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Abstract: The purpose of this work is to explore the nonlinear vibration of a rub-impact Jeffcott
rotor. In the first stage, the motion is not affected by the friction force, but in the second stage, the
motion is influenced by the normal force and the friction force. The governing equations of the
rotor of this model are derived in this paper. In consequence, there appears a difference between the
two stages. We establish an approximate analytical solution for nonlinear vibrations corresponding
to two stages with the mention of the location of jumps. The obtained results are compared with
the numerical integration results. The steady-state response and the stability of the solutions are
analytically determined for the two stages. The stability of a full annular rub solution is studied with
the help of the Routh–Hurwitz criterion. Effects of different parameters of the system, the saddle-
node bifurcation (turning points) and the Hopf bifurcation are presented. The main contribution lies
in the analytical approximation solution based on the Optimal Auxiliary Functions Method.

Keywords: Optimal Auxiliary Functions Method; dry friction damper; rub-impact; stability analysis;
nonlinear rotor dynamics

1. Introduction

The Jeffcott rotor is represented by a simply supported flexible massless shaft having
a rigid disc at the mid-span. The offset between the center of gravity and the center of
rotation is known as eccentricity. Several components of the Jeffcott rotor are characterized
by nonlinear behavior, and this system is in general nonlinear. The nonlinear properties of
the Jeffcott rotor can lead to different behavior of the rotor from that predicted by a linear
model; thus, an investigation of the effects of nonlinearities is required.

The nonlinear vibration of rotor systems has been studied by several researchers since
the pioneering studies of Yamamoto [1] and Ehrich [2], where nonlinearity appeared for
the first time due to the clearance in bearings at supporting points. Black [3] highlighted
the condition of the existence of the synchronous full annular rub solution, and Muszyn-
ska [4] explored some possible responses of the rotor–stator system. Childs [5] considered
fractional subharmonic resonance in a horizontally supported rotor, and Bently et al. [6]
reported the synchronous response, which exhibits typical jump phenomena. Jiang and
Ulbrich [7] analyzed the stability of the full annular rub solutions of a simple nonlinear
Jeffcott rotor with the symmetrical clearance effect. The nonlinear normal modes of a
horizontally supported Jeffcott rotor were investigated by Yabuno et al. [8]. The frequency
response curves were characterized in the primary resonance for various values of the
eccentricity. The full annular rub motions of a nonlinear Jeffcott rotor were investigated by
Biao and Shu in [9], providing a basis for the parametric design of the rotor system with
the help of the averaging method. Jeng et al. [10] applied the response integration method
to determine periodic motion in the response of the rub-impact rotor system, constructing
a bifurcation diagram using Poincare section points.
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The nonlinear vibration phenomenon induced by aircraft hovering flight in a rub-
impact rotor system that involves two general supports with cubic stiffness was examined
by Hou et al. [11]. The influence of aircraft hovering flight on the rotor system has been
thought of as a maneuver load to obtain the equations of motion.

Yang et al. [12] extended the concept of likelihood, proposing a likelihood-based
approach for mixed uncertainties representation and quantification, developing a single-
loop sampling algorithm to reduce the computational cost.

Liang et al. [13] studied the offset disc rotor system with a mechanical gear coupling,
taking into account the nonlinear restoring force of rotor support and the coupling misalign-
ment and employing the harmonic balance method to obtain periodic solutions. Stochastic
bifurcation and chaos of a randomly excited rub-impact rotor system with random stiff-
ness was explored in [14] by Yang et al. using the Chebyshev polynomial approximation
method, which is used to reduce a system with a random parameter to an equivalent
deterministic one. Fu et al. [15] studied the effects of bounded uncertain parameters on
the nonlinear response of a rub-impact rotor system with an overhung disk using the
nonintrusive interval uncertainty propagation method.

The modal characteristic of the modified Jeffcott rotor system having an additional
constraint was investigated by Hong et al. [16]. They showed that the rubbing rotor system
possesses a backward whirl mode motion and a forward whirl mode motion, showing that
the first can be unstable, and this instability is only the primary mechanism for the partial
rub transmitting into dry whip. The dynamic behaviors of an asymmetric horizontally
suspended rotor system involving rub-impact force were examined by Saeed et al. [17].
The whirling motion of the rotor system was controlled by means of four electromagnetic
poles. The derived mathematical model was analyzed using perturbation analysis, then the
system that includes rub and impact forces was analyzed by means of bifurcation diagrams,
frequency spectrum and Poincare maps.

The stability analysis and change in phase difference of the shaft and dry friction
damper system having viscous internal damping and gyroscopic moment under coupling of
unbalanced force and nonlinear rub-impact excitation was considered by Huang et al. [18].
It was found that the viscous internal damping has a contribution to improving the stability
of the synchronous full annular rub solution, the rub-impact delays the change in phase
difference and the gyroscopic moment has an influence on the increase in the phase
difference. Nan et al. [19] investigated the nonlinear dynamics of a rotor-bearing system
with cubic nonlinearity, internal clearance, nonlinear Hertzian contact force and nonlinear
stiffness of support material. By means of rotor trajectory diagrams, a Poincaré map and
bifurcation diagrams, the effects of nonlinear stiffness, mass eccentricity and rotating
speed on the dynamic behavior of the system were analyzed. Routes to chaos were found,
and dynamic behaviors were analyzed, including multiple periods, inverse bifurcation,
paroxysmal bifurcation, jumping phenomena and chaos.

The aim of the present research is to analyze the nonlinear vibrations of a rub-impact
Jeffcott rotor with clearances, taking into account internal and external damping, gyroscopic
moment and skew symmetric stiffness. The nonlinearities are caused by the cubic nonlin-
earity of the shaft. The stator deformation is approximated by a rigid casing supported by
radial springs. The Optimal Auxiliary Functions Method is used to obtain explicit and ac-
curate approximate analytical solutions for the nonlinear differential governing equations.
Our procedure ensures fast convergence of the solutions using only the first iteration, taking
advantage of the involved auxiliary functions and optimal convergence-control parameters,
without the need to identify the presence of small parameters in the governing equations.
The steady-state response and the stability of the solutions are analytically presented for
the two stages, as well as the location of jumps. The stability of the solutions for the two
stages is established. The stability of the synchronous full annular rub motion is derived
by a characteristic equation. using the Routh–Hurwitz criterion. Different parameters on
the nonlinear vibrations of a rub-impact Jeffcott rotor with clearance are presented.
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2. The Governing Equations of Motion

We consider a modified Jeffcott rotor that consists of a massless shaft carrying a disk
of mass m at the middle of the span (Figure 1).
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is the radial displacement of the disk, 𝑣 = 𝜔 𝑟 + 𝜔𝑟  is the relative speed at the 
contact point of the rotor, rdisk is the radius of the disk and ωw is the whirl angular velocity 
of the rotor, while H(u) is the Heaviside function known as 

Figure 1. Jeffcott rotor with stator clearance.

The mass center of the rotor is placed at distance e (eccentricity) from the geometrical
center C (Figure 2).
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Figure 2. Rubbing forces.

The deformation of the stator is approximated by a rigid casing supported by radial
springs having stiffness Kb, the stiffness of the rotor shaft is Ks and δ denotes the clear-
ance between the rotor and stator. The stator has a rigid ring whose mass is negligible,
the Coulomb friction coefficient is µ, the cross-coupling stiffness is Q and the damped
coefficients are c1 and c2.

The governing equations of the above-described rubbing rotor system are [7,9,16,18]:

m
..
x + c1

.
x− c2

.
y + Ksx + Qy + H(r− δ)Kb

(
1− δ

r

)
(x− sign(vrel)µy) = me ω2 cos ωt− Fx(x, y)

m
..
y + c1

.
y + c2

.
x + Ksy−Qx + H(r− δ)Kb

(
1− δ

r

)
(sign(vre)µx + y) = me ω2 sin ωt− Fy(x, y)

(1)

in which x and y are the horizontal and vertical displacement, respectively, r =
√

x2 + y2 is
the radial displacement of the disk, vrel = ωwr + ωrdisk is the relative speed at the contact
point of the rotor, rdisk is the radius of the disk and ωw is the whirl angular velocity of the
rotor, while H(u) is the Heaviside function known as

H(u) =
{

0 i f u ≤ 0
1 i f u > 0

(2)

The symbolic function sign(u) is

sign(u) =


−1 i f u < 0
0 i f u = 0
1 i f u > 0

(3)
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The nonlinear restoring forces corresponding to x− and y− directions are, respectively:

Fx = kx (x2 + y2) ; Fy = ky (x2 + y2) (4)

Using the nondimensional variables

X = x
δ ; Y = y

δ ; R = r
δ ; Ω2

s = Ks
m ; Ω = ω

Ωs
; ξ1 = c1

2mΩs
; ξ2 = c2

2mΩs

τ = Ωst; γ = Q
Ks

; α = kδ2

Ks
; β = Kb

Ks
; e = e

δ

(5)

and having in view that vrel > 0 and Equations (2)–(4), the governing dimensionless
Equation (1) may be rewritten as

X′′ + 2ξ1X′ − 2ξ2Y′ + X + γY + αX(X2 + Y2) + β
(

1− 1
R(τ)

)
(X− µY) = eΩ2 cos Ωτ

Y′′ + 2ξ1Y′ + 2ξ2X′ + Y− γX + αY(X2 + Y2) + β
(

1− 1
R(τ)

)
(µX + Y) = eΩ2 sin Ωτ

(6)

where R2(τ) = X2(τ) + Y2(τ), β = 0 if R ≤ 1 and β 6= 0 if R > 1.
The nonlinear differential discontinuous Equation (6) is very hard to solve by means

of classical procedures. The exact solution for this system is impossible to obtain, so we will
try to determine an explicit and accurate analytical approximate solution for the system (6)
with the initial conditions

X(0) = A ,
.

X (0) = B , Y (0) = C ,
.

Y (0) = D (7)

3. An Approximate Solution to the Considered Nonlinear Dynamical System

In the following, we will solve Equations (6) and (7) by applying the Optimal Auxiliary
Functions Method (OAFM) [20–25].

New time scales are defined for each variable X, Y, as:
τ1 = ω1τ , τ2 = ω2τ (8)

and Equations (6) and (7) become as shown in Equations (A1) and (A2).
The linear and nonlinear operators corresponding to Equation (A1) will be as shown

in Equation (A3).
The approximate solutions of Equation (A1) have two components:

X(τ1) = X0(τ1) + X1(τ1) , Y(τ2) = Y0(τ2) + Y1(τ2) (9)

where the initial approximations X0(τ1) and Y0(τ2) are determined from the linear equations

L[X0(τ1)] = 0 ; L[Y0(τ2)] = 0 (10)

with the initial conditions (7), which may be rewritten in the forms:

X0(0) = A , dX0
dτ1

(0) = B , Y 0(0) = C , dY0
dτ2

(0) = D (11)

The solution of the systems (10) and (11) will be

X0(τ1) = A cos τ1 + B sin τ1 ; Y0(τ2) = C cos(τ2) + D sin(τ2) (12)

By substituting Equation (12) into (A3), it holds (A4) and (A5) from Appendix A.
The values of the coefficients Mi and Pi, i = 1,2, . . . , 9 are given in Appendix B. The

functions that appear in Equations (A4) and (A5) are the so-called “source” for the auxiliary
functions.

It follows that the first approximations X1(τ1) and Y1(τ2) can be obtained from the
linear differential equations

d2X1
dτ1

2 + X1 = (C1 + 2C2 cos 2τ1 + 2C3 sin 2τ1 + 2C4 cos 4τ1

+2C5 sin 4τ1)(M1 cos τ1 + M2 sin τ1) + C6

(13)

with the initial conditions obtained from Equations (7) and (12)

X1(0) = 0 , dX1
dτ1

(0) = 0 (14)
d2Y1
dτ2

2
+ Y2 = (C7 + 2C8 cos 2τ2 + 2C9 sin 2τ2 + 2C10 cos 4τ2

+2C11 sin 4τ2(P1 cos τ2 + P2 sin τ2) + C12

(15)
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Y1(0) = 0 , dY1
dτ2

= 0 (16)

After simple manipulations, Equations (13) and (15) can be rewritten as shown in
Equations (A6) and (A7).

In order to avoid the presence of the secular terms into Equations (A6) and (A7),
we have

(C1 + C2)M1 + C3M2 = 0 ; C3M1 + (C1 − C2)M2 = 0

C9P2 + (C7 + C8)P1 = 0 ; C9P1 + (C7 − C8)P2 = 0
(17)

Taking into consideration Equations (14), (16), (A6), (A7) and (17), the first approxima-
tions become as shown in Equations (A8) and (A9):

The approximate analytical solutions of nonlinear Equations (A1) and (A2) will be
obtained from Equations (9), (12), (A8) and (A9).

Numerical Example

In order to prove the accuracy of the proposed technique, a set of values will be
considered for the parameters that appear in Equations (A1) and (A2):

ξ1 = 0.01 ; ξ2 = 0.01 ; α = 0.5 ; γ = 0.02 ; Ω = 0.75 (18)

The values of the unknown parameters C1, C2, . . . , C12 could be optimally determined
by means of various mathematical procedures, among them being the least square method,
collocation method, Ritz method and so on [26].

For β = 0, using the collocation method and taking into account Equation (17), we
obtain A = 0.875, B = 0, C = −0.0054 and D = 0:

ω1 = 0.6320448733 ; ω2 = 0.80078832 (19)

and the approximate solution

X(τ1) = 0.9490523057 cos ω1τ − 0.07287167 sin ω1τ − 3.470651× 10−4 sin 3ω1τ

+0.0001418832 cos 3ω1τ − 8.5032× 10−5 cos 5ω1τ + 2.081265× 10−5 sin 5ω1τ − 0.0698939444
(20)

Y(τ2) = −0.0142621195 sin ω2τ − 0.63520160412 cos ω2τ − 1.713208× 10−4 cos 3ω2τ+

2.44032× 10−4 sin 3ω2τ + 3.004127× 10−5 cos 5ω2τ − 3.7122234× 10−5 sin 5ω2τ + 0.63935662115
(21)

The domain of the solutions (20) and (21) for β = 0 is D1 = [0, 2.83234933].
For β = 0.001, one can obtain

ω∗1 = 0.927366748 ; ω∗2 = 0.3380928197 (22)

and the approximate solution for τ∈D2 = [2.83234933, 3.96296052634]:

X(τ1) = 0.500688365789 cos ω1τ1 + 0.44290475476 sin ω1τ1 − 0.13141084357+

+6.147320842× 10−4 cos 3ω1τ1 + 1.5504345782× 10−4 sin 3ω1τ1−
−4.22100714× 10−5 cos 5ω1τ1 − 5.17240331× 10−5 sin 5ω1τ1

(23)

Y(τ2) = 8.53519553485 sin ω2τ2 + 4.766885777308 cos ω2τ2 − 8.7854569719−
−3.24710078× 10−4 cos 3ω2τ2 − 4.44807213× 10−5 sin 3ω2τ2+

+7.21031743× 10−6 cos 5ω2τ2 − 8.913247077× 10−6 sin 5ω2τ2

(24)

In the same way, we can determine the approximate solution on the domains:
D3 = [3.96296052634, 5.21481530893], D4 = [5.21481530893, 6.71234340797] and so on.

In Figures 3 and 4 are presented the graphs of the approximate solutions (20), (23),
(21) and (24), respectively, in comparison with the corresponding results obtained by
numerical integration. It is clear that the proposed technique is very accurate and effi-
cient at obtaining an approximate solution for the complicated nonlinear differentials of
Equations (6) and (7).
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4. Steady-State Solution

The steady-state periodic solutions of Equation (6) are

X(τ) = R(τ) cos(Ωτ + ϕ(τ))

Y(τ) = R(τ) sin(Ωτ + ϕ(τ))
(25)

such that one obtains

R′′ − R(Ω + ϕ′)2 + 2ξ1R− 2ξ2R(Ω + ϕ′) + R + αR3 + β(R− 1) = eΩ2 cos ϕ

Rϕ′′ + 2R′(Ω + ϕ′) + 2ξ1R(Ω + ϕ′) + 2ξ2R− γR + β(R− 1)µ = −eΩ2 sin ϕ
(26)

The steady-state periodic solution is received when R′ = R′′= ϕ′ = ϕ′′ = 0. If the
principle of linearized stability is used, the equation must be rewritten as a first-order
system. We introduce a new set of variables as:

x1 = R; x2 = R′ + 2ξ1R; x3 = ϕ; x4 = ϕ′ + 2ξ1 ϕ (27)

in which the prime denotes the derivative with respect to τ.
Usage of variables xi, i = 1,2,3,4 in Equation (28) gives the following nonlinear system

x′1 = x2 − 2ξ1x1 (28)

x′2 = x1(Ω + x4 − 2ξ1x3) + 2ξ1(x2 − 2ς1x1)− 2ξ1x1 + 2ξ2x1(Ω + x4 − 2ξ1x3)

−x1 − αx3
1 − β(x1 − 1) + eΩ2 cos x3

(29)

x′3 = x4 − 2ξ1x3 (30)

x1(x′4 − 2ξ1x′3) + 2(x2 − 2ξ1x1)(Ω + x4 − 2ξ1x3) + 2ξ1x1(Ω + x4 − 2ξ1x3)

+2ξ2(x2 − 2ξ1x1)− γx1 +−β(x1 − 1)µ + eΩ2 sin x3 = 0
(31)

The stationary solution corresponding to the steady-state solution of Equation (28) is
obtained by letting x′1 = x′2 = x′3 = x′4 = 0 in Equations (28)–(31). The stationary solutions
are denoted x1, x2, x3, x4. These can be written as:

x2 = 2ξ1x1 ; x4 = 2ξ2x3 (32)
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Ω2x1 + 2Ωξ2x1 − x1 − αx3
1 − β(x1 − 1) = −eΩ2 cos x3 (33)

2Ωξ1x1 − γx1 + βµx1 − βµ = −eΩ2 sin x3 (34)

At lower angular speed Ω, the amplitude of the unbalance response is smaller, and
the rotor is in the noncontact situation yielding β = 0 such that Equations (33) and (34) are
simplified as

αx3
1 + (1−Ω2 − 2Ωξ2)x1 = eΩ2 cos x3 (35)

(γ− 2Ωξ1)x1 = eΩ2 sin x3 (36)

From Equations (34) and (36), we obtain

x2
1

[
(x2

1 + α2)
2
+ α2

1

]
− e2Ω4

α2 = 0 (37)

where
α1 =

γ− 2Ωξ1

α
; α2 = 1−Ω2−2Ωξ2

α
(38)

The steady-state solution exists if x2
1 < 1 in Equation (37). Let us note that x2 = 1 + η.

It is clear that the condition x2
1 < 1 is equivalent to the condition n ≤ 0. Now, Equation (37)

can be rewritten as

η3 + (3 + 2α2)η
2 + (3 + 4α2 + α2

1 + α2
2)η + (1 + α2)

2 + α2
1 −

e2Ω4

α2 = 0 (39)

Using the notations

η = η +
3 + 2α2

3 ; p =
3α2

1−α2
2

9 ; q = − α2(9α2
1+α2

2)
27

; D = p3 + q2 (40)

then Equation (39) becomes
η3 + 3pη + 2q = 0 (41)

The Equation (41) has one or three real solutions, as follows [27]. If D > 0, then
Equation (41) has a single solution

η = (D1/2 − q)
1/3 − (D1/2 + q)

1/3
(42)

leading to the unique solution of Equation (39) in the form

η = −3 + 2α2

3
+ (D1/2 − q)

1/3 − (D1/2 + q)
1/3

(43)

In this first case, the condition of existence of steady-state solutions is

(D1/2 − q)
1/3 − (D1/2 + q)

1/3 ≤ 3 + 2α2

3
(44)

For example, in the particular case when

ξ1 = ξ2 = 0.005 ; α = 0.6 , γ = 0.4 (45)

from Equation (44), one retrieves the conditions of existence of steady-state solution for
β = 0: Ω < 1.1929532871.

If D < 0, then Equation (39) has three real solutions, respectively

η1 = − 3+2α2
3 + −1+i

√
3

2 (D1/2 − q)
1/3

+ 1+i
√

3
2 (D1/2 − q)

1/3
, i2 = −1

η2 = − 3+2α2
3 − 1+i

√
3

2 (D1/2 − q)
1/3

+ 1−i
√

3
2 (D1/2 − q)

1/3

η3 = − 3+2α2
3 + (D1/2 − q)

1/3 − (D1/2 + q)
1/3

(46)

If D = 0, and if p = q = 0, it follows that η = − 3+2α2
3 , and if p3 = −q2 6= 0, it follows that

η1 = η2 = −3 + 2α2

3
+ q1/3 ; η3 = − 3+2α2

3 + 2q1/3 (47)

To find regions in the parameter space where the steady-state solution exists, the
conditions must be fulfilled.

ηi ≤ 0 (48)

The jump phenomenon only occurs if all solutions η1, η2, η3, of Equation (39) exist.
This means that D ≤ 0, where D is obtained from Equation (42).
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5. The Study of Stability

We introduce the derivation from the stationary solution as

xi = xi + ∆xi, i = 1, 2, 3, 4 (49)

Linearizing Equations (28)–(31) around the stationary solution, it follows that
∆x′1 = ∆x2 − 2ξ1∆x1

∆x′2 = (Ω2 + 2Ωξ1 − 1− β− 3αx2
1)∆x1 − (4Ωξ1x1 + 4ξ1ξ2x1 + eΩ2 sin x3)∆x3 + 2(Ω + ξ2)x1∆x4

∆x′3 = ∆x4 − 2ξ1∆x3

∆x′4 = 1
x1
[(γ + 2Ωξ1 + 4ξ1ξ2 − βµ)∆x1 − 2(Ω + ξ2)∆x2 − eΩ2 cos x3∆x3]

(50)

where x1 and x3 can be obtained from Equations (33) and (34):

x6
1 + 2α3x4

1 −
2β

α
x3

1 + (α2
3 + α2

4)x2
1 +

2β

α
(µα4 − α3)x1 +

β2

α2 (1 + µ2) =
e2Ω4

α2 (51)

tan x3 =
αα4x1 + βµ

αα3x1 + αx3
1 − β

(52)

where

α3 =
1 + β−Ω2 − 2Ωξ2

α
; α4 = γ−βµ−2Ωξ1

α
(53)

For β 6= 0, from a physical point of view, x1 in Equation (51) should be real and greater
than 1 to ensure the correctness of Equation (6). These real solutions of Equation (51) for
which x1 > 1 correspond to the full annular rub solutions of the rotor–stator system. When
rotor angular speedω (respectively, Ω from Equation (5)) is increased and decreased, it is
seen from Equation (51) that the rotor amplitude x1 must jump between the branches with
or without rotor rub. The jump phenomena only occur if there exist at least two solutions
x1 > 1 in Equation (51). The exact solutions of Equation (51) are difficult to be obtained
and therefore these solutions can be approximated by numerical procedures.

The stability of the full annular solutions may be determined by the eigenvalues of
the Jacobian [J], which is obtained from Equation (50):

[J] =


−2ξ1 1 0 0

a21 0 a23 a24
0 0 −2ξ1 1

a41 a42 a43 0

 (54)

where nonzero terms are

a21 = Ω2 + 2Ωξ1 − 1− β− 3αx2
1; a23 = −4Ωξ1ξ2x1 − 4Ωξ1x1 − eΩ2 sin x3; a24 = 2(Ω + ξ2)

a41 = 1
x1
(γ + 2Ωξ1 + 4ξ1ξ2 − βµ); a42 = − 2

x1
(Ω + ξ2); a43 = − eΩ2

x1
cos x3

(55)

The signs of real parts of eigenvalues of the Jacobian matrix are obtained from the
characteristic equation:

det([J]− λ[I]) = 0 (56)

where [I] is the unity matrix, and λ is the eigenvalue of the Jacobian.
Taking into account the expansion (56), the characteristic equation (54) becomes

λ4 + A3λ3 + A2λ2 + A1λ + A0 = 0 (57)

where A0–A3 have the expressions given in Equation (A10).
To remove x3, which appears in Equation (A10), from Equations (33), (34) and (53), it

follows that

eΩ2 sin x3 = αα4x1 + βµ ; eΩ2 cos x3 = αx3
1 + αα3x1 − β (58)

Substituting Equation (58) into Equation (A10), the result is given in Equation (A11).
Taking into account the Routh–Hurwitz criterion, all eigenvalues of the characteristic

Equation (57) have negative real parts when the following six inequalities are simultane-
ously satisfied:

A0 > 0 , A1 > 0 , A2 > 0 , A3 > 0 , A2 A3 − A1 > 0 , A1 A2 A3 − A2
1 − A0 A2

3 > 0 (59)
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Then, the full annular rub solutions are asymptotically stable. In the expressions
(A10), the values of x1 are obtained from Equation (51). If at least one condition (59) is not
satisfied, then the full annular rub solutions are unstable. If x1 < 1, then no rub occurs, and
therefore, the conditions of stability are (59) but with β = 0 in Expressions (58).

Based on the saddle-node bifurcation (turning point), there is one zero eigenvalue of
the Jacobian matrix and condition corresponding to

8(ξ2
1 + 2ξ2

2)(Ω + ξ2)
2 + 4(ξ1 − ξ2)(Ω + ξ2)(γ + 2Ωξ1 + 4ξ1ξ2 − βµ)+

+ 2(Ω+ξ2)+γ+2Ωξ1+4ξ1ξ2−βµ
x1

(αα4x1 + βµ)+

+
1+β+3αx2

1−Ω2−2Ωξ1
x1

(αx3
1 + αα3x1 − β) = 0

(60)

with x1 given by Equation (51).
In Figures 5–7 are graphically presented the rotor characteristics on the parametric

plane µ − Ω, γ − Ω and β − Ω, respectively, for β = 0.4, γ = 0.3, ξ1 = 0.2 and ξ2 = 0.2
obtained from Equation (60).

Energies 2021, 14, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 5. Rotor response characteristic on the plane μ-Ω. 

 
Figure 6. Rotor response characteristic on the plane γ-Ω. 

 
Figure 7. Rotor response characteristic on the plane β-Ω. 

Based on the Hopf bifurcation theory, to obtain one pair of conjugate purely 

imaginary eigenvalues of the Jacobian matrix, substituting ω±=λ i2,1  into Equation 
(57), we have 

02
30

2
1321 =−− AAAAAA  (61)

with the condition 

031 >AA  (62)

where A0, A1, A2 and A3 are given by Equation (A11). 
Figures 8–10 describe the Hopf bifurcation condition of the annular solutions by 

dividing the region of the annular rub solutions into an area with a stable annular rub 
solution (below the curve) and an area with unstable annular solution (above the curve). 
In these figures, the Hopf bifurcation condition and Hopf bifurcation boundary of the full 
annular solution, respectively, are functions of the rotor frequency Ω and friction 
coefficient μ (Figure 8) and, respectively, the coefficient β (Figure 9) and the coefficient γ 
(Figure 10). 

Figure 5. Rotor response characteristic on the plane µ-Ω.

Energies 2021, 14, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 5. Rotor response characteristic on the plane μ-Ω. 

 
Figure 6. Rotor response characteristic on the plane γ-Ω. 

 
Figure 7. Rotor response characteristic on the plane β-Ω. 

Based on the Hopf bifurcation theory, to obtain one pair of conjugate purely 

imaginary eigenvalues of the Jacobian matrix, substituting ω±=λ i2,1  into Equation 
(57), we have 

02
30

2
1321 =−− AAAAAA  (61)

with the condition 

031 >AA  (62)

where A0, A1, A2 and A3 are given by Equation (A11). 
Figures 8–10 describe the Hopf bifurcation condition of the annular solutions by 

dividing the region of the annular rub solutions into an area with a stable annular rub 
solution (below the curve) and an area with unstable annular solution (above the curve). 
In these figures, the Hopf bifurcation condition and Hopf bifurcation boundary of the full 
annular solution, respectively, are functions of the rotor frequency Ω and friction 
coefficient μ (Figure 8) and, respectively, the coefficient β (Figure 9) and the coefficient γ 
(Figure 10). 

Figure 6. Rotor response characteristic on the plane γ-Ω.

Energies 2021, 14, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 5. Rotor response characteristic on the plane μ-Ω. 

 
Figure 6. Rotor response characteristic on the plane γ-Ω. 

 
Figure 7. Rotor response characteristic on the plane β-Ω. 

Based on the Hopf bifurcation theory, to obtain one pair of conjugate purely 

imaginary eigenvalues of the Jacobian matrix, substituting ω±=λ i2,1  into Equation 
(57), we have 

02
30

2
1321 =−− AAAAAA  (61)

with the condition 

031 >AA  (62)

where A0, A1, A2 and A3 are given by Equation (A11). 
Figures 8–10 describe the Hopf bifurcation condition of the annular solutions by 

dividing the region of the annular rub solutions into an area with a stable annular rub 
solution (below the curve) and an area with unstable annular solution (above the curve). 
In these figures, the Hopf bifurcation condition and Hopf bifurcation boundary of the full 
annular solution, respectively, are functions of the rotor frequency Ω and friction 
coefficient μ (Figure 8) and, respectively, the coefficient β (Figure 9) and the coefficient γ 
(Figure 10). 

Figure 7. Rotor response characteristic on the plane β-Ω.

Based on the Hopf bifurcation theory, to obtain one pair of conjugate purely imaginary
eigenvalues of the Jacobian matrix, substituting λ1,2 = ±iω into Equation (57), we have

A1 A2 A3 − A2
1 − A0 A2

3 = 0 (61)

with the condition
A1 A3 > 0 (62)
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where A0, A1, A2 and A3 are given by Equation (A11).
Figures 8–10 describe the Hopf bifurcation condition of the annular solutions by

dividing the region of the annular rub solutions into an area with a stable annular rub
solution (below the curve) and an area with unstable annular solution (above the curve).
In these figures, the Hopf bifurcation condition and Hopf bifurcation boundary of the full
annular solution, respectively, are functions of the rotor frequency Ω and friction coefficient
µ (Figure 8) and, respectively, the coefficient β (Figure 9) and the coefficient γ (Figure 10).
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The Hopf bifurcation boundary of the full annular solution is numerically solved. The
boundary of Hopf bifurcation reveals the transition from synchronous full annular rub
motion to partial rub motion [9,18].

In what follows, we will study a particular case, having in view the conditions of the
stability (63) with Ai, i = 0,1,2,3 given by Equation (A11). We consider

γ = 0.3 ; ξ1 = ξ2 = 0.2 ; α = 0.5 ; x2
1 = 0.6 ; µ = 0.5 (63)

Due to the fact that Ao > 0 and A3 > 0, the conditions (59) are reduced to

A1 > 0 (64)

A2 > 0 (65)

A2 A3 − A1 > 0 (66)

A1 A2 A3 − A2
1 − A0 A2

3 > 0 (67)
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The criteria (64), (65), (66) and (67) are drawn in Figures 11–14. Based on these figures,
one can identify the domains of stability.
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6. Conclusions

An important common fault of the rotating machinery is the impact rub, which can
lead to the failure of the mechanism. The rub-impact phenomena with nonlinear behavior
are among the normal concerns in this field of rotor dynamics.
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In this work, the stability of the full annular rub solutions of a complex nonlinear
Jeffcott rotor with rotor–stator clearance, the dry friction damper with effects of viscous
damping and gyroscopic moment and cross-coupling stiffness coefficients are studied.

The full annular force is analytically and numerically investigated. The model allows
for synchronous response and exhibits a typical jump phenomenon. The Routh–Hurwitz
criteria are used to establish the stability of the synchronous full annular rub and to obtain
the bifurcation boundaries. By variation of the different parameters, the static bifurcation,
Hopf bifurcation or saddle-node bifurcation may occur. Numerical investigations were
applied to analyze the effects of damping, friction and nonlinearity in the study of stable
regions for the conditions of stability.

The novelty and the main contribution of this paper lie in the analytical approxima-
tion solution based on the Optimal Auxiliary Functions Method (OAFM), an analytical
technique proposed by the authors. The OAFM proves to be a powerful nonlinear tool
for solving nonlinear vibration problems since it is effective, explicit and very accurate,
rapidly converging to the exact solution using only the first iteration. We obtained for the
first time explicit and highly accurate analytical solutions to the considered problem. It is
worth emphasizing that every nonlinear differential equation is reduced to only two linear
differential equations. This avoids the great difficulties that appear in solving complicated
nonlinear differential equations, such as those considered in this paper, and implicitly accel-
erates the convergence of the approximate analytical solutions. The proposed technique is
based upon the original construction of the solutions by means of so-called auxiliary func-
tions, which are another element of novelty, and a moderate number of convergence-control
parameters. These parameters lead to high precision when comparing our approximate
analytical solutions with numerical integration results. We have great freedom to choose
the auxiliary functions, and the optimal values of the convergence-control parameters are
determined by means of rigorous mathematical procedures. Let us note that the construc-
tion of the linear operator, the auxiliary functions and the convergence-control assurance
technique are the most powerful strengths, which guarantee the success of the application
of OAFM to solve complicated nonlinear differential equations. Our approach does not
need restricting hypotheses (such as the presence of small parameters), as is the case for
other analytical methods. On the other hand, we can write that the shortcomings could
appear at a large number of degrees of freedom because of cumbersome calculations.
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Appendix A

d2X
dτ2

1
+ 2ξ1

ω1
dX
dτ1
− 2ξ2ω2

ω2
1

dY
dτ2

+ 1
ω2

1

[
X + γY + αX(X2 + Y2) + β

(
1− 1√

X2+Y2

)
(X− µY)

]
− eΩ2

ω2
1

cos
(

Ω
ω1

τ1

)
= 0

d2Y
dτ2

2
+ 2ξ1

ω2
dY
dτ2

+ 2ξ2ω1
ω2

2

dX
dτ1

+ 1
ω2

2

[
Y− γX + αY(X2 + Y2) + β

(
1− 1√

X2+Y2

)
(µX + Y)

]
− eΩ2

ω2
2

cos
(

Ω
ω2

τ2

)
= 0

(A1)

X(0) = A , dX
dτ1

(0) = B , Y(0) = C ,
dY
dτ2

(0) = D (A2)
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L(X) = d2X
dτ2

1
+ X ; N1(X, Y) = 2ξ1

ω1
dX
dτ1
− 2ξ2ω2

ω2
1

dY
dτ2

+

(
1

ω2
1
− 1
)

X+

+ 1
ω2

1

[
γY + αX(X2 + Y2) + β

(
1− 1√

X2+Y2

)
(X− µY)

]
− eΩ2

ω2
1

cos
(

Ω
ω1

τ1

)
L(Y) = d2Y

dτ2
2
+ Y ; N2(X, Y) = 2ξ1

ω2
dY
dτ2

+ 2ξ2ω1
ω2

2

dX
dτ1

+

(
1

ω2
2
− 1
)

Y+

+ 1
ω2

2

[
−γX + αY(X2 + Y2) + β

(
1− 1√

X2+Y2

)
(µX + Y)

]
− eΩ2

ω2
2

cos
(

Ω
ω2

τ2

)
(A3)

N1(X0(τ1), Y0(τ2)) = M1 cos τ1 + M2 cos τ2 + M3 sin τ1 + M4 sin τ2 + M5 cos 3τ1 + M6 sin 3τ1 + M7[cos(τ1 + 2τ2)+

+ cos(τ1 − 2τ2)] + M8[sin(τ1 + 2τ2) + sin(τ1 − 2τ2)] + M9[sin(τ1 + 2τ2)− sin(τ1 − 2τ2)] + β(A cos τ1 + B sin τ1 − µC cos τ2−

−µD sin τ2)− β(A cos τ1+B sin τ1−µC cos τ2−µD sin τ2)√
A2+B2+C2+D2

2 + A2−B2
2 cos 2τ1+

C2−D2
2 cos 2τ2+AB sin 2τ1+CD sin 2τ2

− eΩ2

ω2
1

cos Ω
ω1

τ1

(A4)

N2(X0(τ1), Y0(τ2)) = P1 cos τ1 + P2 cos τ2 + P3 sin τ1 + P4 sin τ2 + P5 cos 3τ2 + P6 sin 3τ2 + P7[cos(2τ1 + τ2)+

+ cos(2τ1 − τ2)] + P8[sin(2τ1 + τ2)− sin(2τ1 − τ2)] + P9[sin(2τ1 + τ2) + sin(2τ1 − τ2)] + β(µA cos τ1 + µB sin τ1 + C cos τ2+

+D sin τ2)− β(µA cos τ1+µB sin τ1+C cos τ2+D sin τ2)√
A2+B2+C2+D2

2 + A2−B2
2 cos 2τ1+

C2−D2
2 cos 2τ2+AB sin 2τ1+CD sin 2τ2

− eΩ2

ω2
2

cos Ω
ω2

τ2

(A5)

d2X1
dτ2

1
+ X1 = [(C1 + C2)M1 + C3M2] cos τ1 + [C3M1 + (C1 − C2)M2] sin τ1 + [(C2 + C4)M1 − (C3 + C5)M2] cos 3τ1+

+[(C3 + C5)M1 + (C2 − C4)M2] sin 3τ1 + (C4M1 − C5M2) cos 5τ1 + (C5M1 + C4M2) sin 5τ1 + C6
(A6)

d2Y1
dτ2

2
+ Y1 = [(C7 + C8)P1 + C9P2] cos τ2 + [C9P1 + (C7 − C8)P2] sin τ2 + [(C8 + C10)P1 + (C11 − C9)P2] cos 3τ2+

+[(C9 + C11)P1 + (C8 − C10)P2] sin 3τ2 + (C10P1 − C11P2) cos 5τ2 + (C11P1 + C10P2) sin 5τ2 + C12

(A7)

X1(τ1) =
1
8 [(C2 + C4)M1 − (C3 + C5)M2](cos τ1 − cos 3τ1) +

1
8 [(C3 + C5)M1 + (C2 − C4)M2](3 sin τ1 − sin 3τ1)+

+ 1
24 (C4M1 − C5M2)(cos τ1 − cos 5τ1) +

1
24 (C1M1 + C4M2)(5 sin τ1 − sin 5τ1) + C6(1− cos τ1)

(A8)

Y1(τ2) =
1
8 [(C8 + C10)P1 + (C11 − C9)P2](cos τ2 − cos 3τ2) +

1
8 [(C9 + C11)P1 + (C8 − C10)P2](3 sin τ2 − sin 3τ2)+

+ 1
24 (C10P1 − C11P2)(cos τ2 − cos 5τ2) +

1
24 (C11P1 + C10P2)(5 sin τ2 − sin 5τ2) + C12(1− cos τ2)

(A9)
A0 = 8(ξ2

1 + 2ξ2
2)(Ω + ξ2

2)
2
+ 4(ξ1 − ξ2)(Ω + ξ2)(γ + 2Ωξ1 + 4ξ1ξ2 − βµ)+

+ 2(Ω+ξ2)+γ+2Ωξ1+4ξ1ξ2−βµ
x1

eΩ2 sin x3 +
1+β+3αx2

1−Ω2−2Ωξ1
x1

eΩ2 cos x3

A1 = 24ξ1(Ω + ξ2)
2 − 2(Ω + ξ2)(γ + 2Ωξ1 + 4ξ1ξ2 − βµ) + 2ξ2(1 + β + 3αx2

1 −Ω2 − 2Ωξ1)+

+ 2(Ω+ξ2)
x1

eΩ2 sin x3 +
2ξ1
x1

eΩ2 cos x3

A2 = 1 + β + 3αx2
1 + 4ξ2

1 − 5Ω2 − 2Ωξ1 − 8Ωξ2 +
eΩ2

x1
cos x3

A3 = 4ξ1

(A10)

A0 = 8(ξ2
1 + 2ξ2

2)(Ω + ξ2)
2 + 4(ξ1 − ξ2)(Ω + ξ2)(γ + 2Ωξ1 + 4ξ1ξ2 − βµ)+

+ 2(Ω+ξ2)+γ+2Ωξ1+4ξ1ξ2−βµ
x1

(αα4x1 + βµ) +
1+β+3αx2

1−Ω2−2Ωξ1
x1

(αx3
1 + αα3x1 − β)

A1 = 24ξ1(Ω + ξ2)
2 − 2(Ω + ξ2)(γ + 2Ωξ1 + 4ξ1ξ2 − βµ) + 2ξ2(1 + β + 3αx2

1 −Ω2 − 2Ωξ1+

+ 2(Ω+ξ2)
x1

(αα4x1 + βµ) + 2ξ1
x1

(αx3
1 + αα3x1 − β)

A2 = 1 + β + 3αx2
1 + 4ξ2

1 − 5Ω2 − 2Ωξ1 − 8Ωξ2 + αx3
1 + αα3x1 − β)

A3 = 4ξ1

(A11)
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Appendix B

The expressions of the coefficients that appear in Equations (A4) and (A5):

M1 =
2Bξ1

ω1
+ A

(
1− β

ω2
1
− 1

)
+

αA
4ω2

1
(3A2 + 3B2 + 2C2 + 2D2),

M2 =
C(γ− βµ)− 2Dξ1ω2

ω2
1

,

M3 = B

(
1 +

1 + β

ω2
1

)
− 2Aξ1

ω1
+

αB
4ω2

1
(3A2 + 3B2 + 2C2 + 2D2)

M4 =
2ω2ξ1C

ω2
1

+
D(γ− βµ)

ω2
1

, M5 =
αA(A2 − 3B2)

4ω2
1

, M6 =
αB(3A2 − B2)

4ω2
1

M7 =
αA(C2 − D2)

4ω2
1

+
αBCD
2ω2

1
, M8 =

αB(C2 − D2)

4ω2
1

, M9 =
αACD

2ω2
1

P1 =
A(γ + βµ) + 2Bξ2ω1

ω2
2

,

P2 =
αC
4ω2

2
(2A2 + 2B2 + 3C2 + 3D2) + C

(
1− β

ω2
2
− 1

)
− 2Dξ2

ω2
,

P3 =
B(γ + βµ)

ω2
2

− 2ω1ξ2 A
ω2

2
,

P4 =
2Cξ2

ω2
+ D

(
1 +

1 + β

ω2
2

)
+

αD
4ω2

2
(2A2 + 2B2 + 3C2 + 3D2)

P5 =
αC(C2 − 3D2)

4ω2
2

, P6 =
αD(3C2 − D2)

4ω2
2

, P7 =
αC(A2 − B2)

4ω2
2

+
αABD

2ω2
2

P8 =
αC(A2 − B2)

4ω2
2

, P9 =
αABC
2ω2

2
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