/2 d2 Objective Function Fitness

IPSO 2.9918 0.2028 0.2939 0.0717
GPSO 2.9713 0.2037 0.3192 0.1287

AMPSO 3.0017 0.6000 0.3201 0.1136
MPSO 3.0084 0.8265 0.2786 0.1356

MPSOED 2.8464 0.5729 0.3382 0.1123
GCMPSO 2.6050 0.2040 0.1000 0.1210
MPSOEG 3.1103 0.7325 0.2731 0.0821

7. Conclusions

PSO is a relatively new metaheuristic for global optimization of a multimodal objective
function with continuous variables, and has been recognized a standard global optimizer.
Although a wealth of efforts have been devoted to improve its convergence speed, solution
quality, and algorithm stability, the performance of the existing PSOs are still unsatisfactory.
For example, a premature convergence and the loss of diversity are two challenging issues
to be addressed for existing PSOs. In this respect, a novel adaptive mutation operator is
designed to ensure the diversity of particles in the optimization process, and a dynamic
factor is proposed to ensure a good balance between exploration and exploitation searches.
The numerical results on mathematical test problems and an engineering application
prototype have validated the effectiveness of the proposed PSO algorithm. Consequently,
the present work provides a feasible global optimizer for optimizations of multimodal
functions with continuous variables.

In future study, we would really want to analyze the convergence problem using a
hybrid optimization algorithm (PSO & ABC) and introducing novel formulations for the
cognitive and social components, designing novel selection methods for the leader particle,
and creating new equations for the personal best particle using the idea of neighborhood.
At the same time, we may choose other case studies such as, solenoid problems, as well as
using some novel shifted or rotated mathematical test functions.
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Abbreviations

PSO Particle Swarm Optimization
IPSO Improved Particle Swarm Optimization
C1 Cognitive Constant
C2 Social Constant
pbest Personal Best
gbest Global Best
W Inertia Weight
SPSO Smart Particle Swarm Optimization
CF Convergence Factor
AIWF Adaptive Inertia Weight Factor
GA Genetic Algorithm
SCA Sine Cosine Algorithm
GWO Grey Wolf Optimizer
DE Differential Evolution
PV Photovoltaics
Mg Maximum Generation
Rly Rayleigh’s method
Std Students
Out Outcome
Q Mutation Operator
SMES Super Conducting Magnetic Storage System
TEAM Testing Electromagnetic Analysis Method
Wm Magnetic Energy
OF Objective Function
Ji Current Coil Density
Bmax Maximum Magnetic Flux

Appendix A

Performance Comparison based on Worst, Mean and Variance.

f1 Rastrigin

IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

Worst 0.00 0.00 0.20 0.10 0.20 6.70 1.10
Mean −12.18 −2.14 −2.10 −1.49 −0.62 −0.21 −3.80

Variance 4.14 0.77 1.13 0.84 0.68 3.45 2.35

f2 De Jong’s

IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

Worst 1.00 1.00 0.00 0.00 0.00 16.90 1.20
Mean −50.64 −1.25 −3.22 −14.41 −7.09 −10.70 −9.77

Variance 30.13 1.08 1.87 7.44 3.59 12.08 6.63

f3 Bent Cigar

IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

Worst 0.00 1.00 1.80 1.70 1.10 0.00 2.60
Mean −27.01 −7.32 −7.37 −5.69 −3.24 −8.02 −1.01

Variance 10.12 2.92 6.22 3.02 2.84 5.93 2.20

f4 Step

IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

Worst −1.00 0.90 1.10 1.80 1.70 1.01 0.10
Mean −45.65 −5.65 −3.79 −7.13 −15.65 −9.95 −11.49

Variance 26.14 5.12 3.75 6.10 12.91 8.78 7.70
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f5 Quartic

IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

Worst 0.00 1.00 0.00 1.00 0.00 0.00 0.75
Mean −54.37 −11.58 −7.79 −22.93 −5.77 −11.18 −8.16

Variance 16.18 8.70 5.52 14.99 3.76 10.00 6.71

f6 Sphare

IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

Worst 0.80 0.90 1.60 0.80 1.00 1.41 0.93
Mean −5.55 −1.09 −1.18 −2.85 −2.90 −0.82 −3.73

Variance 3.90 1.05 1.43 2.67 2.62 0.90 2.09

f7 Schwefel’s Problem 1.2

IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

Worst 5.90 8.30 10.00 10.10 8.90 6.00 6.11
Mean −68.62 −62.69 −10.44 −12.20 −10.38 −12.75 −6.26

Variance 33.84 21.23 17.25 15.15 13.06 18.28 9.42

f8 HappyCat

IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

Worst 1.90 2.40 2.30 2.50 2.60 8.00 1.19
Mean −0.75 0.60 1.46 1.88 1.17 1.77 −0.44

Variance 1.17 0.43 0.21 0.29 0.40 1.34 0.71

f9 Alpine1

IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

Worst 0.00 3.20 2.90 0.90 3.00 2.90 3.30
Mean −14.57 −2.28 1.74 −4.37 −1.34 −0.28 −1.69

Variance 6.33 1.70 1.25 2.62 4.15 2.43 4.20

f10 Griewank

IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

Worst 0.00 0.90 1.10 1.00 2.00 1.60 1.10
Mean −17.02 −8.47 −5.60 −7.01 −2.50 −13.59 −2.35

Variance 10.86 6.17 4.14 4.68 3.27 7.94 2.17

Figure A1. Algorithms’ convergence plots on f2.
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Figure A2. Algorithms’ convergence plots on f3.

Figure A3. Algorithms’ convergence plots on f4.

Figure A4. Algorithms’ convergence plots on f6.
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Figure A5. Algorithms’ convergence plots on f8.

Figure A6. Algorithms’ convergence plots on f9.

Figure A7. Algorithms’ convergence plots on f10.
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Discription of Mathematical Test Function

Rastrigin is a multimodal function and is challenging to solve because it contains
several local minima regions where an optimization algorithm with limited exploratory
power is likely to become trapped. The function’s lone globally optimal solution, 0, is
located within the domain of [−5.12, 5.12] at f (x*) = [0, 0, . . . , 0].

The step mathematical test function is one of the more complicated and complex
problems due to the lack of suitable direction. The minimum value is fixed at zero. The
search region of said benchmark problem is [−100, 100], and the shape of the given
benchmark problem is flat.

Researchers are using the Quartic function as a benchmark problem due to its uni-
modal quality. Its global point is zero and the space of its search is mentioned and presented
between the values of [−1.28] and [1.28].

The test function, namely “Sphere,” is a unimodal and continuous function, and the
solution of such types of problems is easy. The search domain should be mentioned in the
brackets [−5.12, 5.12]. The zero is the minimum value of the given sphere function where
the value is derived by the computational scientist and the research optimization school.

Griewank is the mathematical test function that is used in the field of engineering
design for the validation of computational techniques. The mentioned problem is complex
and multimodal, and its feasible range of function is [−100, 100]. The scientist has already
discovered that the global optimal solution to the aforementioned benchmark problem
is zero.

The Alpine 1 function is a mathematical test function used to validate computing
strategies in the field of engineering optimization. This function is Multimodal and Contin-
uous with a −10 ≤ xi ≤ 10 constraint. The origin is the location of the global minimum,
where x = (0, 0) and f(x) = 0.
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