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and Angel A. Juan

Received: 5 November 2021

Accepted: 9 December 2021

Published: 15 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Grid Jiangsu Electric Power Co., Ltd., Marketing Service Center, Nanjing 210019, China;
seueelab_lxq@163.com (X.L.); hqfyqhqy@126.com (Q.H.); ysh.young@163.com (S.Y.); rd1228@163.com (M.C.)

2 The College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China;
hxinyi0927@163.com

* Correspondence: jp81@hhu.edu.cn

Abstract: Rapid and accurate eddy-current calculation is necessary to analyze eddy-current couplings
(ECCs). This paper presents a general 3D analytical method for calculating the magnetic field
distributions, eddy currents, and torques of ECCs with different Halbach magnet arrays. By using
Fourier decomposition, the magnetization components of Halbach magnet arrays are determined.
Then, with a group of H-formulations in the conductor region and Laplacian equations with magnetic
scalar potential in the others, analytical magnetic field distributions are predicted and verified by
3D finite element models. Based on Ohm’s law for moving conductors, eddy-current distributions
and torques are obtained at different speeds. Finally, the Halbach magnet arrays with different
segments are optimized to enhance the fundamental amplitude and reduce the harmonic contents of
air-gap flux densities. The proposed method shows its correctness and validation in analyzing and
optimizing ECCs with Halbach magnet arrays.

Keywords: analytical calculation; eddy-current coupling; Halbach magnet array

1. Introduction

As a kind of speed-regulating device based on the principle of asynchronous trans-
mission, cylindrical and radial eddy-current couplings (ECCs) with permanent magnets
(PMs) have the advantages of high efficiency, energy saving, low maintenance cost, sim-
ple installation, and adaptation to harsh environments [1]. Therefore, they can realize
power transmission between motor, fan, and pump loads with satisfactory operational
characteristics without a mechanical connection [2,3].

A reliable theoretical model for evaluating magnetic field distributions and torque
performances is desirable in a PM ECC design. There are three possible approaches to
establishing such a model, which is a solution to the moving conductor eddy-current prob-
lem. The first approach is to apply numerical methods, such as the finite element method
(FEM), which can consider geometric details, the nonlinearity of magnetic materials, and
complicated boundary conditions [4]. The 2D FEM is preferred in the early design stage
because of time savings [5]. In [6], a radial 2D FEM solver combined with an axial one
enables the prediction of the eddy-current paths in three dimensions with the associated
losses. The 3D FEM with a Dirichlet boundary condition iteration is introduced to shorten
the solving times [7]. In [8], the authors consider the hysteresis behavior of ferromagnetic
material by the 3D FEM. However, the calculation of the FEM is time consuming and cannot
provide significant relationships between structural parameters and performances [9].

The second approach is the lumped parameter magnetic circuit method (LPMCM),
which requires less programming and computing time. An MEC-based analytical method
is outlined to calculate a PM ECC’s eddy current and reaction flux [10]. In [11], the magnetic
field and eddy-current modulations by iron teeth in a conductor disk are considered by
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dividing the magnetic flux paths in air gaps into several branches. In [12], the authors
calculate an adjustable-speed PM ECC under an asymmetric magnetic field. However, the
mentioned LPMCMs can only calculate one PM magnetization direction, namely either
the tangential direction or parallel direction, which makes optimization of the magnets
impossible [13,14].

As the third approach, the analytical methods derived from simplified boundary
conditions and Maxwell’s equations are more insightful than the FEM and more accurate
than the LPMCM [15–25]. The two most general methods in analytical calculations are
magnetic vector potential (MVP) and magnetic scalar potential (MSP). The subdomain
technique is used to calculate the 2D magnetic flux density [18]. In [19], the authors
calculate the magnetic field distribution of an ECC equipped with disk magnets and
high-temperature superconducting pancake coils by assuming an infinite radius of the
ferromagnetic yokes. Two-dimensional MSP is also used in an axial field magnetic coupler
by assuming the yokes have an infinite radius [20]. In [21,22], 3D MSP is used in the magnet
region as well as air gaps for a cylindrical ECC with two-segment Halbach magnets and
axial-flux ECCs. In [23], 3D MSP and modified BESSEL functions are used to analyze an
air-cored linear and a rotary permanent magnet actuator. In [24], an ECC model directly
considers the radial edge effects and the curvature effects on the torque prediction without
the need for any correction factor. However, a general analytical analysis with 3D MSP in a
cylindrical ECC with Halbach PMs considering the harmonic reduction and optimization
has not been presented yet.

This paper presents a 3D analytical analysis of cylindrical ECCs with different Hal-
bach magnet arrays. The coupling analytical models with 3D MSP and H-formulations
are established. The magnetization components of four typical Halbach magnet arrays
are determined. The magnetic field distributions, eddy currents, torques, fundamental
amplitudes, and harmonics of air-gap flux density in different PM arrays are deduced. In
addition, the Halbach magnet arrays are optimized to reduce harmonics by selecting the
appropriate polar arc coefficient and inclination angle. The 3D simulation and verification
are carried out in Cartesian coordinates.

2. Magnetization of Halbach Magnet Arrays

Figure 1 shows the structure of an ECC with a Halbach magnet array. It consists of
two rotors: an outer rotor and an inner one. The conductor is on the surface of the former,
and the Halbach magnet array is on the latter’s surface.
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Figure 1. Three-dimensional view of an ECC with Halbach magnet array. Figure 1. Three-dimensional view of an ECC with Halbach magnet array.

Figure 2a,b show a cylindrical ECC’s circumferential and axial cutaways with a
three-segment Halbach permanent magnet. The Halbach arrays are distributed along
the circumferential direction. The copper is a little longer than the PMs for higher PM
utilization rates in the axial direction.
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Figure 2. Cutaways of an ECC along the (a) circumferential and (b) axial direction.

The dimensions of a 300 kW cylinder-shaped ECC are Ri = 309 mm, Rr = 324 mm,
Rm = 350 mm, Rc = 356 mm, Rs = 362 mm, Ro = 380 mm, ταr = 60 mm, τ = 100 mm,
h = 100 mm, and l = 85 mm.

The divided regions are listed in Table 1.

Table 1. The divided regions.

Number Region Range of z-Direction Range of x-Direction

I Inner yoke region Ri < z < Rr −τ/2 < x < τ/2
II PMs region Rr < z < Rm −ταr/2 < x < ταr/2
III Air-gap region Rm < z < Rc −τ/2 < x < τ/2
IV Conductor region Rc < z < Rs −τ/2 < x < τ/2
V Outer yoke region Rs < z < Ro −τ/2 < x < τ/2

As the curvature effect can be ignored [23], a circumferential topology can be substi-
tuted by an equivalent linear structure, where z = r and x = Rmθ. Then, the relative speed
vm is given by:

vm = 2π(no − ni)Rm/60 (1)

For simplification of the analysis, we adopt the following assumptions:

(1) The relative recoil permeability of the permanent magnet region is µr = 1.
(2) The conductivity of the outer yoke is zero, and the permeability is infinite. The

material of the inner yoke is iron, and the relative permeability is µiron.
(3) In region IV, the conductivity of copper σ is constant.

The flux density
→
B and magnetic field intensity

→
H in regions I, II and III, are given by:

→
B I = µ 0µiron

→
HI

→
B II = µ 0µr

→
HII + µ0

→
M

→
B III = µ 0

→
HIII

(2)

By the separate variable method, the residual magnetization vector
→
M is decomposed as:

→
M = Mx

→
x + My

→
y + Mz

→
z (3)

The amplitude of
→
M can be given by:

M = Br/µ 0 (4)

Generally, different Halbach arrays are employed in industrial applications, as in
Figure 3. The authors have analyzed the magnetic fields of those typical topologies based
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on 2D magnetic scalar potential [25]. This paper focuses on the 3D analytical analysis of
cylindrical ECCs, where the eddy currents are considered. Figure 3 shows the 3D topologies
with different Halbach magnet arrays.
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Figure 3. Magnet arrays with different Halbach arrays.

Figure 4 shows the magnetization components of the arrays, where δx = |sinθ|,
δy = |cosθ|. Mx is an odd function for all four typical Halbach magnet arrays, and Mz is
an even function along the x-direction. In the z-direction, as the relative velocity is zero,
all regions are extended periodically by the imaging method, and Mz is a homogeneous
harmonic even function, as shown in Figure 4e.

By utilizing the Fourier series method, Mx and Mz can be expressed by:
Mx =

∞
∑

n=1,3,5···

∞
∑

k=1,3,5···
Mxkn cos( nπ

H y) sin( kπ
τ x)

Mz =
∞
∑

n=1,3,5···

∞
∑

k=1,3,5···
Mzkn cos( nπ

H y) cos( kπ
τ x)

(5)

and: {
Mxkn = 4Br

µ0knπ2 sin nπαq
2 Axk

Mzkn = 4Br
µ0knπ2 sin nπαq

2 Azk
(6)

Axk and Azk can be given in Equations (7)–(10) within different topologies.
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In the two-segment Halbach array:{
Axk = −8 sin kπ(1+αr)

2 sin kπ(1−αr)
2

Azk = 4 sin πkαr
2

(7)

In the three-segment Halbach array:{
Ax k = −8δx sin kπ(1+αr)

4 sin kπ(1−αr)
4

Azk = 4 sin kπ αr
2 + 8δy sin kπ(1−αr)

4 cos kπ(1+αr)
4

(8)

In the four-segment Halbach array:{
Axk = −4 sin kπ

2 sin kπαm
2 + 4δx(sin kπ

2 sin kπαm
2 − cos kπαr

2 )

Az k = 4 sin kπ αr
2 +4δy(sin kπ

2 cos kπ αm
2 − sin kπ αr

2 )
(9)
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In the ideal Halbach array: Axk =
sin(1+k)π

1+k − sin(1−k)π
1−k

Azk =
sin(1+k)π

1+k + sin(1−k)π
1−k

(10)

3. Magnetic Field and Eddy-Current Distribution

Since the permeability of an iron core is assumed to be infinite, the Dirichlet boundary
condition where z = Rs is satisfied. On both sides of the boundary z = Ri, the magnetic
field lines are confined mainly in region I. On the boundary z = Ri, the Neumann boundary
condition can be used approximately. The periodic boundary condition is employed in all
directions. Boundary conditions in Figure 2 are given as:

Rs : HxIV = 0 HyIV = 0 ∂HzIV/∂z = 0
Rc : HxIII = HxIV HyIII = HyIV BzIII = BzIV
Rm : HxII = HxIII HyII = HyIII BzII = BzIII
Rr : HxI = HxII HyI = HyII BzI = BzII
Ri : HxI = 0 HyI = 0 HzI = 0

(11)

Solving the partial differential of MSP φi (i = I, II, III), the magnet field intensity
components in different regions can be found as

Hxi = −
∂φi
∂x

, Hyi = −
∂φi
∂y

, Hzi = −
∂φi
∂z

(12)

φi is expressed by the Laplacian equation as:

∂2φi
∂x2 +

∂2φi
∂y2 +

∂2φi
∂z2 = 0 (13)

Then, in regions I and III, the MSP is:

ΦI(III)(x, y) = Re{
∞

∑
k=1

∞

∑
n=1

(Akneγ z + Bkne−γz) cos(
kπ

H
y)ej nπ

τ x} (14)

In region II, the general solution is given as:

ΦII(x, y, z) = Re{
∞

∑
k=1

∞

∑
n=1

(Ckneγz + Dkne−γz + ϕ) cos(
kπ

H
y)ej nπ

τ x} (15)

In region IV, the time-invariant steady-state is considered. The magnetic field satisfies
the static approximation of Maxwell’s equations as:

∇·BIV = 0
∇× HIV = JIV
∇× EIV = −∂BIV/∂t = 0

(16)

Ohm’s law for a moving conductor with reference to the stationary frame is expressed as:

JIV = σ(EIV + vm × BIV) (17)

From Equations (16) and (17), the eddy-current problem in region IV is reduced to a
magnetostatic problem, which can be solved using an H-formulation as:

∇2HIV = −σµ0∇× (vm × HIV) (18)
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According to the Poisson equation, HiIV (i = x, y, z) can be calculated:

∂2HiIV
∂x2 +

∂2HiIV
∂y2 +

∂2HiIV
∂z2 = σµ0Vi

∂HiIV
∂x

(19)

By using the method of separation of variables to solve Equations (13) and (19), subject
to the distributions of magnetization components and the boundary conditions, general
solutions in the four regions are expressed as Equations (20)–(34).

In iron region I:

HxI(x, y, z) = Re{
∞
∑

k=1

∞
∑

n=1

(
jn2π2

γ2τ2 Mxkn(
1
2 (1 +

1
µ )(−p(sinhξzd cosh γ(z− zb − zc)− γ

ξ cosh ξzdsinhγ(z− zb − zc)) + cosh γ

(z− zb)) +
1
2 (1−

1
µ )(−p(sinhξzd cosh γ(z + zb + zc) +

γ
ξ cosh ξzdsinhγ(z + zb + zc)) + cosh γ(z + zb))− cosh γz)

+ jkπ
τγ Mzkn(

1
µ sinhγz + 1

2 (1 +
1
µ )(q(sinhξzd cosh γ(z− zb − zc)− γ

ξ cosh ξzdsinhγ(z− zb − zc)− sinhγ(z− zb))

+ 1
2 (1−

1
µ )(q(sinhξzd cosh γ(z + zb + zc) +

γ
ξ cosh ξzdsinhγ(z + zb + zc)) + sinhγ(z + zb)))) cos( kπ

H y)e
jnπx

τ }

(20)

HyI(x, y, z) = Re{
∞
∑

k=1

∞
∑

n=1
(− knπ2

γ2τH Mxkn(
1
2 (1 +

1
µ )(−p(sinhξzd cosh γ(z− zb − zc)− γ

ξ cosh ξzdsinhγ(z− zb − zc)) + cosh γ

(z− zb)) +
1
2 (1−

1
µ )(−p(sinhξzd cosh γ(z + zb + zc) +

γ
ξ cosh ξzdsinhγ(z + zb + zc)) + cosh γ(z + zb))− cosh γz)

− kπ
Hγ Mzkn(

1
µ sinhγz + 1

2 (1 +
1
µ )(q(sinhξzd cosh γ(z− zb − zc)− γ

ξ cosh ξzdsinhγ(z− zb − zc))− sinhγ(z− zb))

+ 1
2 (1−

1
µ )(q(sinhξzd cosh γ(z + zb + zc) +

γ
ξ cosh ξzdsinhγ(z + zb + zc))− sinhγ(z− zb)))) sin( kπ

H y)e
jnπx

τ }

(21)

HzI(x, y, z) = Re{
∞
∑

k=1

∞
∑

n=1
( nπ

γτ Mxkn(
1
2 (1 +

1
µ )(−p(sinhξzdsinhγ(z− zb − zc)− γ

ξ cosh ξzd cosh γ(z− zb − zc)) + sinhγ

(z− zb)) +
1
2 (1−

1
µ )(−p(sinhξzdsinhγ(z + zb + zc) +

γ
ξ cosh ξzd cosh γ(z + zb + zc)) + sinhγ(z + zb))− sinhγz)

+Mzkn(
1
µ cosh γz + 1

2 (1 +
1
µ )(q(sinhξzdsinhγ(z− zb − zc)− γ

ξ cosh ξzd cosh γ(z− zb − zc))− cosh γ(z− zb))

+ 1
2 (1−

1
µ )(q(sinhξzdsinhγ(z + zb + zc) +

γ
ξ cosh ξzd cosh γ(z + zb + zc)) + cosh γ(z + zb)))) cos( kπ

H y)e
jnπx

τ }

(22)

In PM region II:

HxII(x, y, z) = Re{
∞
∑

k=1

∞
∑

n=1
( jn2π2

γ2τ2 Mxkn(cosh γ(z− zb)− psinhξzd cosh γ(z− zb − zc) + p γ
ξ cosh ξzdsinhγ(z− zb − zc)− 1)

+ jnπ
γτ Mzkn(−sinhγ(z− zb) + qsinhξzd cosh γ(z− zb − zc)− q γ

ξ cosh ξzdsinhγ(z− zb − zc) + 1) cos( kπ
H y)ej nπx

τ }
(23)

HyII(x, y, z) = Re{
∞
∑

k=1

∞
∑

n=1
(− nkπ2

γ2τH Mxkn(cosh γ(z− zb)− psinhξzd cosh γ(z− zb − zc) + p γ
ξ cosh ξzdsinhγ(z− zb − zc)− 1)

− kπ
γH Mzkn(qsinhξzd cosh γ(z− zb − zc)− q γ

ξ cosh ξzdsinhγ(z− zb − zc)− sinhγ(z− zb) + 1)) sin( kπ
H y)ej nπx

τ }
(24)

HzII(x, y, z) = Re{
∞
∑

k=1

∞
∑

n=1
( nπ

γτ Mxkn(sinhγ(z− zb)− psinhξzdsinhγ(z− zb − zc) + p γ
ξ cosh ξzd cosh γ(z− zb − zc))

+Mzkn(− cosh γ(z− zb) + qsinhξzdsinhγ(z− zb − zc)− q γ
ξ cosh ξzd cosh γ(z− zb − zc) + 1)) cos( kπ

H y)ej nπx
τ }

(25)

In air-gap region III:

HxIII(x, y, z) = Re{
∞
∑

k=1

∞
∑

n=1
j nπ

τ
1
γ (−

nπ
τ

1
γ Mxkn p + Mzknq)(sinhξzd cosh γ(z− zb − zc)}

− γ
ξ cosh ξzdsinhγ(z− zb − zc)) cos( kπ

H y)ej nπ
τ x}

(26)

HyIII(x, y, z) = Re{
∞
∑

k=1

∞
∑

n=1
(( nπ

τγ )
2Mxkn p− kπ

Hγ Mzknq)(sinhξzd cosh γ(z− zb − zc)

− γ
ξ cosh ξzdsinhγ(z− zb − zc)) sin( kπ

H y)ej nπ
τ x}

(27)

HzIII(x, y, z) = Re{
∞
∑

k=1

∞
∑

n=1
(− nπ

τ
1
γ Mxkn p + Mzknq)(sinhξzdsinhγ(z− zb − zc)

− γ
ξ cosh ξzd cosh γ(z− zb − zc)) cos( kπ

H y)ej nπ
τ x}

(28)

In copper region IV:

HxIV(x, y, z) = Re{
∞

∑
k=1

∞

∑
n=1

(j(
nπ

τ
)

2 1
γ2 Mxkn p− j

kπ

τ

1
γ

Mzknq)sinhξ(zt − z) cos(
kπ

H
y)ej nπ

τ x} (29)
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HyIV(x, y, z) = Re{
∞

∑
k=1

∞

∑
n=1

(
kπ

H
nπ

τ

1
γ2 Mxkn p +

nπ

H
1
γ

Mzknq)sinhξ(zt − z) sin(
kπ

H
y)ej nπ

τ x} (30)

HzIV(x, y, z) = Re{
∞

∑
k=1

∞

∑
n=1

(− 1
ξ

nπ

τ
Mxkn p +

γ

ξ
Mzknq) cosh ξ(zt − z) cos(

kπ

H
y)ej nπ

τ x} (31)

JxIV(x, y, z) = Re{
∞

∑
k=1

∞

∑
n=1

kπ

h
Mzknq(

ξ

γ
− γ

ξ
) cosh(ξ(z− zt)) sin(

kπ

H
y)ej nπ

τ x} (32)

JyIV(x, y, z) = Re{
∞

∑
k=1

∞

∑
n=1

j
nπ

τ
Mzknq(

ξ

γ
− γ

ξ
) cosh(ξ(z− zt)) cos(

kπ

H
y)ej nπ

τ x} (33)

JzIV(x, y, z) = 0 (34)

where

p = [(sinhγza cosh γzb − µiron cosh γza sin γzb)− sinhγza]/qm,
q = [−(sinhγzasinhγzb − µiron cosh γza cos γzb) + σ cosh γza]/qm,
qm = [sinhγza cosh γ(zb + zc) + µ,iron cosh γzasinhγ(zb + zc)]sinhξzd
+ γ

ξ [sinhγzasinhγ(zb + zc) + µiron cosh γza cosh γ(zb + zc)] cosh ξzd

za = Rr − Ri, zb = Rm − Rr, zc = Rc − Rm, zd = Rs − Rc, zt = zb + zc + zd,

γ =

√
(

kπ

H
)

2
+ (

nπ

τ
)

2
, ξ =

√
(

kπ

H
)

2
+ (

nπ

τ
)

2
+ jσµ0Vx

nπ

τ

By integrating the magnetic field, the electromagnetic torque exerted on the rotor is as
follows:

Te = pRmµ0

∫ τ

−τ

∫ H/2

−H/2
HxIII(x, y, zb)HyIII(x, y, zb)dxdy (35)

4. Comparison with the Finite Element Analysis

In order to validate the proposed model, the analytical results are compared with
those obtained by the finite element analysis based on three-dimensional (3D) models,
using the commercial software package Ansoft Maxwell. The major parameters of the
model used in the validation are given in Section 2. The governing equations and boundary
conditions in the finite element simulations are:

∇× 1
µr
∇× A−∇ 1

µiron
∇·A =


JIV inregionIV
0 inregionI, III
∇×M inregionII

A× n = 0
1

µiron
∇·A = 0

}
Sboundary

(36)

In the penalty function, the relative permeability of iron µiron is defined in Equation (37)
to make the coefficient matrix symmetrical.

1
µiron

= (
1

µironx
+

1
µirony

+
1

µironz
)/3 (37)

Considering the structural periodicity of the proposed ECC, only a pair of magnetic
poles of this volume is needed to be analyzed. Figure 5a shows the field and grid of the
ECC. The mapping mesh with a hexahedron shape is adopted, where the numbers of nodes
are 151,040, and elements are 142,506.
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Figure 5. FEM meshes of the solved model (a) and eddy-current distribution of the model (b).

The material’s nonlinear properties were considered in the finite element analysis
to demonstrate the analytical model’s effectiveness and limitations. Since the relative
velocity exists in the x-direction, a periodic boundary is used along the direction of motion.
Figure 5b shows the eddy-current distribution of the ECC in region IV for a slip speed of
300 rpm.

Figure 6 compares the analytically predicted flux densities and the FEM results of the
model shown in Figure 3a in the region IV at z = Rc + 1/1000, region III at z = Rm + 3/1000,
region II at z = Rm − 1/1000, and region I at z = Rr − 1/1000, respectively. The red line and
symbol represent flux densities Br when the slip speed of the ECC is 300 rpm, and the blue
line and symbol represent flux densities Bs when the ECC is static.
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5. Eddy-Current Density Distribution and Torque

Figure 7 presents the eddy-current density distributions along the x-direction in the
middle of the copper at z = Rc + 3/1000 and y = l/2, obtained by proposed analytical
Equations (32)–(34) at different speeds. Figure 8 shows the 3D eddy-current density
components at z = Rc + 3/1000, in which the x-direction component of the induced current
is null at y = ±h/2.
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Figure 8. Three-dimensional eddy-current density components distribution in the middle of the
copper at 300 rpm.

Figure 9 shows the change in the electromagnetic torque in the analytical method
when the slip is changed from 0 to 1 (the rated speed is 1000 rpm). The rated slip and
torque of the ECC are 0.02 and 2850 Nm, respectively.
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6. Harmonics and Magnetic Field Optimization

Since there are only odd harmonics of the flux density distribution of the Halbach
magnet array in the x and z directions, the harmonics can be easily calculated by the
analytical prediction method by taking k and n as odd integers. The amplitude of the
air-gap flux density is given by Equation (38), which is obtained from Equation (28) by
setting x = 0 and cos(kπy/H) = 1.

F(k,n) = Re{
∞

∑
k=1

∞

∑
n=1

(− nπ

τ

1
γ

Mxkn p + Mzknq)(sinhξzdsinhγ(z− zb − zc)−
γ

ξ
cosh ξzd cosh γ(z− zb − zc))} (38)

Generally, to reduce cogging torque and speed fluctuation, the air gap magnetic field distri-
bution in ECCs is required to be sinusoidal. The THD of the magnetic field distributions is
given by:

THD =

√
∞

∑
k=2

Fk/F1 (39)

The model shown in Figure 3a was analyzed by an analytical method; Figure 10 shows
its variation in the THD and the FA of its flux density in region III when αr changed from 0
to 1.

Figure 10. Predicted variation of THD and FA of two-segment Halbach magnet array. αr represents
the x-direction length ratio of the z-direction magnetized PM to τ.

The model shown in Figure 3b was analyzed by the analytical method; Figure 11a
shows the contour of the THD and the FA of its flux density in region III when αr changed
from 0 to 1, and θ changed from 0 to 90◦. The model shown in Figure 3c was analyzed
by the analytical method; Figure 11b shows its contour of the THD and the FA of its flux
density in region III when αr changed from 0 to 1, and θ changed from 0 to 90◦.

Taking the model shown in Figure 3b as an example, Table 2 lists the preferred and
worst results of the THD and FA. When αr = 0.35 and θ = 54◦, the preferred THD is 0.1270,
and the preferred FA F1 is about 1.1051 T. When αr is changed to zero, and θ is changed to
90, the FA decreases rapidly.
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Figure 10. Predicted variation of THD and FA of two-segment Halbach magnet array. αr represents 
the x-direction length ratio of the z-direction magnetized PM to τ. 

The model shown in Figure 3b was analyzed by the analytical method; Figure 11a 
shows the contour of the THD and the FA of its flux density in region III when αr changed 
from 0 to 1, and θ changed from 0 to 90°. The model shown in Figure 3c was analyzed by 
the analytical method; Figure 11b shows its contour of the THD and the FA of its flux 
density in region III when αr changed from 0 to 1, and θ changed from 0 to 90°. 

 
Figure 11. The predicted contours of THD (black numbers) and FA (red numbers) of (a) three-seg-
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Figure 11. The predicted contours of THD (black numbers) and FA (red numbers) of (a) three-
segment and (b) four-segment Halbach magnet array. αr represents the x-direction length ratio of the
z-direction magnetized PM to τ. θ represents the angle of the angular magnetic PM.

Table 2. Preferred and worst results of the three-segment Halbach magnet array.

Item THD FA(T) Position

Non-Halbach 0.2382 0.8574 αr = 1, or θ = 0◦

Initial design 0.1408 0.9934 αr = 0.33, θ = 45◦

Preferred THD 0.1270 1.0986 αr = 0.35, θ = 54◦

Preferred FA – 1.1051 Preferred Region
Worst THD 0.3327 0.7051 αr = 0.04, θ = 90◦

Worst FA 0.3107 0.6290 αr = 0, θ = 90◦

Figure 12 compares the flux densities and harmonics of the four Halbach magnet
arrays. Figure 12a,b compare the flux densities and harmonics when θ = 45◦ and the
Halbach arrays are divided into equal parts. Figure 12c,d compare the flux densities and
harmonics after optimization. The ideal Halbach magnet array has the smallest harmonic
and the largest FA. Figure 13 shows the electromagnetic torques of ECCs with the four
Halbach magnetic arrays. The analytical optimization takes less than 10 s to obtain the
preferred and worst results, which is much less than the FEM method.
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7. Conclusions

According to Maxwell’s equation, this paper solved the expressions of magnetic field
distribution of four typical Halbach arrays. The expressions that have different distribution
factors are similar. Three-dimensional analytical magnetic distributions are given using
H-formulations in the conductor region and Laplacian equations with magnetic scalar
potential in other regions. Eddy currents in the conductor region are obtained from the
Ampere law. The results of this method agree with those of the finite element analysis. The
comparison verifies the low computational time and good accuracy of the proposed 3D
analytical analysis model. The harmonic analysis of the flux densities in the air-gap region
is given. Through optimization, the THD of the flux densities decreases, and the amplitude
of fundamental waveforms in the air-gap region increases.

The following conclusions can be drawn:

(1) Based on the 3D analytical analysis, we directly express the 3D flux densities and
intensities in the iron region, copper region, PM region, and air-gap region of the
typical Halbach topologies and the eddy current in the copper region and the torque of
ECCs. All of the analytical results of the flux densities, eddy currents, and torques are
verified by the FEM. The proposed analytical model has high precision and efficiency
with less calculation time.

(2) The optimization of the parameters of the typical Halbach topologies is very fast,
which can reduce the harmonic of ECC, increase the amplitude of a fundamental
wave, and improve the torque efficiently.
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ταr Length of the PMs
τ Length of the yoke (conductor)
ni The speeds of the inner rotor
no The speeds of the outer rotor
vm The relative velocity of the inner and outer rotor
µ0 The permeability of the air
µr The relative permeability of the permanent magnet
µiron The relative permeability of the iron
B The flux density scalar
σ The conductivity of the copper
h The radial length of the copper
H The magnet field intensity
l The radial length of the permanent magnets
M The residual magnetization of the permanent magnet
Mx (y,z) The x (y, z) direction component of M
φ The magnetic scalar potential
θ The angle of the angular magnetic permanent magnet

Axk (zk)
The kth magnetization distribution factors of the permanent magnet
arrays in the x (z) direction

αr The x-direction length ratio of the z-direction magnetized PM to τ

αm The x-direction length ratio of the x-direction magnetized PM to τ

αq The y-direction length ratio of the y-direction magnetized PM to h
EIV The electric field intensity in the conductor region (region IV)
JIV The induced current density in the conductor region (region IV)
Te The electromagnetic torque
THD The total harmonic distortion
FA The amplitude of the flux density
Sboundary The outer boundary of the solution domain
µironx(y,z) The x (y, z) direction of the µiron
A The magnetic vector potential
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