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Abstract: At present, there are two main methods for solving oil and gas seepage equations: analytical
and numerical methods. In most cases, it is difficult to find the analytical solution, and the numerical
solution process is complex with limited accuracy. Based on the mass conservation equation and the
steady-state sequential substitution method, the moving boundary nonlinear equations of radial flow
under different outer boundary conditions are derived. The quasi-Newton method is used to solve
the nonlinear equations. The solutions of the nonlinear equations with an infinite outer boundary,
constant pressure outer boundary and closed outer boundary are compared with the analytical
solutions. The calculation results show that it is reliable to solve the oil-gas seepage equation with the
moving boundary nonlinear equation. To deal with the difficulty in solving analytical solutions for
low-permeability reservoirs and numerical solutions of moving boundaries, a quasi-linear model and
a nonlinear moving boundary model were proposed based on the characteristics of low-permeability
reservoirs. The production decline curve chart of the quasi-linear model and the recovery factor
calculation chart were drawn, and the sweep radius calculation formula was also established. The
research results can provide a theoretical reference for the policy-making of development technology
in low-permeability reservoirs.

Keywords: low-permeability reservoir; starting pressure gradient; steady-state sequential replace-
ment method; moving boundary; nonlinear equation

1. Introduction

Classical Darcy’s law [1] has been widely used to describe seepage mechanics and
numerical simulation for a long time. However, in recent years, the experimental mon-
itoring data of pore seepage in tight oil and gas reservoirs, such as shale oil and gas,
low-permeability oil and gas reservoirs and weak permeable layers, confirm that the fluid
seepage in low-permeability tight media does not follow Darcy’s law, and the seepage
velocity and pressure gradient reflected from the seepage characteristic curve is not linear.
The study of nonlinear seepage in tight media has important guiding significance and
application value for the effective development of tight oil and gas reservoirs.

Bear [2] proposed the concept of starting pressure gradient and gave the non-Darcy
seepage equation of low-permeability formation during the process of studying the seepage
mechanism of low-permeability formation through a laboratory test with a one-dimensional
core in 1972. Prada [3] and Civan [3,4] found that the linear fitting curve of seepage velocity
and pressure gradient experimental data had obviously deviated from the origin in the
experimental study of rock fluid flow in different low-permeability porous media, and they
developed the quasi-linear motion equation by modifying the Darcy equation.

q = A
k
µ
(J − J0) (1)

When J ≤ J0, q = 0; and J > J0, fluid flow occurs in the porous media.
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Ding [5] carried out new experiments to determine threshold pressure gradient (TPG)
by designing a specially core-flooding system under reservoir conditions; the experimental
result indicates that TPG is not constant during the reservoir developing process and varies
with the change of pore pressure.

Huang Yanzhang [6] studied the causes of the fluid flow and pressure gradient
deviating from Darcy’s law in dense media through a seepage experiment at a rather
early stage. The causes of the non-Darcy seepage phenomenon can be summarized as
follows: On the one hand, the dense porous media has narrow pores and a large surface
area, the interface between rock and fluid is strong, and the micro-scale effect is severe;
surface active substances will adsorb on the inner surface of the rock to form a boundary
layer, which hinders fluid flow. On the other hand, due to the different throat radius of
dense porous media, strong rock heterogeneity, and the small driving pressure gradient, the
fluid can only flow along the central part of the large throat. With the increase in the driving
pressure gradient, the thickness of the boundary layer gradually becomes thinner, and
more fluid can participate in the flow at the middle and edge of small and large channels,
so that the effective permeability of the rock gradually increases to the maximum, that is,
the absolute permeability of the rock. As a result, the fluid seepage law in dense porous
media does not follow the traditional linear Darcy’s law and will present strong nonlinear
flow characteristics.

Dou H E [7] stated that the experiment conditions, the experiment process and the
core sample preparation process are the three main reasons for the obvious TPG measured
from the low permeability core experiments.

This is necessary to determine the starting pressure gradient when the quasi-linear
seepage model is used. Huang Yanzhang used the capillary flow formula to obtain the
theoretical calculation formula of the starting pressure gradient.

λ = τo

√
8φ

9K
(2)

where λ is the start-up pressure gradient, MPa/cm; τo is the ultimate shear stress, N; K is
the core air permeability, 10−3µm2; φ is the porosity.

For the convenience of calculation, many experts and scholars have conducted lab-
oratory experiments to obtain an empirical formula for calculating the starting pressure
gradient. Chengyuan Lu [8] selected sandstone reservoir cores from 10 oilfields in the
Shengli Oilfield in 2002 to represent low-permeability sandstone reservoirs in the Shengli
Oilfield. The start-up pressure gradient of single-phase oil phase percolation and the air
permeability of the sample were measured by the capillary balance method, and the em-
pirical formula for the start-up pressure gradient was established by the linear regression
method, which would be a better way to meet the requirements of engineering calculations.

The commercial reservoir numerical simulator represented by Eclipse is developed
based on the linear Darcy flow law, which cannot accurately describe the nonlinear flow
characteristics existing in the developing process of low-permeability reservoirs. Even with
the simplest quasi-linear non-Darcy flow model, the common reservoir numerical simula-
tors can produce significant errors in the optimization design of reservoir development
parameters, such as well pattern and spacing and recovery factors. For low-permeability
reservoirs, when the oil and water seepage occurs in the formation during production, the
area where the formation pressure gradient is greater than the start-up pressure gradient
is the pressure drop sweep area; the area where the formation pressure gradient is less
than the starting pressure gradient is the non-sweep area; and the formation pressure in
this area remains as the original formation pressure. On the boundary between the two
regions, the formation pressure gradient is equal to the starting pressure gradient. As the
seepage process in the reservoir is unstable, the pressure gradient in the low-permeability
formation also changes, resulting in the boundary between the two regions moving with
time and space. The mathematical expression that characterizes the moving boundary in
mathematical modeling is called the moving boundary condition. The model based on the
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quasi-linear seepage equation is actually a moving boundary problem. In 1981, H. Pascal [9]
first studied the one-dimensional unsteady seepage flow boundary model in porous media
with a start-up pressure gradient, solved the model by an approximate analytical method
and numerical method, and then analyzed the influence of the start-up pressure gradient
on pressure and flow distribution in the flow system. In 1992, WuY.S. [10,11] used the law
of flow continuity and conservation of mass to obtain the approximate analytical solution
of the control partial differential equation in the sense of an average integral using the inte-
gration method and established the corresponding reservoir test interpretation method. In
2008, Feng [12] studied the unstable radial seepage model in a low-permeability gas reser-
voir considering the start-up pressure gradient through the numerical approximate Green
function method; the results show that the moving boundary can characterize the control
radius of a single well. Chen [13] used pore scale network modeling to study the seepage
and displacement of porous media with the starting pressure gradient or yield stress. Lu
J. [14,15] presented a boundary-dominated flow model in radial shape geometry and de-
veloped the analytical solutions. Yun [16,17] proposed a fractal model of starting pressure
gradient in the flow process of non-Newtonian Bingham fluid in porous media. In 2010,
Xie K. H [18] obtained a general approximate analytical solution for a one-dimensional clay
soil consolidation moving boundary model considering the starting pressure gradient. Liu
et al. [19] discussed analytical and numerical solutions of a semi-infinite low permeability
reservoir under one-dimensional flow with a moving boundary and TPG. However, their
solutions, which are processed by similarity transformations, are complicated and difficult,
and the influence of the TPGs is not obvious. Wang Xiao-dong [20] proposed the analytical
solutions under fixed-borehole-rate and fixed-borehole-pressure by applying Green’s func-
tion. Two transcendental equations for the moving boundary model were obtained and
solved by using the Newton–Raphson iteration. Huang Y [21] presented a new unsteady
production decline model of dual-porosity medium (matrix and fracture) and composite
gas reservoir, proposed a complex mathematical solution, and discussed the influence of
different reservoir parameters on the production decline regularity of composite reservoirs.

The approximate analytical solution, numerical solution, Bundle of capillary tube
modeling (BCTM), direct pore scale modeling (DPSM) and Pore Network Modeling (PNM)
are the main research methods and tools; however, the exact analytical solution of a
porous media seepage flow boundary model with the starting pressure gradient, the
proof of the existence of the solution and the moving law of the moving boundary are
rarely studied. Various nonlinear seepage models based on laboratory experiments and
theoretical derivation enrich the seepage theory of low-permeability reservoirs, but most
models greatly increase the difficulty of calculation and are difficult to use in engineering.
From the perspective of engineering calculation and calculation error, the quasi-linear
model can better simulate the seepage mechanism of low-permeability reservoirs, and it is
the mainstream of seepage theory research on a low-permeability reservoir.

When the steady-state sequential replacement method is used to solve the unstable
seepage problems, it often regards each instantaneous state of the unstable seepage process
as stable, and this can transform the unstable seepage partial differential equation into an
ordinary differential equation without time. Numerous researchers are inclined to apply it
to solve the flow radius of different reservoir models.

The quasi-linear seepage model of a low-permeability reservoir is used within the
moving boundary, and the fluid flow does not occur outside the moving boundary. Based
on this idea, this paper deduces and establishes the nonlinear moving boundary equation
based on the steady-state sequential replacement method, which can be accurately and
simply used to solve the quasi-linear model of a low-permeability reservoir. By solving
the model, the calculation chart of recovery factor, sweep radius and other parameters of
low permeability reservoirs under different starting pressure gradients can be obtained. In
our model, only a nonlinear formula needs to be solved at each time-step, which achieves
the same result with low-permeability reservoir numerical simulation. Therefore, smaller
errors according to the analytic solution and fewer calculations compared to a routine



Energies 2021, 14, 8445 4 of 19

numerical simulation method are the two maximum advantages of our model. This
research provides a new idea for nonhomogeneous partial differential equations as well.
The results can provide a theoretical reference for low-permeability reservoir development
technology policy formulation and numerical simulation of low-permeability reservoirs.

2. Moving Boundary Nonlinear Equation
2.1. Darcy Flow of Conventional Reservoir
2.1.1. Mathematical Model

To facilitate the derivation, take the simplest plane radial flow model as an example
(Figure 1).

Figure 1. Radial flow model.

Basic assumptions are as follows:
1© The reservoir is isotropic homogeneous and has a circular shape with equal thickness,

closed top and bottom, and uniform original formation pressure;
2© The fluid is single-phase and micro-compressible, seepage flow is under constant

temperature without physical and chemical changes and satisfies Darcy’s law;
3© Permeability, porosity, compressibility, and viscosity, etc., are all constants and do not

change with time or pressure;
4© The influence of gravity is not considered, and the pressure gradient is small.

Considering a constant pressure production well in the center of a circular homoge-
neous area, the seepage equation is as follows:

1
r

∂

∂r
(r

∂p
∂r

) =
µφCt

k
∂p
∂t

(3)

Constant pressure inner boundary conditions:

p | rw
= pw (4)

Infinite boundary:
lim
r→∞

p = pi (5)

Stable boundary:
p | re

= pi (6)

Closed boundary:
p′ | re

= 0 (7)

2.1.2. Moving Boundary Nonlinear Equation

Steady state sequential replacement method [22]: when solving a series of problems
related to the unstable seepage, each instantaneous state of the unstable seepage process
is often regarded as stable. Considering the time period t1→t1 + ∆t, the pressure sweep
radius is from r1→r2 (see Figure 2).



Energies 2021, 14, 8445 5 of 19

Figure 2. Reservoir pressure distribution before pressure arrived at the outer boundary.

Steady state pressure equation:

1
r

∂

∂r
(r

∂p
∂r

) = 0 (8)

The formation pressure P1 distribution at time t is obtained by an integral solution:

p1 =
pi − pw

ln r1
rw

ln r +
pw ln r1 − pi ln rw

ln r1
rw

(9)

The formation pressure P2 distribution at time t + ∆t can be obtained similarly.

p2 =
pi − pw

ln r2
rw

ln r +
pw ln r2 − pi ln rw

ln r2
rw

(10)

Dimensionless bottom-hole production calculation formula:

qD =
µq

2πkh(pi − pw)
=

1
ln riD

(11)

Among them:
tD is dimensionless time, dimensionless, tD = 3.6kt

φµCr2
w

;

ri is dimensionless radius, dimensionless, riD = ri
rw

, i = 1, 2;

pD is dimensionless pressure, dimensionless, pD = pi−p
pi−pw

;

qD is dimensionless flowrate, dimensionless, qD = µq
2πkh(pi−pw)

;
The same is shown below.
With the increase in riD, the yield decreased gradually.
Mass conservation equation of the stratum in ∆t time:

q1∆t = ∑{πh[(r + ∆r) 2 − r2]φCt∆p} = 2πhφCt

∫ ri1

r1

r(pi − p1)dr (12)

Among them:∫ r1

rw
r(pi − p1)dr =

pi − pw

ln r1
rw

(ln r1 ·
∫ r1

rw
rdr−

∫ r1

rw
r · ln rdr) (13)

Meanwhile, ∫ r1

rw
r ln rdr =

1
2
(r2

1 ln r1 − r2
w ln rw)−

1
4
(r2

1 − r2
w) (14)
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∫ r1

rw
rdr =

1
2
(r2

1 − r2
w) (15)

Substituting (14) and (15) into (13),we can obtain:

4∆tD =
(

r2
1D − 1

)
− 2 ln r1D (16)

Equation (16) gave the initial value of the pressure sweep radius.
(2) Considering the time period t1→t1 + ∆t, the pressure sweep radius is from r1→r2

(require r2 < re).
The formation pressure P2 distribution at time t1→t1 + ∆t can be obtained similarly.

p2 =
pi − pw

ln r2
rw

ln r +
pw ln r2 − pi ln rw

ln r2
rw

(17)

Dimensionless bottom- hole production calculation formula:

q2D =
µq2

2πkh(pi − pw)
=

1
ln r2D

(18)

The same is shown below.
With the increase in riD, the yield decreased gradually.
Mass conservation equation of the stratum in ∆t time:

q1∆t = ∑{πh[ (r + ∆r)2 − r2]φCt∆p} = 2πhφCt[
∫ ri2

rw
r(p1 − p2)dr+

∫ ri2

r1

r(pi − p2)dr] (19)

Among them,

∫ r1

rw
r(pi − p2)dr =

(pi − pw) ln r1
r2

ln r1
rw

ln r2
rw

(∫ r1

rw
r ln rdr− ln rw

∫ r1

rw
rdr
)

(20)

∫ r2

r1

r(pi − p2)dr=
pi − pw

ln r2
rw

(
ln r2

∫ r2

r1

rdr−
∫ r2

r1

r ln rdr
)

(21)

Substituting (20) and (21) into (19),we can obtain:

∆tD =
ln r2

r1

ln r1
rw

(∫ r1

rw
r ln rdr− ln rw

∫ r1

rw
rdr
)
+ ln r2

∫ r2

r1

rdr−
∫ r2

r1

r ln rdr (22)

Simplify and then obtain the infinite boundary ripple radius r1D, r2D calculation
formula:

4∆tD =
(

r2
2D − 1

)
ln r1D −

(
r2

1D − 1
)

ln r2D (23)

Equation (23) is the iterative formula of r2D, which can be solved by the quasi-Newton
method [16].

(3) After the pressure reaches the outer boundary, consider the t2:+∆t time period, and
the pressure at the outer boundary changes from Pi1→Pi2 (see Figure 3).
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Figure 3. Reservoir pressure distribution after pressure arrived at the closed boundary.

Formation pressure P1 distribution at time t2::

p1 =
pi1 − pw

ln re
rw

ln r +
pw ln re − pi1 ln rw

ln re
rw

(24)

Distribution of formation pressure P2 at time t2:+∆t:

p2 =
pi2 − pw

ln re
rw

ln r +
pw ln re − pi2 ln rw

ln re
rw

(25)

The yield calculation formula becomes:

q2 =
2πkh(pi2 − pw)

µ ln re
rw

=
1− pi2D

ln reD
(26)

The mass conservation equation after the pressure wave reaches the boundary:

q2∆t = ∑{πh[(r + ∆r) 2 − r2]φCt∆p} = 2πhφCt

∫ re

rw
r(p1 − p2)dr (27)

Substitute (24)–(26) into (27) to solve Pi2 (the initial value of Pi1 is Pi):

pi2D =
∆tD + [ 1

2 r2
eD ln reD − 1

4 (r
2
eD − 1)]pi1D

∆tD + 1
2 r2

eD ln reD − 1
4 (r

2
eD − 1)

(28)

Equation (28) gave the outer dimensionless boundary pressure. Equation (26) gave the
dimensionless wellbore production. They comprised a nonlinear solution of the moving
boundary nonlinear equation.

For the constant pressure outer boundary, if the sweep radius is greater than the outer
boundary radius, the sweep radius is taken as the outer boundary radius.

For the closed boundary, if the sweep radius is greater than the outer boundary
radius, the outer boundary radius will not change, but the pressure at the outer boundary
will change.

2.2. Non-Darcy Flow of Low-Permeability Reservoir
2.2.1. Mathematical Model
1© The oil reservoir is isotropic and homogeneous with circular, uniform thickness,

closed top and bottom, and uniform original formation pressure;
2© The fluid is single-phase and micro-compressible, and the seepage flow is under

constant temperature without physical and chemical changes and satisfies Darcy’s
law; permeability, porosity, compressibility, and viscosity, etc., are all constants and
do not change with time or pressure;
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3© The influence of gravity is ignored, and the pressure gradient is small.

Considering a constant pressure production well in the center of a circular homo-
geneous area, the flow equation of the flow zone in a low-permeability reservoir is as
follows:

1
r

∂

∂r
[r(

∂p
∂r
− G)] =

µφCt

k
∂p
∂t

(29)

Internal boundary conditions of constant pressure:

p | rw
= pw (30)

Infinite outer boundary:
lim
r→∞

p = pi (31)

Constant pressure outer boundary:

p | re
= pi (32)

Closed outer boundary:
p′ | re

= 0 (33)

2.2.2. Moving Boundary Nonlinear Equation

The steady-state pressure equation in the flow zone:

1
r

∂

∂r
[r(

∂p
∂r
− G)] = 0 (34)

Integral solution to obtain the formation pressure distribution:

p = c1 ln r + Gr + c2 (35)

c1, c2 is the integral constant.
Formation pressure P1 within the range of moving boundary r1 at time t:

p1 =
pi − pw − G(r1 − rw)

ln r1
rw

ln r + Gr +
(pw − Grw) ln r1 − (pi − Gr1) ln rw

ln r1
rw

(36)

Formation pressure P2 in the range of moving boundary r2 at time t2:+∆t:

p2 =
pi − pw − G(r2 − rw)

ln r2
rw

ln r + Gr +
(pw − Grw) ln r2 − (pi − Gr2) ln rw

ln r2
rw

(37)

Dimensionless bottom-hole production calculation formula:

qD =
µq

172.8πkh(pi − pw)
=

1 + GD − GD · r1D
ln r1D

(38)

Among them: GD is the dimensionless starting pressure gradient, dimensionless,

GD =
Grw

pi − pw

As r increases, the yield gradually decreases.
Formation quality conservation equation in ∆t time:

q1∆t = ∑{πh[(r + ∆r) 2 − r2]φCt∆p}
= 172.8πhφCt[

∫ r1
rw

r(p1 − p2)dr +
∫ r2

r1
r(pi − p2)dr]

(39)
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Of which: ∫ r1

rw
r(p1 − p2)dr = A

∫ r1

rw
r ln rdr− A ln rw

∫ r1

rw
rdr (40)∫ r2

r1
r(pi − p2)dr = (pi−pw+Grw) ln r2−Gr2 ln rw

ln r2
rw

∫ r2
r1

rdr

− (pi−pw+Grw)−Gr2
ln r2

rw

∫ r2
r1

r ln rdr− G
∫ r2

r1
r2dr

(41)

Substituting (40) and (41) into (39), we obtain:

4
1+GD − GD · r1D

ln r1D
· ∆tD =

r2
1D − 1
ln r1D

− 2 + GD[
(r2

1D − 1) · (1− r1D)

ln r1D
+

2
3
(r3

1D − 1)] (42)

(r2
2D − 1) ln r1D − (r2

1D − 1) ln r2D + GD[(r2
2D − 1) · (1− r2D) · ln r1D − (r2

1D − 1) · (1− r1D) · ln r2D]
+ 2

3 GD(r3
2D − r3

1D) · ln r1D · ln r2D = 4(1 + GD − GDr2D)∆tD · ln r1D
(43)

After the pressure reaches the outer boundary, consider the time period t2→t2:+∆t,
and the pressure at the outer boundary starts from Pi1→Pi2.

Distribution of formation pressure P1 at time t2:

p1 =
pi1 − pw − G(re − rw)

ln re
rw

ln r + Gr +
(pw − Grw) ln re − (pi1 − Gre) ln rw

ln re
rw

(44)

Distribution of formation pressure P2 at time t2:+∆t:

p2 =
pi2 − pw − G(re − rw)

ln re
rw

ln r + Gr +
(pw − Grw) ln re − (pi2 − Gre) ln rw

ln re
rw

(45)

The yield calculation formula becomes:

qD =
µq

172.8πkh(pi − pw)
=

1− pi2D − GD(reD − 1)
ln reD

(46)

When the pressure wave reaches the boundary, the mass conservation equation can
be expressed as:

q1∆t = ∑{πh[(r + ∆r) 2 − r2]φCt∆p} = 172.8πhφCt

∫ re

rw
r(p1 − p2)dr (47)

Substitute Equations (44)–(46) into Equation (47) to solve for pi2D (pi1D initial value is
pi).

pi2D =
pi1D[

1
2 r2

eD ln reD − 1
4 (r

2
eD − 1)] + [1− GD(reD − 1)]∆tD

1
2 r2

eD ln reD − 1
4 (r

2
eD − 1) + ∆tD

(48)

Equations (42), (43) and (48) are made up of the nonlinear model of the low-permeability
reservoir.

Similarly, for the external boundary with constant pressure, if the sweep radius is
larger than the outer boundary radius, the sweep radius is taken as the outer boundary
radius. For the closed boundary, if the sweep radius is greater than the outer boundary
radius, the outer boundary radius will not change, but the pressure at the outer boundary
will change. The nonlinear solution calculating process of the low-permeability reservoir is
presented below.

Step1: Solving r1D by Equation (42). Taking r1D as the initial value, solving qD by
Equation (38).

1© If close boundary

Step2: Compared r1D with reD.
If r1D < reD, solving r2D by Equation (42).Taking r2D replace r1D, solving qD by Equation

(37). Repeat step2.
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If r1D f reD, solving pi2D by Equation (48). Solving qD by Equation (46), calculation
terminated.

2© If stable boundary

Step2: Compared r1D with reD.
If r1D < reD, solving r2D by Equation (42).Taking r2D replace r1D, solving qD by Equation

(37). Repeat step2.
If r1D f reD, taking pi2D = 0(outer boundary pressure is pi). Solving qD by Equation (46),

calculation terminated.

3© If infinite boundary

Step2: Solving r2D by Equation (42).Taking r2D replace r1D, solving qD by Equation
(38). Repeat step2.

3. Results and Error Analysis

Figure 4 shows the variation curve of the outer boundary pressure of a closed reservoir
under different start-up pressure gradients.

Figure 4. The law of pressure change at the outer boundary of a closed reservoir.

According to the established nonlinear calculation model of the outer boundary of the
low-permeability reservoir, the production decline curve of the low-permeability reservoir
with different outer boundary conditions under constant flow pressure can be obtained.

Based on the seepage theory, the analytical solution of the radial flow unstable seepage
model in Laplace space is as follows:

Infinite outer boundary:

qD =
K1(
√

z)√
zK0(
√

z)
(49)

Closed outer boundary:

qD = − 1√
z

K1(
√

z · reD)I1(
√

z)− I1(
√

z · reD)K1(
√

z)
I0(
√

z)K1(
√

z · reD) + I1(
√

z · reD)K0(
√

z)
(50)

Constant pressure outer boundary:

qD = − 1√
z

K0(
√

z · reD)I1(
√

z)− I0(
√

z · reD)K1(
√

z)
K0(
√

z · reD)I0(
√

z)− I0(
√

z · reD)K0(
√

z)
(51)
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The analytical solution could be solved by Stehfest’s numerical inversion [23]. Com-
paring the analytical solution with nonlinear solution, the relative error is calculated by the
following formula.

δ =
qas − qns

qas
× 100% (52)

Among them:
qas is an analytical solution, calculated by Equations (49)–(52);
qns is a nonlinear solution;
δ is relative error.
Tables 1–3 show the comparison results of the nonlinear solution and the analytical

solution under different external boundary conditions. The error of the nonlinear solu-
tion and the analytical solution is very small, which fully meets the calculation accuracy
requirements.

Table 1. Comparison of calculated results under infinite boundary.

Time qas qns δ (%) Time qas qns δ (%)

10 0.534 0.526 1.48 384 0.284 0.292 –2.94
15 0.489 0.479 2.00 577 0.269 0.278 –3.45
23 0.450 0.443 1.74 865 0.255 0.265 –3.90
34 0.417 0.412 1.16 1297 0.243 0.254 –4.30
51 0.387 0.386 0.43 1946 0.232 0.243 –4.64
76 0.361 0.363 –0.32 2919 0.222 0.233 –4.95
114 0.339 0.342 –1.06 4379 0.213 0.224 –5.21
171 0.318 0.324 –1.75 6568 0.204 0.215 –5.45
256 0.300 0.307 –2.38 9853 0.196 0.207 –5.65

Table 2. Comparison of calculated results under stable boundary.

Time qas qns δ (%) Time qas qns δ (%)

10 0.534 0.526 1.48 384 0.284 0.292 –2.94
15 0.489 0.479 2.00 577 0.269 0.278 –3.45
23 0.450 0.443 1.74 865 0.255 0.265 –3.90
34 0.417 0.412 1.16 1297 0.243 0.254 –4.28
51 0.387 0.386 0.43 1946 0.233 0.243 –4.44
76 0.361 0.363 –0.32 2919 0.224 0.233 –3.88
114 0.339 0.342 –1.06 4379 0.219 0.224 –2.01
171 0.318 0.324 –1.75 6568 0.218 0.217 0.18
256 0.300 0.307 –2.38 9853 0.217 0.217 0.00

Table 3. Comparison of calculated results under close boundary.

Time qas qns δ (%) Time qas qns δ (%)

10 0.534 0.526 1.48 384 0.284 0.292 –2.94
15 0.489 0.479 2.00 577 0.269 0.278 –3.45
23 0.450 0.443 1.74 865 0.255 0.265 –3.90
34 0.417 0.412 1.16 1297 0.243 0.254 –4.31
51 0.387 0.386 0.43 1946 0.232 0.243 –4.88
76 0.361 0.363 –0.32 2919 0.219 0.233 –6.37
114 0.339 0.342 –1.06 4379 0.203 0.224 –10.23
171 0.318 0.324 –1.75 6568 0.181 0.161 11.06
256 0.300 0.307 –2.38 9853 0.153 0.151 1.51
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4. Results and Discussion
4.1. Propagation Mechanism of Moving Boundary

The moving boundary propagation mechanism is a difficult point in the study of
low-permeability reservoirs, and the pressure sweep radius is the core indicator of low-
permeability reservoir development technology policy formulation. At present, mainstream
commercial numerical simulation software uses the Darcy flow method to simulate the
development of low-permeability reservoirs. Many experts and scholars adopt a step-by-
step numerical simulation method, which firstly determines the flowable grid iteratively,
and then performs the simulation calculation on the flowable grid. When the mainstream
nonuniform grid is used to perform step-by-step simulation calculations, the calculation
error will be significant if the grid is too large.

The model in this study can accurately calculate the low-permeability reservoir sweep
radius, and the pressure sweep radius with different start-up pressure gradients was
calculated. A convenient formula for calculating the swept radius under different starting
pressure gradients must be established, and it can provide theoretical guidance for the
formulation of low-permeability reservoir development technology policies.

Different models are used for fitting. When a power function is used for fitting
(Figure 5), the correlation coefficient is the greatest (R = 0.999). Therefore, it is reasonable
to use the power function model to fit. Calculate the curve of the sweep radius versus time
under different starting pressure gradients GD, and, respectively, fit a and b under different
starting pressure gradients.

Figure 5. Relationship between sweep radius and time in low-permeability reservoirs (G = 5× 10−4).

The coefficient a and exponent b linear fitting curves were drawn under different
starting pressure gradients (Figures 6 and 7). The fitting results indicate that the linear
model can reach a higher fitting accuracy (Table 4, R exceeds 0.998), and the linear model
can be used for an approximate calculation.
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Figure 6. Relationship between coefficient a and the starting pressure gradient.

Figure 7. Relationship between exponent b and the starting pressure gradient.

Table 4. Comparison of calculating results under a closed boundary.

Starting Pressure Gradient a b Correlation Coefficient

0 2.457 0.509 0.998
0.0001 2.450 0.510 0.998
0.0002 2.442 0.511 0.998
0.0003 2.434 0.512 0.998
0.0004 2.425 0.513 0.998
0.0005 2.416 0.514 0.998
0.0006 2.405 0.515 0.998
0.0008 2.381 0.518 0.998
0.001 2.351 0.521 0.998
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By substituting the power function, the calculation formula of the sweep radius under
constant flow pressure conditions of a low-permeability reservoir can be obtained:

riD = (2.462− 103.9 · GD) · t11.74·GD+0.508
D (53)

The sweep radius is a function of a dimensionless start-up pressure gradient and dimen-
sionless time. The propagation law of the sweep radius in a low-permeability reservoir can
be determined through dimensionless formula conversion, which can provide theoretical
guidance for well spacing and well pattern design in a low-permeability reservoir.

4.2. Analysis of Production Decline

The production decline curve reflects the stable production situation of the reservoir.
Generally, the production decline curve generated by statistical field data is compared
with the theoretical curve chart to evaluate the reservoir development effect. According to
the established nonlinear calculation model of the outer boundary of a low-permeability
reservoir, the production decline curve chart of a low-permeability reservoir with different
outer boundary conditions under constant flow pressure can be obtained.

For infinite reservoirs, the boundary cannot be detected within the calculation time,
so the key factor affecting the production decline curve is only the dimensionless start-up
pressure gradient. For infinite reservoirs, the larger the start-up pressure gradient is, the
faster the production will decline (Figure 8).

Figure 8. Production decline curve plate of an infinite low-permeability reservoir.

For closed outer boundary reservoirs, both dimensionless start-up pressure gradi-
ent and outer boundary radius will affect the shape of the production decline curve
(Figures 9 and 10). The starting pressure gradient affects the slope of the curve. The
larger the dimensionless starting pressure gradient is, the faster the output will decline; the
smaller the outer boundary radius is, the faster the output will be depleted.
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Figure 9. Production decline curve plate of closed boundary low-permeability reservoir under
different starting pressure gradients.

Figure 10. Production decline curve plate of closed boundary low-permeability reservoir with
different outer boundary radii.

For constant pressure boundary reservoirs, the larger the starting pressure gradient is,
the faster the production will decline. After the final production is stable, the larger the
starting pressure gradient, the lower the production (Figures 11 and 12).
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Figure 11. Production decline curve of stable boundary low-permeability reservoir with different
starting pressure gradients.

Figure 12. Production decline curve of stable boundary low-permeability reservoir with different
outer boundary radius.

4.3. Recovery Factor of Low-Permeability Reservoir

The recovery factor determines the economic and technical limits of low-permeability
reservoirs and is the core indicator of the low-permeability reservoir development program.

At present, empirical formula methods, field statistics methods, numerical simulation
methods, and theoretical derivation methods, etc., are mainly used for calculating the
recovery factor of low-permeability oil reservoirs. In this study, the production curve chart
of closed reservoirs under different starting pressure gradients has been established. There-
fore, the cumulative production can be obtained by numerical calculation methods, and
the recovery factor of low-permeability reservoirs can be calculated using the cumulative
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production. According to the closed-boundary production decline curve, the cumulative
production is approximated by the numerical integration method.

Np =
q1t2 − 1

2 (q2 + q1)t1

t2 − t1
t1 +

n

∑
i=2

[
1
2
(ti − ti−1) · (qi + qi−1)] +

1
2

q2
n

tn − tn−1

qn−1 − qn
(54)

Among them, ti and qi are output decline curve data.
Then, the cumulative production and geology reserves can be used to calculate the

recovery factor and the oil recovery factor under different outer boundary radii and start-up
pressure gradients and draw the low-permeability reservoir recovery factor map (Figure 13).

Figure 13. Recovery of a low-permeability reservoir with different starting pressure gradients and
outer boundary radii.

For a given starting pressure gradient and well spacing, the oil recovery factor can be
queried from the chart.

5. Conclusions

(1) Based on the steady-state sequential substitution method of the seepage mechanics
theory, the moving boundary nonlinear equations of the infinite outer boundary,
constant pressure outer boundary and closed outer boundary in production with
constant flow pressure of a homogeneous reservoir under Darcy‘s seepage condition
are derived, respectively. The nonlinear equation is solved by the quasi-Newton
method, and the obtained nonlinear solution is compared with the analytical solution.
The comparison shows that the method has high accuracy and can be used to solve
the problem of unstable seepage. The research in this paper provides a third method
for solving the oil and gas seepage equation, which is different from the analytical
solution and the numerical solution and provides a new method for the solution of
linear partial differential equations.

(2) Based on the quasi-linear flow equations of low-permeability reservoirs, the moving
boundary nonlinear equations with an infinite outer boundary, constant pressure
outer boundary, and closed outer boundary are deduced during production with
constant flow pressure in low-permeability reservoirs, and production decline charts
of different outer boundaries are established.

(3) Based on the nonlinear equation of the moving boundary of the low-permeability
reservoir, the calculation formula of the sweep radius of the low-permeability reservoir
was established, and the calculation chart of the recovery factor was drawn, which
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can provide a theoretical reference for the formulation of low-permeability reservoir
development technology policies.

Author Contributions: Conceptualization, X.J. and S.J.; methodology, H.L.; software, H.L.; validation,
X.J. and S.J.; formal analysis, S.J.; investigation, X.J.; resources, X.J.; data curation, X.J.; writing—
original draft preparation, X.J.; writing—review and editing, S.J. and H.L.; visualization, H.L.;
supervision, H.L.; project administration, S.J.; funding acquisition, S.J. All authors have read and
agreed to the published version of the manuscript.

Funding: This research is funded by the Open Project of State Key Laboratory of Shale Oil and Gas
Enrichment Mechanisms and Efective Development (GSYKY-B09-33).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Variable Description: p is the formation pressure, MPa;p1, p2 are the pressure at the radial radius r,
MPa;pi1, p i2 are the pressure at the boundary of the formation, MPa;t is time, days;r is the radial
radius, m;r1 and r2 are the radial distance, m;k is the formation permeability, µm2;µ is fluid viscosity,
mPa s;Ct is the comprehensive compression factor, 1/MPa;ϕ is porosity, no unit;h is the thickness of
the formation, m;rw is the radius of the wellbore;m;pi is the original formation pressure, MPa;pw is
the bottom hole pressure, MPa;q is daily output, m3/d;re is the outer boundary radius, m;z is the
Laplace variable, dimensionless;K0 and I0 are the zero-order imaginary argument Bessel functions;K1,
I1 is the first-order imaginary argument Bessel function.
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