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Abstract: During the COVID-19 pandemic, uncertainty has increased in many areas of both business
supply and demand, notably oil demand and pricing have become even more unpredictable than
before. Thus, for companies that buy large quantities of oil, effective oil price risk management is
crucial for business success. Nevertheless, businesses’ risk appetite, specifically willingness to accept
more risk to achieve desired business benefits, varies significantly. The aim of this paper is to deepen
the analysis of the effectiveness of employing artificial neural networks (ANNs) in hedging against
oil price changes by searching for buy signals for European WTI (West Texas Intermediate) crude oil
call options, while taking into account the level of risk appetite. The number of generated buy signals
decreases with increasing risk appetite, and thus the amount of capital necessary to buy options
decreases. However, the results show that fewer buy signals do not necessarily translate into lower
returns generated by networks in a given class. Thus, higher levels of return on the purchase of call
options may be obtained. The conducted analyses clearly proved that ANNs can be a useful tool in
the process of managing WTI crude oil price change risk. Using the analyzed network parameters,
up to 29.9% of the theoretical maximum possible profit from buying options every day was obtained
in the test set. Furthermore, all proposed networks generated some profit for the test set. The values
of all indicators used in the analyses confirm that the ANNs can be effective regardless of the level of
risk appetite, so in this respect they may be described as a universal decision support tool.

Keywords: crude oil price risk; commodity options; artificial neural networks (ANNs); support
decision-making; COVID-19

1. Introduction

In 2020, the COVID-19 pandemic caused an extraordinary drop in oil demand. It has
rebounded since then and prices have reached multi-year highs. Strong demand for oil
is expected to continue, barring unforeseen surges in the number of sick or the severity
of symptoms and more lockdowns. Under these conditions, forecasting oil prices is even
more difficult than usual, when uncertainty is caused mainly by the number of worldwide
market players and a largely unpredictable, often opaque and political decision process on
the supply side. This will likely increase large customers’ interest in shielding themselves
from price risk by turning to long-term contracts and options.

There are many studies on the effects of COVID–19 on price risk in financial and
commodity markets [1–3]. Increasingly, attention has been drawn to the fact that the
energy sector is one of those most noticeably affected by the effects of the pandemic [4].
Some of research also focuses on the rising price risk in relation to the crude oil market.
Akhtaruzzaman et al. [5] showed that in general, oil supply industries benefit from increases
in oil price risk, whereas customers and financial industries react negatively to positive oil
price shocks. Sharif et al. [6] used data from 21st January 2020 to 30 March 2020 to show
sensitivity of the US stock market, the US economic policy and the US geopolitical risk to
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the combined shocks of the COVID-19 and oil volatility shocks. In turn, Abuzayed and
Al-Fayoumi [7], using daily data from January 2017 until May 2020, examined oil price
extreme tail risk spillover to individual Gulf Cooperation Council (GCC) stock markets
and quantified this spillover’s shift before and during the COVID-19 pandemic. Among
other things, they showed that the effect of oil price systemic risk on GCC stock market
returns was significantly larger during COVID-19 than before the pandemic.

Issues related to the consequences of the risk of changes in oil prices were a popular
topic of scientific research even before the coronavirus pandemic. Researchers analyzed
the impact of oil price fluctuations on macroeconomic aggregates such as the level of
investment, stock prices and returns [8–13], inflation rate [14], industrial production and
exchange rates [15–19], as well as financial and monetary policy [20]. There has also been a
large number of studies concerning the impact of crude oil prices on commodities such
as: energy [21–25] and agricultural commodities [26–29], copper, gold [30,31], silver, zinc,
platinum and palladium [32] and molybdenum [33].

Various methods may be employed for price risk mitigation, notably diversification,
stockpiling, forward and futures contracts as well as options. In the oil market there
are limited opportunities for diversification, since in most applications of oil has few
substitutes, especially in the short term. Stockpiling is limited by storage capacity and may
be impractical, whereas forward and futures contracts have the disadvantage of requiring
exercising the contract, even if results in a loss. Options have the advantage of giving—as
the name implies—an option to buy or sell a set quantity at a given price, without the
obligation. This is especially true for the world energy commodities market, where price
fluctuations pose a great liquidity risk for production companies.

However, the effective use of options in price risk management is nontrivial. Their
effectiveness depends on numerous parameters such as strike price, option opening and
expiry date. That is why it is important to select tools and techniques that increase the prob-
ability of choosing options that protect against unfavorable price fluctuations. Therefore,
the aim of this paper is to deepen the analysis of the effectiveness of employing artificial
neural networks in the search for buy signals for European WTI (West Texas Intermediate)
crude oil call options by changing ANN parameters related to risk appetite.

Artificial neural networks are we well suited for this type of problems due to their
inherent ability to model complex non-linear relationships. Importantly, these relationships
do not need to be explicitly identified. ANNs’ effectiveness hinges on the availability of
large amounts of data to train the networks. In this case, these data are provided by the
liquid WTI crude oil options market.

There have been many attempts to use ANNs for price risk mitigation on the oil mar-
ket. For example, Azadeh et al. [34] showed that in terms of mean absolute percentage error
(MAPE), ANNs can substantially outperform fuzzy regression. For the prediction of WTI
crude oil prices, Chiroma et al. [35] proposed an approach based on a genetic algorithm and
neural network (GA–NN). Mann–Whitney test results indicated no significant difference
between median WTI crude oil prices predicted by GA–NN and prices observed over a
three-year period. Wang and Wang [36] attempted to forecast crude stock and oil prices
using an amalgamation of Elman recurrent neural networks (ERNN) with stochastic time
effective function (ST) and multilayer perceptron (MLP) to develop a forecasting model,
called ST-ERNN. Forecasts based on this model were better than from ERNN and back-
propagation neural network (BPNN) models. Liu and others [37] found that an enhanced
Artificial Bee Colony with Back Propagation (BP) natural network model is better than
Monte Carlo Simulation at predicting implied volatility.

Numerous studies [38–47] show that ANNs are an effective tool for forecasting crude
oil prices. However, the aforementioned studies focused mostly on oil price predictions,
which do not necessarily lead to successful investment strategies as shown by the authors
in previous studies [48,49] (and others [50]). This paper builds on an approach proposed
by the authors in these studies to analyze the effect of an ANN parameter expressing
risk appetite. The actual concept of risk appetite is equated with the final result (payoff)
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obtained as a result of purchasing call options. A company determines its risk appetite
by specifying the minimum expected payoff value that must be exceeded in order to
consider a given position favorable from the perspective of its objectives. The higher this
threshold (higher risk appetite), the lower the total number of options acquired under the
implemented strategy. As a result, the probability of opening a position in an option that
would protect the company from large losses due to significant fluctuations in commodity
(oil) prices will decrease. Therefore, the main objective of the presented research was to
try to increase the probability of making a correct decision in purchasing a call option by
optimizing the value of the indicator equal to the ratio of the total sum of returns obtained
from the purchased call options to the sum of returns on all positions in profitable call
options during the analyzed period. The proposed indicator should be maximized so that
the number of correctly made decisions results in the highest possible level of return on
investment in options, while taking into account the company’s preferred risk appetite. To
the best of our knowledge, the proposed analysis has so far not been carried out in any
previous studies.

The article is structured as follows: Section 2 contains the proposed method. The data
and its properties are presented in Section 3. Empirical results are discussed in Section 4.
Section 5 contains the summary, conclusions and future research directions.

2. Proposed Method

We propose changing an ANN parameter expressing risk appetite to improve the
effectiveness of hedging against the risk of oil price increases by taking long positions
in call options. Section 2.1 describes the characteristics of the chosen ANN models. In
Section 2.2 we expound the concept of using options for price risk mitigation. Finally,
in Section 2.3, we present the reasoning behind the chosen performance indicators and
methods for calculating them.

2.1. Artificial Neural Networks

Artificial neural networks are modelled on neurons in the brain, represented by
logistic units connected into a so-called neural network, where input and output nodes
are separated by one or more hidden layers. In this case, inputs are market conditions
and outputs are the decision whether to buy options. The network is trained on a subset
of historic data and subsequently its performance is evaluated on the remaining data.
Neural networks differ in architecture, i.e., the number of features and outputs, layers and
activation functions that define the decision process—choosing these well is a non-trivial
process that has a large impact on performance. The quantity and quality of historical data
also plays a significant role—very large, representative, non-redundant data sets are best.

Given a training set (x(i), y(i)) for i = 1, . . . , m, where m is the number of variables,
x’s are the “input” variables and y’s the “output” variables, a hypothesis function hθ(x) is
proposed and its parameters θ are calculated using various algorithms to minimize a cost
function J. The cost function represents the difference between the predicted and actual
output given by the equation (this and alternative methods are explained in [51]):

J =
1

2m ∑m
i=1

(
hθ

(
x(i)

)
− y(i)

)2
(1)

The ANN learning process is relying on backpropagation, to find values of Θ, which is
a matrix of θ parameters that minimize the cost function by minimizing individual errors
δj

(l), where j is the number of the node in layer l. The objective of minimizing the cost
function J by finding parameters Θ requires an approximation of partial derivatives of
J(Θ) [52]:

∂

∂Θ(l)
i,j

J(Θ) (2)
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where: J—cost function, Θ(l)
i,j —ANN parameters matrix, i—ANN parameter index, m— num-

ber of ANN parameters i, j—ANN layer index.
Derivatives are computed using the backpropagation algorithm applied to the training

set. For every feature “i” in turn, the error in the approximation is computed as [53]:

∆(l): = ∆(l) + δ(l + 1)(a(l))T (3)

where: ∆—error matrix, (a(l))T —transposed activation units vector of layer l, δj
(l + 1)—errors

in the next layer.
In practice, regularization (parameter λ) must also be used to avoid overfitting the data

and minimize errors. Otherwise, only accuracy on the training set is maximized, while fit to
other data may be poor. The authors used Statistica software by TIBCO Software Inc. (Palo
Alto, CA, USA) to build and train artificial neural networks using multilayer perceptron to
model non-linear relationships between input and output variables. A three-layer network
was chosen with one input, one output and one hidden layer.

The Broyden–Fletcher–Goldfarb–Shanno algorithm was used for training the ANN. It
is an optimization algorithm that starts with an initial guess of parameters and iteratively
improves upon it (using data from the training set) by searching for a better solution in
direction pk as defined by [54]:

Bkpk = ∇f(xk) (4)

where: Bk—approximation of the Hessian matrix, pk—search direction, ∇f(xk)—gradient
of given function f at point xk.

The ANN was employed in solving a classification problem of whether to buy call
options. We experimented with different activation functions (in the hidden and output
layer) and number of neurons (in the hidden layer) to find networks that resulted in the
best predictions as determined by performance indicators defined in Section 2.3.

2.2. Price Risk Mitigation Using Options

Options are non-linear derivatives that offer great hedging possibilities against price
risk. Opening a position on the option market and treating it as a form of hedging against
price fluctuations is usually done in such a way that the position in the option covers any
losses on the underlying asset market. For example, a company that is concerned about
an increase in the price of crude oil with a future delivery date may open a long position
with a call option on that commodity. In the event of an increase in the value of crude oil
relative to the agreed strike price, it will receive a non-negative payment. In turn, an oil
price lower than the strike price on the contract expiry date will mean that the right to
exercise the option will not be exercised. The final result (payoff) for the buyer of the call
option can therefore be calculated according to the following formula:

vc = max{F− K; 0} − opc, (5)

where: vc—the final results (payoff); F—the future price of crude oil on the day of the
option’s expiration; K—strike price of the option; opc—option premium (for the strike price
K) for observation c.

Equation (5) shows that by taking long positions in call options, the maximum loss in
the options market is known. For a call option’s buyer, the maximum loss is equal to the
unit option premium multiplied by the number of options that were bought. This allows
option buyers to plan their future budget without exposing themselves to unforeseen price
movements, such as those that the buyers of futures must accommodate, since margin
account requirements change with the price of oil, which can affect total cost. It is also
worth noting that for options, this amount is known, and it is up to the buyer to decide
whether or not to accept this upfront cost [49].

In our study, we focus on WTI crude oil call options available on the New York
Mercantile Exchange (NYMEX). The analyses were carried out on the same data as the
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authors’ previous studies [48,49], from 16 June 2009 to 14 February 2020, so that the results
of various approaches could be compared. We include only ATM (at-the-money) options,
i.e., those with a strike price identical (or very close) to the WTI future price on a given day.
ATM options data were sourced from the QuikStrike platform by the CME Group [55]. The
WTI Light Sweet Crude Oil future contract (symbol: CL) in crude oil options on NYMEX
is the underlying asset. Each contract corresponds to 1000 barrels. The contracts trade in
steps of one cent per barrel [56].

These options expire 3 business days before the underlying futures contract (CL). The
analyzed European Style option contracts are settled in cash on the expiration day [49,57].
The payout from this transaction is the settlement price of the CL contract minus the strike
price, multiplied by a thousand barrels, or zero, whichever is greater [57]. We analyzed
options based on the price of the nearest futures contract in crude oil with days to expiry
ranging from 34 to 1. We used Black’s model for option pricing [58–61]. Alternative
approaches were explored by Yousaf, R. et al. and Khan, R. et al. in [62,63].

2.3. Perfomance Indicators

We kept the assumption from our previous studies [48,49] that only one option contract
may be bought per day—this was done to be able to compare results. However, the
performance indicators were modified to take into account different levels of risk appetite.
Indicators were divided and described according to two categories. The first category was
used for initial data analysis (these data were split into two sets: training and testing). Next,
indicators from the second category helped assess the quality of the proposed method in
terms of its suitability for supporting the decision-making process of buying call options.

Let C be a set, whose elements are observations and C′ is a subset of the set C (C′ ⊂ C).

1. Indicators referring to the maximum profit and total results that can be achieved in a
given period by taking long positions in call options:

(a) MPR(x) (Maximum profit for a range)—the sum of profits from the long call
options for all days for which the final result was greater than x; the value of
MPR(x) index is calculated as follows:

MPR(x) = ∑
c∈C′

zrc·vc, (6)

where c is an element of the set C′, vc denotes the value of the final results from
the purchase of a call option for observation c. It is described by Equation (5)
and zrc denotes a binary variable:

zrc =

{
1, i f vc > x
0, i f vc ≤ 0

(7)

The value of the indicator described by Equation (6), for which x = 0 is the
maximum profit that can be achieved in the analyzed period. This value is an
important point of reference for us, so we decided to call it MP without “R”
and subscript (MPR(0) = MP)

(b) pMPR(x) (percent of maximum profit in range)—ratio of MPR(x) to total profit,
which is equal to the sum of all long call option positions that were greater
than 0 (MP):

pMPR(x) =
MPR(x)

MP
·100% (8)

When x = 0, pMPR(0) is equal to 100%, as expected.
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(c) pNMPR(x)—indicator showing the ratio of the number of days on which the
options made profit in a range (x, ∞) to the number of options that made profit
in the entire (0, ∞) range:

pNMPR(x) =
∑c∈C′ zrc

∑c∈C′ zc
·100% (9)

When x = 0, we obtain pNMPR(0) = 100% as expected.
(d) AR (Average return)—the total value of the final result from the long call

options on each successive day of quotation in a given period; the AR indicator
is described by the following equation:

AR = ∑
c∈C′

vc (10)

2. Indicators presenting the results obtained with the use of a given neural network.

(a) EPR(x) (Expected profit for a range)—the result of the neural network opera-
tion on a subset C′:

EPR(x) = ∑
c∈C′

oc·vc (11)

where oc is described by the equation:

oc =

{
1, i f f or observation c, a call option was bought
0, i f f or observation c, a call option was not bought

(12)

When determining the value of EPR(x), we reject all observations vc that were in
the range (0; x] and for which the network generated a buy signal (oc = 1). This
is done because taking these observations into account would cause the value
of EPR(x) to be overestimated by values that were misclassified. The purpose
of the network is to find signals to buy call options above a predetermined
level x. Thus, all signals in the range (0; x] should be considered unattractive
from the perspective of the company’s risk appetite.

(b) %MPR(x) (percent of maximum profit for a range)—the percentage of the
best possible result (MPR(x)) achieved by this method (EPR(x)):

%MPR(x) =
EPR(x)

MPR(x)
·100% (13)

(c) pNEP—the indicator that shows the percentage of all available call options
that were purchased on the basis of the used networks; pNEP was defined
with the following equation:

pNEP =
1
|C′| ∑

c∈C′
oc (14)

The values of all the above indicators were established for networks with dif-
ferent activation functions and various numbers of neurons in the hidden layer.
The data were divided into a training set and a test set for both performing the
initial data evaluation (based on the first category of indicators) and assessing
the networks’ effectiveness in hedging against oil price fluctuations (based on
the second category of indicators).

3. Data and Preliminary Analysis

In the empirical part of the study, we analyze the final results in European style long
call options over 10 years (from 16 June 2009 to 14 February 2020) based on ATM options
and settlement prices for the nearest crude oil futures contract. We focused on prices
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of the first available futures contracts, thus for every month, we obtained 28–32 results—
2630 results in total. The parameters of options (options premium, option exercise prices
and option expiry dates) were from the NYMEX (New York Mercantile Exchange) and
QuikStrike software. The values of option premiums and option exercise prices allowed us
to calculate the final result for the buyer of European call options. The difference between
the option premium and the payout function was calculated using Equation (5)).

Observations were divided into a training set and a test set using a ratio of 3 to 1,
respectively. The training set consisted of continuous observations from 17 September
2009 to 14 July 2017. The test set covered data from 17 July 2017 to 14 February 2020.
Descriptive statistics of WTI futures prices, long call final results (in USD per barrel) and
option premiums were included in [49]. Long call final results were also subjected to a
more detailed analysis, and its results are shown in Tables 1 and 2.

Table 1. Numbers of observations, total returns and AR values for long call options.

Net Result Range
(USD per Barrel

per Option)

Training Set Test Set

Numbers of
Observations

Total
Returns

(103 USD)

Numbers of
Observations

Total
Returns

(103 USD)

(−∞; −2.5] 144 −443.68 13 −45.26

Loss

(−2.5; −2] 156 −346.87 38 −83.50
(−2; −1.5] 297 −513.53 68 −115.68
(−1.5; −1] 313 −391.37 114 −143.90
(−1; −0.5] 251 −189.24 102 −79.33
(−0.5; 0] 133 −39.36 73 −19.03

Sum 1294 −1924.05 408 −486.69
(0; 0.5] 109 25.33 64 15.11

Profit

(0.5; 1] 102 76.68 46 33.27
(1; 1.5] 71 86.82 35 43.40
(1.5; 2] 71 123.60 30 50.58
(2; 2.5] 59 133.47 28 62.34

(2.5;+ ∞ ) 260 1200.97 53 190.79
Sum 672 1646.86 256 395.49

AR −277.19 −91.2

Notes: the training set data are from 17 September 2009 to 14 July 2017; the test set from 17 July 2017
to 14 February 2020.

Table 1 presents data broken down into ranges based on the level of returns from
entering into long call option contracts. These were broken down into 12 ranges—6 each
for losses and gains. For each one of them, the number of observations and total returns
were determined for both the training and test set. The values of the AR indicator, which
show that the total sum of returns was negative for both the training set and the test set,
were placed at the end of Table 1.

In terms of net losses, the largest number of observations were recorded in the range
of (−1.5; −1] USD per barrel per option for both the training and test sets. For the test set,
this interval also had the largest total losses. In the case of the training set, the greatest total
losses were generated in the range of (−2; −1.5] USD loss per barrel per option.

In turn, the highest total profits were generated by options, which generated a profit
of at least 2.5 USD per batter per option. The largest number of observations were in the
range of (2.5; ∞) for the training set and (0; 0.5] for the test set.

The number of observations generating profits and losses is also worth noting—the
buying of a call option resulted in a loss almost twice as often than in a profit. Thus, the
approach of indiscriminately buying call options would result in a net loss.

The data from Table 1 were converted into percentages, with profits and losses for
both the training and the test set calculated separately. In this approach, 100% was taken
to be the number of all observations resulting in a profit (or loss) as well as the sum of all
long call final results giving profit (or loss). Table 2 shows these percentages.
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Table 2. Percentage of all observations and total returns for long call options.

Range

Training Set Test Set

Percentage of All
Observations

(Loss or Profit)

Percentage of
Total Returns

(Loss or Profit)

Percentage of All
Observations

(Loss or Profit)

Percentage of
Total Returns

(Loss or Profit)

(−∞; −2.5] 11% 23% 3% 9%

Loss

(−2.5; −2] 12% 18% 9% 17%
(−2; −1.5] 23% 27% 17% 24%
(−1.5; −1] 24% 20% 28% 30%
(−1; −0.5] 19% 10% 25% 16%
(−0.5; 0] 10% 2% 18% 4%
(0; 0.5] 16% 2% 25% 4%

Profit

(0.5; 1] 15% 5% 18% 8%
(1; 1.5] 11% 5% 14% 11%
(1.5; 2] 11% 8% 12% 13%
(2; 2.5] 9% 8% 11% 16%

(2.5; +∞) 39% 73% 21% 48%

The summary presented in Table 2 confirms that in the case of the training set, a
large number of final results in call options fell into extreme ranges (11% and 39%). This
distribution looks completely different for the test set. This was especially evident in the
range with losses over USD 2.50 on a single position, which accounted for only 3% of all
positions for the buyer of the call option. This is undoubtedly a consequence of much lower
option costs in the period covering the test set, as in over 75% of cases they did not exceed
the level of USD 2 per barrel [49]. In addition, the percentage share of long call final results
in total profits or losses is much higher for the extreme ranges from the training set than
for the test set. In particular, this is the case for the final results exceeding USD 2.5, which
accounted for nearly 75% of the total return generated by all profit-making options in the
training set. In the case of the test set, the share of the total profit from this highest range
accounted for less than half of the total return, which was in turn a consequence of much
lower fluctuations in WTI oil prices during the test set period.

These relationships are also illustrated in Figure 1, which clearly shows the scale
of differences in the number of positions and levels of returns for extreme ranges in the
training and test set. It is also worth noting that during the entire analyzed period, the
positions for which the final result was in the range (2.5; ∞) largely accounted for the total
level of profits. This is due to the unlimited profits that the buyer of a call option may
realize on an increase in the value of the underlying asset relative to the agreed strike price.
On the other hand, items accompanied by a very large drop in asset prices did not cause
very large losses. Their level was limited to the value of the option premium, for which the
average oscillated between USD 1.5–1.7 per barrel [49].

In our considerations, we assumed that increasing the risk appetite will result in
a reduction in the number of call options that were purchased, and thus increase the
probability of situations arising, in which hedging against significant price fluctuations
will not be achieved. In order to analyze the impact of risk appetite on the final result of the
hedging entity (the number of purchased call options and the level of return on investment
relative to the maximum return value), the following three boundaries were adopted:

• 0—with this value, each option for which payoff was non-negative was assigned to the
set for which a buy signal should be generated; this value reflects a low-risk appetite:
class I.

• 0.5—buy signals should be generated only for options with payoff exceeding 0.5 USD;
this option reflects an average risk appetite: class II.

• 1—buy signals should be generated only options with payoff above $1; this option
represents a high-risk appetite: class III.
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Figures 2 and 3 present the values of MPR(x), pMPR(x) and pNMPR(x) indicators for
the boundary values (x ∈ {0; 0.5; 1}) described above.
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In the case of the learning set, limiting buy signals to only options generating a
minimum of USD 0.5 profit causes a relatively small decrease in maximum profit (pMPR(0)–
pMPR(0.5) = 2%; see Figure 3). In the case of the test set, the change is twice as large and
amounts to 4%. For pMPR(0.5) and pMPR(1), the difference for the training set is 4% and 8%
for the test set. The pMPR(1) indicator for the test set drops to a level of 88%, which is still a
high level in relation to maximum profit (MP).
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In the case of the pNMPR indicator, the changes in subsequent intervals are much
greater. As a result of shifting the threshold for generating buy signals from 0 to 0.5, as
many as 16% of observations from the training set stop generating buy signals. For the
test set, this decrease is even greater reflecting as many as 1/4 of all observations that
make profits. If the boundary for generating buy signals is shifted to USD 1, the number
of observations that generate buy signals is reduced to 69% and 57%, respectively. This
means that for the training set, reducing the number of observations that generate buy
signals by nearly 1/3 (by changing the boundary from 0 to 1) translates into a reduction
of the maximum level of profit by 6%. For the test sample, a decrease in the number
of observations generating a profit by 43% (the same change of the boundary as for the
training set) translates into a reduction of maximum profit by 12%.

The presented analysis shows that limiting observations generating buy signals for
call options may significantly reduce the number of buy signals being generated, and thus
increase the risk of not conducting a transaction that would potentially bring a profit and
protect the company against the risk of a price increase. At the same time, the profit being
generated in this way may not deteriorate markedly, as evidenced by changes in the value
of pMPR.

4. Results

Input data for the ANNs reflected the state of the oil market at the time the decision to
open a long position in a call option was to be made. The data consisted of the following:

• Nearest WTI futures prices, indicating current oil prices;
• Number of days until option expiry, which have a substantial impact on option

premiums;
• Moving averages (arithmetic means) of n recent settlement prices for WTI futures,

where n ∈ {2, 3, . . . , 9, 10, 12, 14, . . . , 28, 30, 35, 40, . . . , 55, 60}, signifying market
trends;

• Standard deviations of n recent WTI settlement prices for WTI futures, where n ∈ {1,
2, . . . , 9, 10, 12, 14, . . . , 28, 30, 35, 40, . . . , 55, 60} showing the dynamics of oil price
changes.

In the next stage of empirical research, we use WTI oil futures prices to calculate two
groups of indicators. The first group consists of standard deviations, which were estab-
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lished for n recent settlement prices of the WTI futures, where n ∈ {1, 2, 3, . . . , 9, 10, 12,
14, . . . , 28, 30, 35, 40, 45, 50, 55, 60}. Therefore, 26 indicators were calculated for these
values of n. The second group are arithmetic means of. In this case, 25 arithmetic means
were calculated.

The above indicators as well as the number of days remaining until option expiry and
WTI nearest futures prices were used as input data for ANNs.

Next, we analyzed the impact of the following parameters on the results of the network
(ANN):

• The number of neurons in the hidden layer: from 5 to 30;
• Activation functions in the hidden layer: linear, logistic, exponential, sine and hyper-

bolic tangent;
• Activation functions in the output layer: linear, logistic, exponential, sine, hyperbolic

tangent and softmax (for the joint entropy error evaluation function).

In the figures and tables, we used the following abbreviated names for activation
functions:

• Exp—exponential;
• HTan—hyperbolic tangent;
• Lin—linear;
• Log—logistic;
• Sin—sine;
• Smax—softmax.

Additionally, the sum of squares and joint entropy were used as network error func-
tions. A total of 750,000 networks were taught and analyzed for this study—50,000 each for
five different hidden layer activation function in all three classes.

As a result, 250,000 networks were trained for each of the three classes. It should be
emphasized once again that these classes were distinguished based on the expected level
of returns (payoff) from a single call option (see Section 3). Table A1 in Appendix A shows
the best networks based on the value of EPR(x) for the training set. The data are based on
a combination of three network attributes: class, hidden layer and output layer activation
functions. The 30 best networks were selected for each class (based on the combinations of
activation functions used in the hidden and output layers). Thus, a total of 90 networks are
to be considered best for the training set (for a given combination of activation function and
class). The remainder of the article focuses only on the networks that achieved the highest
rates of return (the best of the best). Table 3 presents the five best networks for each class.
The selected networks give results classifying them in the top five due to each of the three
aforementioned network assessment indicators for the training set (EPR0, EPR0.5 and EPR1).

Table 3. Networks with the best results based on the EPR(x) indicator.

Number Class
Activation Function Training Set Test Set

Hidden Layer Output Layer EPR0 EPR0.5 EPR1 EPR0 EPR0.5 EPR1

8

I

Log Log 1085.0 1070.5 1022.5 69.6 63.3 49.1
10 * Log Smax 1175.2 1158.0 1100.2 67.8 63.0 57.2
20 * HTan Log 1135.7 1121.8 1072.5 63.0 57.2 45.7
22 HTan Smax 1087.4 1070.0 1009.5 95.6 90.2 83.1
28 Exp Smax 847.0 838.1 804.3 45.7 44.1 40.8
39

II

Log Sin 556.3 553.9 535.2 47.5 47.0 47.0
41 Log HTan 548.4 546.9 522.9 57.0 57.0 57.0
52 HTan Smax 566.8 564.0 539.1 61.1 61.1 59.1

53 * HTan HTan 569.5 567.4 551.8 58.4 58.3 58.3
58 * Exp Smax 609.6 607.6 572.0 47.0 46.4 44.7
71

III

Log HTan 537.2 536.2 531.4 53.0 52.6 52.6
72 Log Exp 558.7 557.4 552.7 51.9 51.9 51.9

80 * HTan Log 618.9 615.6 609.8 94.2 93.0 92.2
82 * HTan Smax 676.7 675.5 671.4 105.3 104.4 103.7
88 Exp Smax 561.9 560.4 554.0 45.6 45.6 45.6

* The best two networks for each class are bold; 10 and 20—class I; 53 and 58—class II; 80 and 82—class III.



Energies 2021, 14, 8494 12 of 24

In further analyses, the authors decided to focus on the two best results for the sample
training sets in each class. For all classes and all indicators being considered (EPR0, EPR0.5
and EPR1), the best pair of networks dominated the results of the remaining networks.
The results of the top five networks for a given class are included to provide a benchmark
for further analysis, and the best two for each class of network are marked in bold with
a * symbol in Table 3. The best pairs of networks are numbered: 10 and 20 (class I), 53
and 58 (class II), 80 and 82 (class III), respectively. The best results for the training sample
for all three indicators were obtained for class I. The values of the analyzed indicators for
the best class I networks are definitely higher (almost by a factor of 2) than the values of
networks from the other classes. Interestingly, despite similar results in the training set
for classes II and III, class III networks gave better results than class II networks. These
observations seem not to be obvious based on MPR(x) values for each class (see: Section 3,
Figure 3). When analyzing the results obtained for the test sample, it is worth noting that
the values of the EPR0 indicator for networks in class I are significantly higher than the
values of this indicator obtained by networks in class II. The advantage of networks from
class I begins to decrease for subsequent indicators and for the EPR1 indicator one may
conclude that the results obtained in both classes are comparable. The results obtained by
networks from class III are particularly noteworthy—the results are clearly better than the
best results obtained by networks from the other classes. Based on the EPR1 indicator, the
results for class III are almost twice as good as the results obtained for the other classes.
These observations are illustrated in Figure 4.
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Figure 4 clearly shows the dominance of class I networks for the training sample
(networks 10 and 20, in blue) and the dominance of networks from class III for the test
sample (networks 80 and 82, in green). The clear leader in the test set is network 82 from
class III with a hyperbolic tangent activation function in the hidden layer and softmax
activation function in the output layer.

One of the expected effects of the presented division into classes should be a decreasing
drop in the values of EPR(x) indicators for the training set, along with an increase in risk
appetite. Table 4 presents changes in the values of EPR0.5 and EPR1 indicators in relation
to the value of EPR0. Networks presented in Table 3 were selected for comparison. Since
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in class I, buy signals were generated for all buy options for which payoff was positive,
the values of EPR0.5 and EPR1 indicators may (but do not have to) drop significantly in
relation to the value of EPR0. In the case of class II, a small difference between EPR0.5 and
EPR0 would be expected. However, for class III, for which buy signals should be generated
for payoffs above USD 1, a slight decrease in value between EPR1 and EPR0 would be
expected. This would mean that cases which generated a profit of less than USD 0.5 and 1,
respectively, would only have a small part of the generated profit.

Table 4. The difference in the values of the EPR(x) indicator for classes defined according to risk appetite.

Number Class
Activation Function Training Set Test Set

Hidden
Layer

Output
Layer EPR0.5–EPR0 EPR1–EPR0 EPR0.5–EPR0 EPR1–EPR0

8

I

Log Log −14.5 −62.5 −6.3 −20.5
10 * Log Smax −17.3 −75.0 −4.8 −10.5
20 HTan Log −13.9 −63.2 −5.8 −17.3
22 HTan Smax −17.5 −77.9 −5.3 −12.5
28 Exp Smax −8.9 −42.7 −1.6 −4.9
39

II

Log Sin −2.5 −21.1 −0.5 −0.5
41 Log HTan −1.5 −24.0 0.0 0.0
52 HTan Smax −2.9 −27.8 0.0 −1.9

53 * HTan HTan −2.1 −17.7 0.0 0.0
58 * Exp Smax −2.0 −37.6 −0.6 −2.2
71

III

Log HTan −1.0 −5.8 −0.4 −0.4
72 Log Exp −1.3 −5.9 0.0 0.0

80 * HTan Log −3.3 −9.1 −1.2 −1.9
82 * HTan Smax −1.2 −5.3 −1.0 −1.6
88 Exp Smax −1.5 −7.8 0.0 0.0

* The best two networks for each class are bold.

Data presented in Table 4 confirms expectations regarding the magnitude of decreases
for individual indicators—the largest decreases in successive values of EPR(x) for the
training sample can be observed for class I. For class II, slight differences are visible
between the values of EPR0.5 and EPR0, while for class III, the smallest difference is that
between the values of EPR1 and EPR0. Based on the presented analysis of results, it can be
concluded that the classification of observations based on the level of risk appetite strongly
influences the choice of days for which a buy signal is generated. These are shown in
Figure 5.

In the case of the test set, similar to the training set, distinctive values of differences in
analyzed indicators can be observed only for networks in class I. For classes II and III, the
differences in the value of EPR(x) indicators are very small.

In order to compare the presented values of EPR(x) indicators obtained for individual
networks with maximum returns that were generated in each class from long positions in
call options, Table 5 presents the values of the %MPR(x) indicator. The same networks were
selected for the compilation that were the subject of previous analyses, i.e., the networks
that gave the best results in individual classes based on the value of the EPR(x) indicator.
A more detailed summary of the results is presented in the Appendix A in the Table A2.
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Table 5. Networks with the best results of %MPR(x) indicator.

Number Class
Activation Function Training Set Test Set

Hidden
Layer

Output
Layer % MPR0 % MPR0.5 % MPR1 % MPR0 %MPR0.5 %MPR1

8

I

Log Log 65.9% 66.0% 66.2% 17.6% 16.6% 14.2%
10 * Log Smax 71.4% 71.4% 71.2% 17.1% 16.6% 16.5%
20 * HTan Log 69.0% 69.2% 69.4% 15.9% 15.0% 13.2%
22 HTan Smax 66.0% 66.0% 65.3% 24.2% 23.7% 23.9%
28 Exp Smax 51.4% 51.7% 52.1% 11.5% 11.6% 11.8%
39

II

Log Sin 33.8% 34.2% 34.6% 12.0% 12.4% 13.5%
41 Log HTan 33.3% 33.7% 33.8% 14.4% 15.0% 16.4%
52 HTan Smax 34.4% 34.8% 34.9% 15.4% 16.0% 17.0%

53 * HTan HTan 34.6% 35.0% 35.7% 14.8% 15.3% 16.8%
58 * Exp Smax 37.0% 37.5% 37.0% 11.9% 12.2% 12.9%
71

III

Log HTan 32.6% 33.1% 34.4% 13.4% 13.8% 15.2%
72 Log Exp 33.9% 34.4% 35.8% 13.1% 13.6% 15.0%

80 * HTan Log 37.6% 38.0% 39.5% 23.8% 24.5% 26.6%
82 * HTan Smax 41.1% 41.7% 43.5% 26.6% 27.4% 29.9%
88 Exp Smax 34.1% 34.6% 35.9% 11.5% 12.0% 13.1%

* The best two networks for each class are bold.

The most interesting aspect of the presented compilation is the behavior of the
%MPR(x) indicator for the test set. For networks from classes II and III, there is a clear
tendency of improvement in subsequent values of this indicator. It follows that networks
of these classes are much better at predicting higher returns (i.e., those above USD 0.5 and
1). This observation is illustrated in Figure 6, which shows the best two networks from
each class.
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The last important aspect of the analyses that were carried out is the number of
transactions—for this purpose, the pNEP indicator was used. Table 6 presents the values
of pNEP for the analyzed networks. More detailed results are included in the Appendix A
in Table A3.

Table 6. The value of the pNEP indicator for the set of analyzed networks.

Number Class
Activation Function Training Test

Hidden Layer Output Layer pNEP pNEP

8

1

Log Log 24.9% 28.5%
10 * Log Smax 32.3% 18.2%
20 * HTan Log 24.9% 24.1%
22 HTan Smax 33.1% 20.5%
28 Exp Smax 22.3% 11.9%
39

2

Log Sin 16.4% 4.7%
41 Log HTan 15.8% 3.5%
52 HTan Smax 18.8% 5.6%

53 * HTan HTan 15.6% 3.5%
58 * Exp Smax 15.9% 3.2%
71

3

Log HTan 11.2% 4.4%
72 Log Exp 9.4% 2.7%

80 * HTan Log 13.9% 7.2%
82 * HTan Smax 10.8% 8.9%
88 Exp Smax 12.5% 2.1%

* The best two networks for each class are bold.

Class I networks had by far the highest values of the pNEP indicator (for both the
training and test samples). As expected, for the learning sample, the lowest value of the
pNEP indicator is for networks from class III. The results for the training sample presented
in Table 6 are in line with the expectations based on data analysis (see Figure 3). However, it
is worth noting the values of the pNEP indicator for the test sample—for networks in class
II, the value of this indicator for the best networks are significantly lower than the value of
pNEP for the best class III networks. On the other hand, the best class II networks (despite
several lower pNEP indicator values compared to the best class I networks) generated only
slightly lower values of the EPR(x) and %MPR(x) indicators. At the same time, the lower
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number of long call options positions generated is associated with a potentially higher risk
of not taking a position in the event of large fluctuations in the oil price. Hence, class II
networks are dedicated to enterprises with an average level of risk appetite. Additionally
noteworthy are the relatively high levels of the pNEP indicator for class III networks.
Comparing these results with the %MPR(x) indicator, it can be clearly stated that networks
of this class are characterized by a high degree of accuracy in generating buy signals for
observations with a positive payoff, with particular emphasis on observations with a payoff
value exceeding USD 1.

5. Conclusions and Future Research Directions

Results from the authors’ previous studies [48,49] were confirmed that indiscriminate
purchasing of options, specifically buying a call option every day, for hedging against oil
price risk results in a loss for all scenarios in the data: both training and test sets, over the
10-year period under analysis. Thus, a more sophisticated approach is required, and the
methodology presented in the aforementioned studies resulted in both price risk protection
and increased profits for both the training and test sets. This article proposes a completely
new approach to the problem of hedging against the risk of oil price increases, in which
the decision to purchase a call option (or not) was made using ANNs, which were trained
taking into account the hedger’s risk appetite. For the purpose of this article, risk appetite
was defined as the propensity of an enterprise to refrain from hedging if potential gains
from purchasing an option (payoff) are below a set value. The consequence of this approach
is a lower number of transactions concluded on the commodity options market, and hence
an increased probability of less protection in the event of large fluctuations in oil prices.

The authors analyzed three classes of networks, each corresponding to a company’s
willingness to take risk resulting from fluctuations in WTI crude oil prices. Results con-
firmed that the number of transactions concluded (both for the training and testing set)
grew with decreasing risk appetite. However, this had a relatively small impact on total
returns for a given network class. The networks generating the highest returns in the test
set were those with the highest level of risk appetite. This conclusion is important from the
point of view of further analyses of the possibility of hedging against the risk of commodity
price fluctuations (including oil prices) using ANNs. The obtained results allow us to look
at the problem of classifying options in terms of generating buy signals from a completely
different perspective.

The strategy presented in this study lets businesses modify this approach by adopting
a strategy that reflects their risk appetite. Significantly, in this study, we showed that
increased risk appetite, by targeting higher ranges of profits in ANNs, can improve profits
in hedging against oil price risk.

In future research, we will test additional learning algorithms and modify the strategy
to account for specific real-life scenarios, such as the desire to hedge against oil price risk
for a specific amount of oil to be purchased over a given period. This adds significant
complexity in determining not only whether to buy a call option on a given day but also
varying the number of options to be purchased. This has a significant impact on both risk
and profit profiles.
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Nomenclature

ANN artificial neural networks
AR average return
ATM at-the-money
BPNN backpropagation neural network
CL WTI Light Sweet Crude Oil future contract
EP expected profit
ERNN Elman recurrent neural networks
FR fuzzy regression
GA-NN genetic algorithm and neural network
MAPE mean absolute percentage error
MP maximum profit
NYMEX New York Mercantile Exchange
ST stochastic time effective function
WTI West Texas Intermediate

Appendix A

Table A1. Networks with the best results based on the EPR(x) indicator.

Number Class
Activation Function Training Set Test Set

Hidden Layer Output Layer EP EP0.5 EP1 EP EP0.5 EP1

1

1

Lin

Lin 25.5 25.2 23.9 0.1 −0.3 −0.3
2 Log 27.8 27.4 26.1 0.5 0.0 0.0
3 Sin 26.7 26.3 25.0 0.5 0.0 0.0
4 Smax 31.2 30.1 25.6 14.6 14.1 14.1
5 HTan 23.4 23.0 21.7 0.5 0.0 0.0
6 Exp 29.8 29.7 26.8 15.2 14.9 14.9
7

Log

Lin 366.9 361.5 342.5 52.7 51.8 47.0
8 * Log 1085.0 1070.5 1022.5 69.6 63.3 49.1
9 Sin 410.0 404.9 383.6 70.2 68.2 59.1

10 * Smax 1175.2 1158.0 1100.2 67.8 63.0 57.2
11 HTan 361.4 359.1 347.1 33.1 32.9 32.9
12 Exp 380.6 376.9 364.5 39.4 39.4 39.4
13

Sin

Lin 143.4 143.0 138.8 47.1 47.1 47.1
14 Log 188.6 187.7 183.7 46.0 46.0 46.0
15 Sin 149.0 148.1 144.8 37.6 37.5 37.5
16 Smax 209.2 208.4 205.3 24.2 23.8 23.8
17 HTan 215.0 213.9 209.1 50.2 50.1 50.1
18 Exp 168.8 167.8 162.8 44.1 44.1 44.1
19

HTan

Lin 378.9 375.0 353.5 45.7 42.2 33.7
20 * Log 1135.7 1121.8 1072.5 63.0 57.2 45.7
21 Sin 524.7 518.5 491.4 38.6 33.2 20.8

22 * Smax 1087.4 1070.0 1009.5 95.6 90.2 83.1
23 HTan 709.0 701.6 677.8 84.3 82.9 79.7
24 Exp 533.1 527.2 507.1 44.3 44.3 44.3
25

Exp

Lin 244.8 241.4 230.8 35.0 35.0 33.7
26 Log 719.7 709.3 675.3 70.5 69.7 68.1
27 Sin 365.0 361.8 347.2 37.9 37.6 35.7

28 * Smax 847.0 838.1 804.3 45.7 44.1 40.8
29 HTan 298.2 294.7 282.0 45.2 45.2 45.2
30 Exp 281.0 279.6 269.5 41.3 41.3 41.3
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Table A1. Cont.

Number Class
Activation Function Training Set Test Set

Hidden Layer Output Layer EP EP0.5 EP1 EP EP0.5 EP1

31

2

Lin

Lin 0.2 0.1 −1.5 22.6 22.6 22.6
32 Log 54.0 53.9 51.0 17.5 17.5 17.5
33 Sin 5.4 5.3 3.7 27.7 27.7 27.7
34 Smax 32.4 32.4 31.5 34.2 34.2 34.2
35 HTan 39.6 39.5 36.6 17.5 17.5 17.5
36 Exp 47.9 47.7 44.8 17.5 17.5 17.5
37

Log

Lin 280.2 278.5 265.6 38.4 38.4 38.4
38 Log 241.1 240.7 232.2 38.2 38.2 38.2

39 * Sin 556.3 553.9 535.2 47.5 47.0 47.0
40 Smax 540.6 538.4 517.6 49.8 49.8 49.8

41 * HTan 548.4 546.9 522.9 57.0 57.0 57.0
42 Exp 514.2 512.2 494.7 58.6 58.6 58.6
43

Sin

Lin 168.1 167.6 160.6 32.3 32.3 32.3
44 Log 84.4 84.4 82.9 26.3 26.3 26.3
45 Sin 155.0 155.0 151.3 37.7 37.7 37.7
46 Smax 156.6 156.6 153.0 23.6 23.6 23.6
47 HTan 152.4 152.4 148.0 22.1 22.1 22.1
48 Exp 177.5 177.5 173.1 41.3 41.3 41.3
49

HTan

Lin 299.7 298.6 288.4 56.7 56.1 56.1
50 Log 488.5 487.7 473.9 32.0 32.0 31.4
51 Sin 370.8 369.3 360.2 62.8 62.2 60.8

52 * Smax 566.8 564.0 539.1 61.1 61.1 59.1
53 * HTan 569.5 567.4 551.8 58.4 58.3 58.3
54 Exp 432.1 430.4 418.0 42.7 42.7 42.7
55

Exp

Lin 343.4 342.9 327.9 30.6 30.6 29.4
56 Log 435.6 434.2 422.8 81.7 81.3 76.8
57 Sin 261.9 260.8 250.4 44.2 44.2 44.2

58 * Smax 609.6 607.6 572.0 47.0 46.4 44.7
59 HTan 272.2 270.1 255.4 52.2 52.2 52.2
60 Exp 382.3 380.7 367.2 52.1 51.6 51.6
61

3

Lin

Lin −2.7 −2.7 −2.7 7.5 7.5 7.5
62 Log 30.4 30.4 28.0 36.3 36.3 36.3
63 Sin 33.9 33.9 33.1 3.2 3.2 3.2
64 Smax 49.4 49.4 48.6 33.5 33.5 33.5
65 HTan 34.1 34.1 30.4 32.1 32.1 32.1
66 Exp 22.5 22.5 21.0 28.5 28.5 28.5
67

Log

Lin 361.4 360.4 356.7 49.4 49.4 49.4
68 Log 388.5 387.6 382.9 48.5 48.5 48.5
69 Sin 291.3 290.8 289.4 44.2 44.2 44.2
70 Smax 440.0 436.9 429.0 55.9 55.8 55.8

71 * HTan 537.2 536.2 531.4 53.0 52.6 52.6
72 * Exp 558.7 557.4 552.7 51.9 51.9 51.9
73

Sin

Lin 146.8 146.2 144.6 42.5 42.5 42.5
74 Log 180.6 180.6 179.2 40.5 40.5 40.5
75 Sin 142.4 142.4 141.7 49.6 49.4 49.4
76 Smax 190.9 189.9 187.2 23.0 23.0 23.0
77 HTan 168.7 168.7 166.5 42.3 42.3 42.3
78 Exp 201.1 201.1 198.2 43.8 43.8 43.8
79

HTan

Lin 367.3 367.3 366.6 52.1 51.9 51.9
80 * Log 618.9 615.6 609.8 94.2 93.0 92.2
81 Sin 292.3 292.1 288.9 31.4 31.4 31.4

82 * Smax 676.7 675.5 671.4 105.3 104.4 103.7
83 HTan 489.1 488.1 480.7 55.2 54.8 54.2
84 Exp 329.7 329.6 328.7 49.7 49.7 49.7



Energies 2021, 14, 8494 19 of 24

Table A1. Cont.

Number Class
Activation Function Training Set Test Set

Hidden Layer Output Layer EP EP0.5 EP1 EP EP0.5 EP1

85

3 Exp

Lin 293.2 292.5 284.6 55.1 55.1 55.1
86 Log 288.7 288.2 286.5 54.4 54.4 54.4
87 Sin 238.1 237.2 231.1 48.7 48.7 48.7

88 * Smax 561.9 560.4 554.0 45.6 45.6 45.6
89 HTan 333.9 333.7 328.3 57.9 57.4 57.4
90 Exp 364.1 363.2 359.1 41.7 41.7 41.7

* The best five networks for each class are bold.

Table A2. Networks with the best results of %MPR(x) indicator.

Number Class
Activation Function Training Set Test Set

Hidden Layer Output Layer %MPR0 %MPR0.5 %MPR1 %MPR0 %MPR0.5 %MPR1

1

1

Lin

Lin 1.6% 1.6% 1.5% 0.0% −0.1% −0.1%
2 Log 1.7% 1.7% 1.7% 0.1% 0.0% 0.0%
3 Sin 1.6% 1.6% 1.6% 0.1% 0.0% 0.0%
4 Smax 1.9% 1.9% 1.7% 3.7% 3.7% 4.1%
5 HTan 1.4% 1.4% 1.4% 0.1% 0.0% 0.0%
6 Exp 1.8% 1.8% 1.7% 3.8% 3.9% 4.3%
7

Log

Lin 22.3% 22.3% 22.2% 13.3% 13.6% 13.6%
8 * Log 65.9% 66.0% 66.2% 17.6% 16.6% 14.2%
9 Sin 24.9% 25.0% 24.8% 17.7% 17.9% 17.0%

10 * Smax 71.4% 71.4% 71.2% 17.1% 16.6% 16.5%
11 HTan 21.9% 22.1% 22.5% 8.4% 8.6% 9.5%
12 Exp 23.1% 23.2% 23.6% 10.0% 10.4% 11.4%
13

Sin

Lin 8.7% 8.8% 9.0% 11.9% 12.4% 13.6%
14 Log 11.5% 11.6% 11.9% 11.6% 12.1% 13.2%
15 Sin 9.0% 9.1% 9.4% 9.5% 9.9% 10.8%
16 Smax 12.7% 12.9% 13.3% 6.1% 6.3% 6.9%
17 HTan 13.1% 13.2% 13.5% 12.7% 13.2% 14.4%
18 Exp 10.2% 10.3% 10.5% 11.1% 11.6% 12.7%
19

HTan

Lin 23.0% 23.1% 22.9% 11.6% 11.1% 9.7%
20 * Log 69.0% 69.2% 69.4% 15.9% 15.0% 13.2%
21 Sin 31.9% 32.0% 31.8% 9.8% 8.7% 6.0%

22 * Smax 66.0% 66.0% 65.3% 24.2% 23.7% 23.9%
23 HTan 43.1% 43.3% 43.9% 21.3% 21.8% 23.0%
24 Exp 32.4% 32.5% 32.8% 11.2% 11.6% 12.8%
25

Exp

Lin 14.9% 14.9% 14.9% 8.8% 9.2% 9.7%
26 Log 43.7% 43.7% 43.7% 17.8% 18.3% 19.6%
27 Sin 22.2% 22.3% 22.5% 9.6% 9.9% 10.3%

28 * Smax 51.4% 51.7% 52.1% 11.5% 11.6% 11.8%
29 HTan 18.1% 18.2% 18.3% 11.4% 11.9% 13.0%
30 Exp 17.1% 17.2% 17.4% 10.4% 10.8% 11.9%
31

2

Lin

Lin 0.0% 0.0% −0.1% 5.7% 5.9% 6.5%
32 Log 3.3% 3.3% 3.3% 4.4% 4.6% 5.0%
33 Sin 0.3% 0.3% 0.2% 7.0% 7.3% 8.0%
34 Smax 2.0% 2.0% 2.0% 8.6% 9.0% 9.8%
35 HTan 2.4% 2.4% 2.4% 4.4% 4.6% 5.0%
36 Exp 2.9% 2.9% 2.9% 4.4% 4.6% 5.0%
37

Log

Lin 17.0% 17.2% 17.2% 9.7% 10.1% 11.1%
38 Log 14.6% 14.8% 15.0% 9.7% 10.0% 11.0%

39 * Sin 33.8% 34.2% 34.6% 12.0% 12.4% 13.5%
40 Smax 32.8% 33.2% 33.5% 12.6% 13.1% 14.3%

41 * HTan 33.3% 33.7% 33.8% 14.4% 15.0% 16.4%
42 Exp 31.2% 31.6% 32.0% 14.8% 15.4% 16.9%
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Table A2. Cont.

Number Class
Activation Function Training Set Test Set

Hidden Layer Output Layer %MPR0 %MPR0.5 %MPR1 %MPR0 %MPR0.5 %MPR1

43

2

Sin

Lin 10.2% 10.3% 10.4% 8.2% 8.5% 9.3%
44 Log 5.1% 5.2% 5.4% 6.7% 6.9% 7.6%
45 Sin 9.4% 9.6% 9.8% 9.5% 9.9% 10.9%
46 Smax 9.5% 9.7% 9.9% 6.0% 6.2% 6.8%
47 HTan 9.3% 9.4% 9.6% 5.6% 5.8% 6.4%
48 Exp 10.8% 10.9% 11.2% 10.4% 10.9% 11.9%
49

HTan

Lin 18.2% 18.4% 18.7% 14.3% 14.7% 16.2%
50 Log 29.7% 30.1% 30.7% 8.1% 8.4% 9.0%
51 Sin 22.5% 22.8% 23.3% 15.9% 16.4% 17.5%

52 * Smax 34.4% 34.8% 34.9% 15.4% 16.0% 17.0%
53 * HTan 34.6% 35.0% 35.7% 14.8% 15.3% 16.8%
54 Exp 26.2% 26.5% 27.1% 10.8% 11.2% 12.3%
55

Exp

Lin 20.9% 21.1% 21.2% 7.7% 8.1% 8.5%
56 Log 26.5% 26.8% 27.4% 20.7% 21.4% 22.1%
57 Sin 15.9% 16.1% 16.2% 11.2% 11.6% 12.7%

58 * Smax 37.0% 37.5% 37.0% 11.9% 12.2% 12.9%
59 HTan 16.5% 16.7% 16.5% 13.2% 13.7% 15.0%
60 Exp 23.2% 23.5% 23.8% 13.2% 13.6% 14.9%
61

3

Lin

Lin −0.2% −0.2% −0.2% 1.9% 2.0% 2.2%
62 Log 1.8% 1.9% 1.8% 9.2% 9.5% 10.5%
63 Sin 2.1% 2.1% 2.1% 0.8% 0.8% 0.9%
64 Smax 3.0% 3.0% 3.1% 8.5% 8.8% 9.6%
65 HTan 2.1% 2.1% 2.0% 8.1% 8.4% 9.2%
66 Exp 1.4% 1.4% 1.4% 7.2% 7.5% 8.2%
67

Log

Lin 21.9% 22.2% 23.1% 12.5% 13.0% 14.2%
68 Log 23.6% 23.9% 24.8% 12.3% 12.8% 14.0%
69 Sin 17.7% 17.9% 18.7% 11.2% 11.6% 12.7%
70 Smax 26.7% 26.9% 27.8% 14.1% 14.7% 16.1%

71 * HTan 32.6% 33.1% 34.4% 13.4% 13.8% 15.2%
72 * Exp 33.9% 34.4% 35.8% 13.1% 13.6% 15.0%
73

Sin

Lin 8.9% 9.0% 9.4% 10.7% 11.2% 12.2%
74 Log 11.0% 11.1% 11.6% 10.2% 10.6% 11.7%
75 Sin 8.6% 8.8% 9.2% 12.5% 13.0% 14.2%
76 Smax 11.6% 11.7% 12.1% 5.8% 6.0% 6.6%
77 HTan 10.2% 10.4% 10.8% 10.7% 11.1% 12.2%
78 Exp 12.2% 12.4% 12.8% 11.1% 11.5% 12.6%
79

HTan

Lin 22.3% 22.7% 23.7% 13.2% 13.6% 14.9%
80 * Log 37.6% 38.0% 39.5% 23.8% 24.5% 26.6%
81 Sin 17.7% 18.0% 18.7% 7.9% 8.2% 9.0%

82 * Smax 41.1% 41.7% 43.5% 26.6% 27.4% 29.9%
83 HTan 29.7% 30.1% 31.1% 13.9% 14.4% 15.6%
84 Exp 20.0% 20.3% 21.3% 12.6% 13.1% 14.3%
85

Exp

Lin 17.8% 18.0% 18.4% 13.9% 14.5% 15.9%
86 Log 17.5% 17.8% 18.5% 13.8% 14.3% 15.7%
87 Sin 14.5% 14.6% 15.0% 12.3% 12.8% 14.0%

88 * Smax 34.1% 34.6% 35.9% 11.5% 12.0% 13.1%
89 HTan 20.3% 20.6% 21.2% 14.6% 15.1% 16.5%
90 Exp 22.1% 22.4% 23.2% 10.6% 11.0% 12.0%

* The best five networks for each class are bold.
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Table A3. The value of the pNEP indicator for the set of analyzed networks.

Number Class
Activation Function Training Set Test Set

Hidden Layer Output Layer pNEP pNEP

1

1

Lin

Lin 2.3% 0.6%
2 Log 1.9% 0.3%
3 Sin 1.9% 0.3%
4 Smax 4.8% 2.1%
5 HTan 1.8% 0.3%
6 Exp 2.0% 1.1%
7

Log

Lin 15.1% 6.6%
8 * Log 24.9% 28.5%
9 Sin 14.8% 13.3%

10 * Smax 32.3% 18.2%
11 HTan 12.2% 3.2%
12 Exp 11.9% 2.4%
13

Sin

Lin 4.9% 2.6%
14 Log 7.3% 3.2%
15 Sin 5.3% 2.7%
16 Smax 5.0% 2.4%
17 HTan 7.5% 2.9%
18 Exp 6.9% 3.2%
19

HTan

Lin 13.7% 12.5%
20 * Log 24.9% 24.1%
21 Sin 19.6% 25.2%

22 * Smax 33.1% 20.5%
23 HTan 13.6% 8.0%
24 Exp 16.9% 2.4%
25

Exp

Lin 11.6% 2.7%
26 Log 17.7% 5.4%
27 Sin 13.8% 4.4%

28 * Smax 22.3% 11.9%
29 HTan 12.4% 2.4%
30 Exp 8.1% 3.0%
31

2

Lin

Lin 1.5% 1.2%
32 Log 2.1% 0.6%
33 Sin 1.4% 1.4%
34 Smax 1.1% 1.4%
35 HTan 1.9% 0.6%
36 Exp 2.2% 0.6%
37

Log

Lin 9.3% 2.1%
38 Log 7.9% 1.7%

39 * Sin 16.4% 4.7%
40 Smax 18.2% 2.6%

41 * HTan 15.8% 3.5%
42 Exp 12.1% 2.9%
43

Sin

Lin 5.4% 1.8%
44 Log 1.7% 1.7%
45 Sin 3.6% 2.0%
46 Smax 3.9% 1.8%
47 HTan 3.8% 1.5%
48 Exp 4.6% 2.1%
49

HTan

Lin 9.9% 2.9%
50 Log 7.7% 3.2%
51 Sin 9.2% 7.5%

52 * Smax 18.8% 5.6%
53 * HTan 15.6% 3.5%
54 Exp 9.9% 2.0%
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Table A3. Cont.

Number Class
Activation Function Training Set Test Set

Hidden Layer Output Layer pNEP pNEP

55

2 Exp

Lin 11.4% 2.0%
56 Log 11.5% 10.2%
57 Sin 8.0% 1.7%

58 * Smax 15.9% 3.2%
59 HTan 9.1% 2.0%
60 Exp 9.7% 3.0%
61

3

Lin

Lin 0.5% 0.2%
62 Log 1.3% 1.2%
63 Sin 0.7% 0.2%
64 Smax 1.2% 1.5%
65 HTan 1.4% 1.5%
66 Exp 0.9% 0.9%
67

Log

Lin 7.0% 2.6%
68 Log 8.3% 2.7%
69 Sin 6.2% 1.7%
70 Smax 12.9% 2.1%

71 * HTan 11.2% 4.4%
72 * Exp 9.4% 2.7%
73

Sin

Lin 3.8% 2.4%
74 Log 4.5% 1.4%
75 Sin 3.1% 2.4%
76 Smax 3.8% 1.1%
77 HTan 3.8% 2.0%
78 Exp 4.4% 1.8%
79

HTan

Lin 7.6% 3.0%
80 * Log 13.9% 7.2%
81 Sin 6.0% 1.8%

82 * Smax 10.8% 8.9%
83 HTan 10.1% 3.0%
84 Exp 6.0% 2.3%
85

Exp

Lin 7.7% 2.1%
86 Log 4.4% 3.0%
87 Sin 5.1% 1.8%

88 * Smax 12.5% 2.1%
89 HTan 6.8% 2.7%
90 Exp 7.0% 2.1%

* The best five networks for each class are bold.
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