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Abstract: The electric hybridization of vehicles with an internal combustion engine is an effective
measure to reduce CO2 emissions. However, the identification of the dimension and the sufficient
complexity of the powertrain parts such as the engine, electric machine, and battery is not trivial.
This paper investigates the influence of the technological advancement of an internal combustion
engine and the sizing of all propulsion components on the optimal degree of hybridization and the
corresponding fuel consumption reduction. Thus, a turbocharged and a naturally aspirated engine
are both modeled with the additional option of either a fixed camshaft or a fully variable valve
train. All models are based on data obtained from measurements on engine test benches. We apply
dynamic programming to find the globally optimal operating strategy for the driving cycle chosen.
Depending on the engine type, a reduction in fuel consumption by up to 32% is achieved with a
degree of hybridization of 45%. Depending on the degree of hybridization, a fully variable valve
train reduces the fuel consumption additionally by up to 9% and advances the optimal degree of
hybridization to 50%. Furthermore, a sufficiently high degree of hybridization renders the gearbox
obsolete, which permits simpler vehicle concepts to be derived. A degree of hybridization of 65% is
found to be fuel optimal for a vehicle with a fixed transmission ratio. Its fuel economy diverges less
than 4% from the optimal fuel economy of a hybrid electric vehicle equipped with a gearbox.

Keywords: hybridization; powertrain modeling; fully variable valve train; engine test bench data;
dynamic programming; WLTC

1. Introduction
1.1. Background

In 2020, the European parliament set the CO2 emission limit for new passenger cars to
95 g CO2/km. This corresponds to a gasoline consumption of 4.06 L/100 km [1]. However,
a modern passenger vehicle with a conventional internal combustion engine drive train
(ICEV) is not capable of achieving such a low fuel consumption [2]. To avoid penalties
for exceeding this limit, car manufacturers are extending the variety of their propulsion
technologies. The mobility concepts with a high potential to effectively decrease greenhouse
gas (GHG) emissions are plug-in hybrid electric vehicles (PHEV), battery EVs (BEVs), and
fuel cell EVs (FCVs) [3]. Currently, the electric energy used to charge EVs is accounted
for with zero GHG emissions, independently of its production origin [4–6]. Hence, from a
political point of view, purely electric drive trains are the most effective solution to reduce
GHG emissions. However, the number of registrations of new BEVs has not yet reached the
level of new registrations of ICEVs. This fact is due mainly to the high initial cost for BEVs,
which is mostly determined by the capacity of the battery installed [7,8]. Furthermore,
the, up to this time, insufficient range, the lack of charging stations, and the unknown
deterioration of the battery slow the growth of the market share of BEVs [9,10].
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1.2. Challenges with Regard to the Design and the Operation of Hybrid Electric Vehicles

A conventional hybrid electric vehicle (HEV) can only be operated in a charge-
sustaining mode, while a PHEV is capable of driving also in a charge-depleting mode. The
charge-sustaining mode is active when the battery is either fully depleted or the manufac-
turer does not allow the state of charge (SOC) of the battery to diverge significantly from
its current state [11–13]. The charge-depleting mode is only enabled if the battery of the
vehicle is sufficiently charged, which then allows the vehicle to operate mainly electrically.
However, if the charge-depleting mode is not active as often as intended, the actual fuel
consumption diverges significantly from the values specified by the legislation [14–17].
Thus, the focus of this paper lies on the sizing and the complexity of the powertrain parts
of an HEV such that in the charge-sustaining mode an optimal fuel economy is achieved.

An HEV can be categorized as a P0, P1, P2, P3, or P4 architecture variant, depending on
the arrangement of the ICE, the electric machine (EM), and the gearbox. In the architecture
variants P0 and P1, the EM is attached to the ICE and serves mainly the start/stop operation.
The remaining architecture variants allow the EM to be disengaged from the ICE, which
enables pure electric operation and efficient recuperation of braking energy [18–22]. Besides
the choice of the HEV architecture, the sizing of the EM, the ICE, and the battery is of
significant importance concerning fuel economy. If the EM is too small, it cannot recuperate
all the braking energy available. In contrast, oversizing the components leads to an
excess of vehicle mass, poor efficiency in part-load operation, and an increase in cost [23].
Plenty of research has been invested in the optimization of the powertrain architecture as
described in [24–29].

Besides an optimal sizing of the components, an energy management is required such
that, compared to an ICEV, with an HEV a lower fuel consumption can be achieved [30–32].
The electric hybridization does not only allow the recuperation of braking energy, but also
enables the ICE to run at an efficient operating point [33,34]. The operating points with
low power demand, where the ICE exhibits poor efficiency, are driven with the EM in pure
electric mode [35,36]. In contrast, the ICE is used in operating points with medium to high
power demand. If necessary, the load on the ICE can be further increased to simultaneously
propel the vehicle and to charge the battery [37]. By increasing the load, this operating point
shift (OPS) strategy significantly increases the efficiency of the ICE. The optimal operating
strategy can be found with noncausal methods as described in [38–41]. However, due to
the high range of feasible input variables, it is difficult to implement a causal operating
strategy in an on-road application [42,43], which performs closely to the optimal strategy
found by noncausal methods.

1.3. Our Contribution

In this paper, we analyze the influence of naturally aspirated and turbocharged spark-
ignited (SI) engine concepts on the optimal ratio of the maximal power output between
the EM and the ICE, which is defined as the degree of hybridization (DOH). The main
focus lies in the potential advantage for HEVs when the ICE is equipped with a fully
variable valve train (FVVT). An FVVT has been developed internally and tested on a
spark-ignited engine. By applying Miller valve timings to achieve the desired engine load
instead of adjusting the conventional throttle, the efficiency of the part-load operation is
improved [44]. Furthermore, with a cylinder-deactivation mode and the implementation
of an x-stroke operation, where the usual four strokes of the engine are extended up to
’x’ strokes, the efficiency of very low engine loads is increased significantly [45]. To solve
the optimization task, we apply dynamic programming (DP), which leads to a noncausal
but globally optimal operating strategy [46]. Thus, the results presented are treated as a
benchmark for the implementation of causal optimization strategies on the test bench in
further investigations. To the best of our knowledge, there has been no research conducted
yet, which investigates the influence of an FVVT on part-load efficiency of naturally
aspirated and turbocharged ICEs in the application of HEVs.
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In ICEVs a gearbox is required to transform low torque values of the engine to high
torque values at the wheels, for instance, to accelerate a vehicle from a standstill. If an EM
of an HEV exceeds a certain maximal power output, i.e., if a certain DOH is exceeded, the
lower gears of the gearbox become redundant since the ICE is not required for the initial
acceleration of the vehicle. Thus, we introduce and investigate a vehicle concept where the
gearbox is replaced by a fixed transmission drive. This measure reduces the mass of the
vehicle and the complexity of the optimization task. Furthermore, in such a setup the EM is
well suited for urban usage, while the ICE plays out its advantages on extra-urban routes.

This paper comprises the following points:

• The derivation of the optimal DOH while the 0 to 100 km/h acceleration performance
of the vehicle for each DOH is kept constant.

• The analysis of the influence of significant part-load efficiency improvements of the
ICE due to the implementation of an FVVT.

• The introduction of a simplified HEV concept without a gearbox.

2. Simulation Environment and Models

This section provides an overview of the models implemented. All investigations
presented in this paper are conducted with Matlab simulations. The models for the ICEs
are based on data obtained from engine test benches, while the model for the EMs is
based on results acquired from the finite elements method (FEM) simulations conducted in
MotorCAD by AnSys.

2.1. Parallel Hybrid Electric Vehicle Configuration

A parallel HEV configuration is chosen such that the ICE is coupled mechanically to
the wheels. Hence, if required, any torque from the ICE is transmitted directly to the wheels
without any conversion losses over the EM [47–49]. Figure 1 shows the schematics of the
vehicle concepts investigated. The schematic in (a) shows an ICEV, i.e., a vehicle where no
electric propulsion is available. The ICE is mechanically connected via a clutch, a gearbox,
and final drive to the wheels. This concept serves as a reference point regarding fuel
consumption. The schematic in (b) shows a parallel HEV concept with a P2 architecture.
The vehicle is propelled either by the ICE or the EM, or both simultaneously. The battery
of the vehicle is not shown; its capacity depends on the DOH. The schematic in (c) shows
a parallel HEV concept with a fixed transmission. Since the torque output of the ICE
cannot be sufficiently amplified without high gear ratios, the EM must be strong enough
to cover any dynamic torque demands such as, for instance, accelerating the vehicle from
a standstill. Thus, this concept is only feasible with a relatively high DOH. As a result,
the vehicle is driven purely electric at low velocities such as those typically occurring
during urban trips. In contrast, the ICE is used for extra-urban trips, at higher but rather
constant velocities. Due to the smaller ICE and the omission of the gearbox, the weight of
the vehicle decreases. Furthermore, the reduction of the transmission complexity increases
the efficiency of the propulsion path. Since a purely electric operation is foreseen with this
concept, an external charging possibility, i.e., a PHEV concept, is recommended. However,
since the optimal DOH is evaluated in the charge-sustaining mode, it is irrelevant whether
the concept is realized as an HEV or a PHEV.

For our investigations, a mid-class vehicle is chosen with the individual parameters
stated in Table 1. The vehicle base mass mbase accounts only for the chassis of the vehicle
but not for the powertrain. The total vehicle mass mveh is defined as

mveh = mbase + mGB/FT + mICE + mEM + mbat. (1)

Depending on the HEV concept selected, either the mass of a gearbox mGB or the mass
of a fixed transmission mFT is included. The masses of the ICE mICE, the EM mEM, and the
battery mbat depend on the DOH, i.e., the power required of each component. Once the
power requirements are known, the mass is computed with the specific power-to-mass
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ratios. The gear ratios are taken from an existing seven-speed gearbox of a mid-class
vehicle. The axle ratio is chosen such that in the highest gear and at an engine speed of
2000 rpm a vehicle speed of 100 km/h is achieved.

(a) ICEV (b) HEV (c) FTHEV

clutch

gearbox

ICE

EM

final drive final drive final drive

gearbox

EM
clutch clutch

clutch

ICE ICE

Figure 1. Schematic representation of the parallel hybrid vehicle designs investigated, where (a) is
an ICEV and serves as a reference design with regard to the fuel consumption, (b) is an HEV (also
possible as PHEV) realized with a P2 architecture, and (c) is an HEV concept with a high DOH (thus
rather but not necessarily a PHEV) without a gearbox but with a fixed transmission ratio.

Table 1. Mid-class vehicle parameters.

Parameter Symbol Value Unit

Aerodynamic drag coefficient cd 0.3 –
Frontal area A f 2.2 m2

Rolling resistance coefficient µr 0.01 –
Wheel radius wr 0.3 m
Vehicle base mass mbase 1350 kg
Gearbox mass mGB 75 kg
Fixed transmission mass mFT 10 kg
Gearbox efficiency ηGB 0.95 –
Fixed transmission efficiency ηFT 0.975 –
Specific power ICE pICE 800 W/kg

Specific power EM pEM 3000 W/kg

Specific capacity battery pbat 180 Wh/kg

C-rate battery Cbat 5 –
Gear ratios rgear [3.19, 2.19, 1.52, 1.06, 0.74, 0.56, 0.43] –
Axle ratio rax 5.26 –
ICE speed range – 1000–6000 rpm

2.2. Dynamic Programming and Driving Cycle

The simulation uses a quasistatic approach in which all state variables, such as the
torque required at the wheel, remain constant for the duration of the time step. The driving
cycle implemented is the worldwide harmonized light vehicle test cycle (WLTC) of Class 3
with a step resolution of 1 s, as shown in Figure 2.

An HEV in such a setup has two degrees of freedom, namely

• the power split factor between the EM and the ICE,
• and the choice of the gear.

Thus, the optimization variables u1 for the power split factor and u2 for the gear are
defined in Table 2.
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Figure 2. Speed and acceleration data of the worldwide harmonized light vehicle test cycle (WLTC)
of Class 3.
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Figure 2. Speed and acceleration data of the worldwide harmonized light vehicle test cycle (WLTC)
of Class 3.

Table 2. Optimization variables.

Variable Range Description

Power split u1 −1 ICE used for maximal recharging
Power split u1 −1–0 ICE used for recharging and propulsion
Power split u1 0 Only ICE used for propulsion
Power split u1 0–1 ICE and EM used for propulsion
Power split u1 1 Only EM used for propulsion

Gear u2 1–7 Choice of gear

We apply dynamic programming to find the fuel-minimizing set of u1 and u2 that
guarantees charge-sustaining operation, i.e., that the SOC of the battery at the end of the
cycle reaches the value given initially. In [50], a DP script is provided for use within Matlab.
DP creates a grid for each time step and each state that is reachable by the optimization
variables. Subsequently, beginning from the final state, a backward calculation is performed
where for each grid point the torque delivered by the EM and the ICE, the power from
or to the battery resulting in a new SOC, and the instantaneous fuel consumption are
evaluated. For each time step, the set of u1 and u2 is determined that is feasible and
minimizes the cost criteria, in this case, the fuel consumption of the ICE. As the algorithm
propagates backward, each new set of u1 and u2 is added to the optimal control input
vector. The calculation terminates after reaching the initial time step. Due to the principle
of optimality, the solution found by DP through backward calculation is guaranteed to be
globally optimal [46,51–53].

2.3. Internal Combustion Engine Model

In this paper, a naturally aspirated (NA) and a turbocharged (TC) SI engine are
analyzed. The choice of a valve train system, i.e., either a fixed camshaft or a fully variable
valve train and its influence on the fuel consumption are investigated for both engine types.
The model for the naturally aspirated engine is based on data obtained from measurements
on a 2018 2.5 L Atkinson cycle engine with cooled exhaust gas recirculation [54]. The
turbocharged engine is modeled with own data obtained from measurements on an engine
test bench equipped with a 3.0 L direct-injected SI engine. The increase of the indicated
efficiency in part-load operation due to an FVVT is additionally quantified on an engine
test bench with a four-cylinder 1.4 L SI engine equipped with an internally developed
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FVVT [45]. All results are expressed in units that allow a comparison of engines with
different displacement volumes [55]. As described in [56], the fuel flow is expressed as the
mean fuel pressure pmϕ and is computed as

pmϕ =
Hl · mϕ,cyc

Vd
, (2)

where Hl is the lower heating value of the fuel in J/kg, mϕ,cyc is the fuel mass injected
during one engine cycle in kg, and Vd is the displacement volume in m3. The mean
indicated pressure pmi, i.e., the integral of the pressure over the volume for one engine
cycle, divided by pmϕ yields the indicated efficiency ηind, i.e.,

ηind =
pmi

pmϕ
. (3)

Figure 3 shows the models of the indicated efficiency of four different engines at an
engine speed of 2500 rpm. The solid lines represent the indicated efficiency of the engines
with a camshaft and are fitted to data obtained from measurements on the test benches.
The dashed lines show the potential gain in efficiency if the engines are equipped with
an FVVT. The first observation is that the FVVT allows the pumping losses to be reduced
from approximately 0.4 bar to 0.2 bar for an operating point with pmi = 2 bar. For the
engine with the camshaft as well as for the engine with the FVVT, the pumping losses
decrease linearly to a minimum of approximately 0.05 bar as the load increases. Second,
an FVVT enables the engine to run part-load operating points in an x-stroke operation
or with deactivated cylinders, which significantly increases the indicated efficiency as
shown in [45]. The lines colored represent NA engines with a maximal value of pmi of
approximately 12.5 bar while the black lines represent TC engines with a maximal pmi of
approximately 22 bar. The studies with the FVVT conducted thus far were focused on the
efficiency improvement in part-load operating points. Thus, an improvement in indicated
efficiency is only achieved for operating points with a pmi value of < 11 bar.
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The lines colored show the indicated efficiency for a naturally aspirated engine, while the black
lines show the indicated efficiency for a turbocharged engine. In the case of the solid lines,
the engines are equipped with a camshaft, while in the case of the dashed lines, an FVVT is
implemented instead.
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is computed as
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increases linearly up to a pme value of 11 bar where it remains constant up to 6000 rpm.
Equipped with a camshaft, the engine achieves a maximal brake efficiency of 39%. The
plot in the lower right corner shows the improvement in efficiency due to an FVVT
installed on the NA engine. For very low loads, i.e. pme ≈ 0.5 bar, the FVVT improves
the brake efficiency depending on the engine speed by approximately 40% to 30%. As215

the load increases, this advantage decreases to around 0% for pme ≈ 10 bar.

Figure 3. Plot allowing a comparison of the indicated efficiency of four different engine concepts.
The lines colored show the indicated efficiency for a naturally aspirated engine, while the black lines
show the indicated efficiency for a turbocharged engine. In the case of the solid lines, the engines are
equipped with a camshaft, while in the case of the dashed lines, an FVVT is implemented instead.
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The mean effective pressure pme is a sum of the mean indicated pressure pmi and the
mean friction pressure pmf. As described in [56], for a four-stroke operated engine it is
computed as

pme = pmi − pmf = 4 · π · Te

Vd
. (4)

Here, Te is the effective engine torque measured at the dynamometer in Nm. With
Equations (2) and (4) the engine brake efficiency ηbrake is computed as

ηbrake =
pme

pmϕ
. (5)

Resulting from Equation (5), Figure 4 shows the brake efficiency models on the left-
hand side for a TC engine and on the right-hand side for an NA engine. The x axis shows
the engine speed range in rpm while the y axis shows the mean effective pressure pme in
bar. In the upper two plots the iso-efficiency lines show the brake efficiency in %, while in
the lower two plots, the results show the brake efficiency improvement in % that is due to
an FVVT.

At the minimal speed of 1000 rpm, the maximal engine output of the NA engine equals
to a pme value of 8 bar. From 1000 rpm to 2000 rpm the maximal engine output increases
linearly up to a pme value of 11 bar where it remains constant up to 6000 rpm. Equipped
with a camshaft, the engine achieves a maximal brake efficiency of 39%. The plot in the
lower right corner shows the improvement in efficiency due to an FVVT installed on the
NA engine. For very low loads, i.e., pme ≈ 0.5 bar, the FVVT improves the brake efficiency
depending on the engine speed by approximately 40% to 30%. As the load increases, this
advantage decreases to around 0% for pme ≈ 10 bar.

At the minimal speed of 1000 rpm, the maximal engine output of the TC engine equals
to a pme value of 13 bar. From 1000 rpm to 2000 rpm the maximal engine output increases
linearly up to a pme value of 20 bar where it remains constant up to 5000 rpm. From
5000 rpm up to 6000 rpm the power output of the engine remains approximately constant,
causing the mean effective pressure to decrease accordingly to 18 bar. Equipped with a
camshaft, the engine achieves a maximal brake efficiency of 37%. The plot in the lower
left corner shows the improvement in efficiency that is due to an FVVT installed on the
TC engine. For very low loads, i.e., pme ≈ 0.5 bar, the FVVT improves the brake efficiency
depending on the engine speed by approximately 40% to 25%. As the load increases, this
advantage decreases to around 0% for pme ≈ 10 bar.

An FVVT is especially advantageous for part-load operation. Improvements in effi-
ciency thus occur only below a pme value of 10 bar for TC engines as well as for NA engines.
Thus, for a TC engine, the improvements induced by an FVVT affect approximately half
of the operating range. However, in the case of an NA engine, an FVVT improves the
efficiency for almost the entire operating range. For driving cycles with a low power
demand, such as the New European Driving Cycle (NEDC), operating points between 2 bar
and 4 bar pme occur frequently. At those operating points, an FVVT improves the brake
efficiency by 10% to 20% for both engine types.

With the operating point defined by the driving cycle, i.e., the required load and the
rotational speed, and the brake efficiency map, the fuel flow ṁϕ is computed in kg/s for
each time step by reordering and extending Equation (5) to

ṁϕ =
pmϕ · Vd · ωe

Hl · 4 · π
, (6)

where ωe describes the rotational engine speed in rad/s.
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Figure 4. Brake efficiency maps fitted to the data obtained from measurements. The maps on the left-hand side stem from a
TC engine while the maps on the right-hand side stem from an NA engine. The upper plots show the brake efficiency of
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Figure 4. Brake efficiency maps fitted to the data obtained from measurements. The maps on the left-hand side stem from
a TC engine while the maps on the right-hand side stem from an NA engine. The upper plots show the brake efficiency
of camshaft-driven engines while the lower maps show the improvement in efficiency for the same engines but with an
FVVT instead.

2.4. Electric Machine Model

The efficiency map for the electric machine, i.e., the motor and the generator, is
obtained from FEM simulations in MotorCAD. MotorCAD is a simulation software owned
by AnSys which is specifically created to design electric machines. Figure 5 shows the
efficiency map for a reference machine with a maximum power output of 150 kW. For the
current investigation, the range of the rotational speed of the electric machine matches
the possible engine speed. Investigations documented in [57–59] show that the efficiency
maps of electric machines of varying power ranges look similar as long as the ratio of the
constant torque to constant power region and the type of EM remain constant. Thus, for
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the variation of the DOH, the y axis, i.e., the torque output, of the reference map in Figure 5
is scaled accordingly.
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Figure 5. Efficiency map of an electric machine (150 kW) obtained from FEM simulations in Motor-
CAD by AnSys.

2.5. Battery Model

The battery pack is based on a cell by Panasonic of the type NCR18650B with a
nominal cell voltage Unom,cell of 3.6 V and a capacity Ccell of 3.2 Ah. Figure 6 shows the
characteristics of the cell taken from the cell data sheet created by Panasonic [60]. The upper
plot shows the open-circuit voltage Uoc,cell in V over the state of charge, while the lower
plot shows the discharge resistance Rdis,cell as a solid line and the charge resistance Rchar,cell
as a dashed line, both in mΩ. Both resistance curves are plotted over the state of charge.
The nomenclature used in this paper is as follows: A battery pack consists of multiple
battery modules, each of which consists of multiple cells. Those cells are connected in
series, while modules are connected in parallel. Hence, the number of cells per module
ncell defines the nominal voltage of the battery pack which here is set to 360 V, i.e., 100 cells
per module. Furthermore, the capacity of the battery is made dependent on the DOH, i.e.,
on the maximal power of the EM, such that the maximal c-rate is always guaranteed. The
specific mass assumed of the battery pack including packaging is 180 Wh/kg.

With

Uoc,mod = ncell · Uoc,cell, (7)

Emod = ncell · Ccell · Unom,cell, (8)

Rdis,mod = ncell · Rdis,cell, (9)

Rchar,mod = ncell · Rchar,cell, (10)

the open circuit voltage Uoc,mod in V, the capacity Emod in Wh, and the discharge and
charge resistances Rdis,mod and Rchar,mod in Ω, of the battery modules are calculated [61].
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The number of required modules nmod depends of the desired battery pack capacity Epack.
Subsequently, the open circuit voltage Uoc,pack and the discharge and charge resistances
Rdis,pack and Rchar,pack are modeled as follows:

nmod =
Epack

Emod
, (11)

Uoc,pack = Uoc,mod, (12)

Rdis,pack =
Rdis,mod

nmod
, (13)

Rchar,pack =
Rchar,mod

nmod
. (14)
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2.6. Degree of Hybridization

The DOH is defined as

DOH =
PEM,max

PEM,max + PICE,max
, (15)

where PEM,max is the maximal power output of the electric machine and PICE,max is the
maximal power output of the internal combustion engine. Thus, a DOH of 0% corresponds
to a conventional vehicle with an ICE as the only propulsion system. On the other hand, a
DOH of 100% corresponds to a fully electric vehicle. For each DOH a unique combination
of PEM,max and PICE,max exists. Since the power-to-mass ratios of the two propulsion
technologies differ, the mass of the vehicle varies in accordance with the DOH. However,
the total system power Ptot is not defined by the DOH. To acquire comparable results, Ptot
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is set for each DOH such that the time to accelerate the vehicle from standstill to 100 km/h
is constant at 8 s. The acceleration performance t0−100km/h is a function of Ptot and mveh.
However, mveh itself is a function of Ptot. Thus, the equation

t0−100km/h = f (Ptot, mveh) = f (Ptot, f (Ptot)) (16)

is solved iteratively.
In Figure 7, the upper plot shows the progression of the maximal propulsion power

and of the battery capacity while the lower plots show the progression of the vehicle mass
as a function of the DOH. The feasible upper limit of the DOH is found to be 85%. A
DOH of 90% results in an ICE with a maximal power output of approximately 10 kW.
However, the average power demand of the WLTC for the given vehicle is approximately
11 kW. Thus, a DOH greater than 85% leads to an under-dimensioned ICE that is not able
to drive the WLTC in the charge-sustaining mode, which renders the results unsuitable
for comparisons.
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an increasing DOH due to the mass savings resulting from a smaller NA engine. Thus,
the minimal mass of a vehicle with an NA engine is 1576 kg which is found at a DOH of275

85%, that is the upper limit of these investigations. Without regard to the engine type,
the upper plots indicate a monotonic decrease of the maximal vehicle power required
for the desired performance from a standstill to 100 km/h. This is explained by the fact
that the acceleration performance is not only dependent on the vehicle mass attained,
but also on the torque available. Since an EM allows outputting its maximal torque280

basically from a standstill, the acceleration performance of the vehicle improves with
the increase of the DOH, that is with the increase of the torque available from the EM,
despite reduced maximal power.
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Figure 7. Effects of the degree of hybridization on the maximal power and the mass distribution of the vehicle and its
components. The plots on the left-hand side show the results from vehicles equipped with a turbocharged ICE, while the
plots on the right-hand side show the results from vehicles with naturally aspirated ICEs.

The plots on the left-hand side show the results of vehicles with a TC engine. In
addition, the plots on the right-hand side show the results of vehicles with an NA engine.
These results are independent of the valve train system, whether that is a camshaft or
an FVVT system. The lower plots show that in both cases the base mass mbase and the
gearbox mass mGB remain constant with values of 1350 kg and 75 kg, respectively. The
mass of a vehicle with a TC engine and a DOH of 0% is 1575 kg, which decreases as the
DOH increases. At a DOH of 40%, a minimal vehicle mass of 1566 kg is calculated. An
increase of the DOH above 40% induces an increase in the vehicle mass. The power-to-mass
ratio is significantly better for EMs than for ICEs. Thus, electrification of the propulsion
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system leads to a decrease in total mass. However, to maintain a constant c-rate, the
battery must be scaled in accordance with the EM. Above a DOH of 40%, the mass of
the battery compensates the mass advantages due to the EM and leads to an increase
of the total vehicle mass. In contrast, the power-to-mass ratio of an NA engine is lower
than that of a TC engine, which leads to an overall higher vehicle mass. An ICEV with
an NA engine has a mass of 1614 kg, which is approximately 2% more than the ICEV
with a TC engine. Furthermore, despite a larger battery, the total mass decreases at an
increasing DOH due to the mass savings resulting from a smaller NA engine. Thus, the
minimal mass of a vehicle with an NA engine is 1576 kg which is found at a DOH of 85%,
which is the upper limit of these investigations. Without regard to the engine type, the
upper plots indicate a monotonic decrease of the maximal vehicle power required for the
desired performance from a standstill to 100 km/h. This is explained by the fact that the
acceleration performance is not only dependent on the vehicle mass attained, but also on
the torque available. Since an EM allows outputting its maximal torque basically from
a standstill, the acceleration performance of the vehicle improves with the increase of
the DOH, that is with the increase of the torque available from the EM, despite reduced
maximal power.

3. Influence of the Degree of Hybridization on the Fuel Consumption

In this section, the DOH is varied for the HEV concepts introduced in Figure 1.
To obtain comparable results of various degrees of hybridization, all vehicles must be
operated in the charge-sustaining mode. This means that the SOC of the battery at the end
of the test cycle must be identical to the one at the beginning. Thus, it is irrelevant if the
concept analyzed is an HEV without external charging possibility or a PHEV with external
charging possibility. The operating strategy for each vehicle configuration is obtained with
DP and therefore is globally optimal. However, the optimal solution is not necessarily
implementable due to, for instance, abrupt changes in the choice of the power split, i.e., the
power demand of the ICE and the EM. The development of an operating strategy that is
feasible for implementation in the real world is subject to further investigations.

3.1. HEV with a Gearbox

This section analyzes the influence of the DOH on the fuel consumption for the HEV
concept (b) depicted in Figure 1.

The upper plot in Figure 8 shows the relative fuel consumption over the DOH of all
the engine concepts investigated. Here, all results are relative to the fuel consumption value
of 100% of the vehicle with a camshaft-equipped TC engine at a DOH of 0%. Compared
to the reference vehicle, the fuel consumption of an HEV with a DOH of 10% and a
camshaft-equipped TC engine is reduced by approximately 22%. Most of the fuel-saving
potential is exploited at a DOH of 25%, where a reduction of approximately 28% is achieved.
The fuel-optimal HEV configuration is found at a DOH of 45% with a fuel consumption
reduction of 29.2%. HEVs with an NA engine follow a similar tendency. However, at the
same degree of hybridization, the fuel consumption of NA engines, on average, decreases
by more than 2% further than it does for TC engines. A small degree of hybridization
allows the operating points to be shifted towards peak efficiency, which for the modeled
NA engine is approximately 2% higher than for the TC engine. Hence, an HEV with a
camshaft-equipped NA engine at its fuel-optimal DOH of 45% reaches a fuel consumption
reduction of approximately 31.9%. As stated above, in the case of NA engine-equipped
HEVs the fuel-saving potential is exploited at a DOH of 25% with an achieved reduction of
the fuel consumption of approximately 30%. Furthermore, for both TC and NA engines,
an FVVT reduces the fuel consumption over the complete DOH range investigated. For
greater detail, the lower plot shows the improvement in fuel consumption due to the FVVT
over the DOH in %. These results are relative to their corresponding engine type, TC and
NA, respectively. An FVVT reduces the fuel consumption by 4% to 9% for the ICEV at a
DOH of 0%, which agrees with the results published in [62]. However, the benefit of an
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FVVT vanishes rapidly as the DOH increases. At a DOH of 10%, the reduction of the fuel
consumption due to the FVVT reaches 3.6% at the most. For FVVT-equipped engines, the
optimal HEV configuration is slightly shifted to a DOH of 50% for HEVs with a TC engine
as well as for HEVs with an NA engine. At the fuel-optimal DOH, the FVVT improves the
fuel consumption for HEVs with NA engines by 1.7% and for HEVs with TC engines by
0.5%. Since an FVVT affects the whole engine map of an NA engine, its positive effect is
greater for NA engines than for TC engines.
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Figure 9 shows the operating points of a camshaft-equipped NA ICE on the WLTC for
degrees of hybridization of 0%, 15%, and 45%. The top row shows the engine efficiency
maps with the engine speed on the x axis and the mean effective pressure on the y axis.
The patches colored visualize the distribution of the duration for which the ICE is running
at a certain operating point. The grid of the patches has a resolution of 200 rpm and
0.5 bar and a patch is only displayed if it contains more than 3 s of operating duration.
All operating points below 1000 rpm, i.e., below the minimal speed, are operated with
an open clutch. Thus, the fuel flow of these points is computed in Equation (6) with
ωe = ωe,min = 1000 rpm. The middle row shows histograms of the duration of the ICE
operated at a certain brake efficiency range. The y axis shows the time in seconds, while
on the x axis the brake efficiency of the ICE is arranged in eight bins with a width of five
percentage points each. The bottom row shows histograms of the duration of specific
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operation modes. With Te as ICE torque and Tm as EM torque, the following possible
operation modes are defined:

• Boosting, with Te > 0 and Tm > 0,
• EM only, with Te = 0 and Tm > 0,
• ICE only, with Te > 0 and Tm = 0,
• OPS, with Te > 0 and Tm < 0,
• Recuperating, with Te = 0 and Tm < 0.
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3.2. HEV with a Fixed Transmission370

In this section, an HEV with a fixed transmission (FTHEV), i.e. the HEV concept c)
shown in Figure 1, is compared to a conventional HEV as in Section 3.1. The idea behind
the FTHEV concept is to offer a simpler vehicle setup to reduce mass and cost which still
is able to attain a fuel economy that is similar to that of a conventional HEV.

The top plot of Figure 10 shows the relative fuel consumption over the DOH of375

HEVs with a varying range of available gears and a camshaft-equipped TC ICE. All
points are referenced to the fuel consumption of the camshaft-equipped TC ICEV, i.e.

Figure 9. Visualization of the camshaft-equipped NA ICE operation for HEVs with a DOH of 0%, 15%, and 45%, respectively.
The top row shows the engine maps with time distribution of the operation points. The middle and bottom rows show
histograms with the time spent at a specific brake efficiency range and operating mode, respectively.
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In the column on the left-hand side, the results of an ICEV are visualized. In this
case, all points of the WLTC are operated with the ICE and, thus, all points appear on the
efficiency map of the engine. The points close to an engine speed of 0 rpm originate from
the acceleration from standstill and cannot be omitted. The ICE runs at a wide range of
brake efficiency, but most often around 30% to 35% due to the rather high power demand
of the WLTC.

The middle column shows that already with a DOH of 15% all operating points below
the minimal speed are omitted, i.e., all operating points which in an ICEV would require an
open clutch are now driven electrically. Furthermore, the ICE runs almost entirely around a
brake efficiency of 35% to 40%. The electric energy used by the EM is replenished either by
recuperating energy from the negative acceleration or by the ICE through an OPS strategy.
An OPS strategy brings only an advantage if the ICE is oversized in comparison to the
average power demand of a given driving cycle as is the case for an HEV with a DOH of 15%.

The column on the right shows the results of an HEV with a DOH of 45%. The engine
operates almost entirely at its best brake efficiency since its size at a DOH of 45% is well
suited for the power demand of the WLTC. The OPS strategy has a very low relevance
in this case, since a significant part of the driving cycle is driven already at a high brake
efficiency. In contrast, an OPS strategy would increase the load on the engine further, which
would lead to a decrease in efficiency. Thus, an OPS strategy is not applied at a sufficiently
high DOH, i.e., at an engine size well suited to the WLTC. The part of the driving cycle
with the low-load operating points is driven purely electric with the energy gained almost
entirely from recuperation.

3.2. HEV with a Fixed Transmission

In this section, an HEV with a fixed transmission (FTHEV), i.e., the HEV concept (c)
shown in Figure 1, is compared to a conventional HEV as in Section 3.1. The idea behind
the FTHEV concept is to offer a simpler vehicle setup to reduce mass and cost which still is
able to attain a fuel economy that is similar to that of a conventional HEV.

The top plot of Figure 10 shows the relative fuel consumption over the DOH of HEVs
with a varying range of available gears and a camshaft-equipped TC ICE. All points are
referenced to the fuel consumption of the camshaft-equipped TC ICEV, i.e., a DOH of 0%,
with the gears one to seven available. The black line represents the conventional HEVs at a
varying DOH with all gears available, as shown in Figure 8. The colored lines represent
HEVs, where the available gear ratios are consecutively reduced. In each step, the highest
gear ratio is removed, i.e., the smallest gear. To obtain results comparable to the HEV with
all gears available, the initially set acceleration performance cannot be guaranteed for the
HEVs with a reduced number of gears since this would lead to a change in the sizing of the
ICE and the EM.

The results show that by removing the first two gear ratios the fuel consumption
increases by 1.6% on average. Removing the third gear requires a DOH of at least 5% and
increases the fuel consumption by 2.6% on average. Removing the fourth gear leads to
a fuel consumption increase of 5.2% and further decreases the possible range of DOH.
Compared to an HEV with all gears available, removing the fifth gear, thus leaving only
the two smallest gear ratios, yields an average increase of 12.3% and a DOH required of at
least 40%. A simulation with the highest gear only is not feasible. The adaptation of the
DOH range is required to enable driving the WLTC in the charge-sustaining mode since
the ICE cannot provide enough torque to the wheels if the high gear ratios are removed.
Thus, a sufficiently powerful EM, i.e., a certain DOH, is required in order to provide the
torque necessary to drive the WLTC. On the other hand, if too many gears are removed, the
maximally possible DOH is reduced, as visible in the last three reduction steps, since the
ICE cannot be operated such that the conditions on the final SOC are met. The increase in
fuel consumption due to the gear removal is an additional check of the feasibility of the DP
algorithm. By reducing the input variables to the DP, that is the number of gears available,
the new solution must be suboptimal to the solution with a wider input range.
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a DOH of 0%, with the gears one to seven available. The black line represents the
conventional HEVs at a varying DOH with all gears available, as shown in Figure 8. The
colored lines represent HEVs, where the available gear ratios are consecutively reduced.380

In each step, the highest gear ratio is removed, i.e. the smallest gear. To obtain results
comparable to the HEV with all gears available, the initially set acceleration performance
cannot be guaranteed for the HEVs with a reduced number of gears since this would
lead to a change in the sizing of the ICE and the EM. The results show that by removing
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the first two gear ratios the fuel consumption increases by 1.6% on average. Removing385

the third gear requires a DOH of at least 5% and increases the fuel consumption by 2.6%
on average. Removing the fourth gear leads to a fuel consumption increase of 5.2%
and further decreases the possible range of DOH. Compared to an HEV with all gears
available, removing the fifth gear, thus leaving only the two smallest gear ratios, yields
an average increase of 12.3% and a DOH required of at least 40%. A simulation with the390

highest gear only is not feasible. The adaptation of the DOH range is required to enable
driving the WLTC in the charge-sustaining mode since the ICE cannot provide enough
torque to the wheels if the high gear ratios are removed. Thus, a sufficiently powerful
EM, i.e. a certain DOH, is required in order to provide the torque necessary to drive the
WLTC. On the other hand, if too many gears are removed, the maximally possible DOH395

is reduced, as visible in the last three reduction steps, since the ICE cannot be operated
such that the conditions on the final SOC are met. The increase in fuel consumption

Figure 10. Results of varying the DOH for HEVs and FTHEVs, all with the camshaft-equipped TC
engine. The top plot shows the relative fuel consumption of HEVs with varying availability of the
gears. As a reference (=100%) the fuel consumption of the ICEV, i.e., at a DOH of 0%, with all gears
available is taken. The bottom plot shows results for FTHEVs with varying fixed gear ratios, with the
fuel consumption relative to the HEV with all gears available at an optimal DOH of 45%.

The bottom plot shows the fuel consumption of HEVs with a fixed transmission
equivalent to the fifth, the sixth, and the seventh gear, respectively. Choosing a lower gear
does not yield any feasible results since the maximal engine speed is exceeded due to the
rather high peak velocities in the WLTC. Again, the results in this plot are relative to the
fuel consumption of the camshaft-equipped TC ICEV, i.e., a DOH of 0%, with the gears one
to seven available. In contrast to the upper plot, the acceleration performance is achieved
with all vehicles, with each transmission ratio and at each DOH. The FTHEV in the fifth
gear achieves its optimal fuel economy at a DOH of 65%, which diverges only by 3.6%
from the fuel consumption of the reference HEV at the optimal DOH. In the sixth gear, the
optimum of the FTHEV is found at a DOH of 65% as well and shows an increase in fuel
consumption of 5.4% compared to the reference HEV at the optimal DOH. In the seventh
gear, the optimum of the FTHEV is found at a DOH of 60% and the fuel consumption
increases by 11.7% compared to the reference HEV at the optimal DOH. The increase in
fuel consumption towards a DOH of 0% for all transmission ratios analyzed stems from the
significant increase of the required total propulsion power in order to achieve the desired
acceleration performance with a fixed transmission ratio. The mass of an FTHEV in the
fifth gear and at the optimal DOH is reduced by 1.7%, which is mainly due to the removal
of the gearbox. However, to ensure the acceleration performance an increase in the total
propulsion power by 27% is required, which partially compensates for the advantages due
to the lighter transmission.
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3.3. Summary of the Results

The results show that a significant reduction in fuel consumption is achieved already
with a DOH of 25%, which is in accordance with other research [63–65]. For a vehicle with
any engine type, i.e., with a TC or an NA engine, equipped with a camshaft or with an
FVVT, the DOH for a theoretical fuel-optimal vehicle configuration lies between 45% and
50%. For very low degrees of hybridization, the implementation of an FVVT allows fuel
savings of up to 9%. However, at degrees of hybridization higher than 30% the advantage
of an FVVT decreases to less than 2%. Furthermore, the fuel consumption diverges by less
than 2% from the optimum if the highest two gear ratios are removed from the gearbox in
the conventional HEV. Additionally, with a sufficiently high DOH, the transmission of an
HEV can be simplified to one fixed gear ratio, which leads to a fuel consumption that is
close to that achieved with the conventional HEV.

4. Conclusions

In this paper, we investigated the influence of state-of-the-art naturally aspirated and
turbocharged internal combustion engines on the degree of hybridization. Furthermore,
both engine concepts are evaluated with a conventional camshaft-driven valve train system
and a fully variable valve train system. All internal combustion engine models are based
on data obtained from measurements on engine test benches. The advantage of the
FVVT is its increased efficiency in part-load operating points due to decreased pumping
losses and improved combustion concepts such as the x-stroke operation and the cylinder
deactivation mode. However, it is not a priori clear to what extent an improvement in
part-load efficiency represents an advantage to hybrid electric vehicles. Thus, four different
internal combustion engine types are evaluated with two hybrid electric vehicle concepts,
one with a conventional gearbox and one with a fixed transmission ratio. They are then
compared to non-hybrid vehicles with regard to fuel consumption.

The highlights of this study can be summarized as follows:

• The core components of a hybrid electric powertrain system, such as the internal
combustion engine, the electric machine, and the battery, are modeled in high detail
with regard to the tank-to-wheel efficiency of the vehicle.

• The models of the internal combustion engines are based on data obtained from
measurements on engine test benches. The brake efficiency improvement by up to
40% by dethrottling and an x-stroke operation has been verified by an internally
developed fully variable valve train that was published in [45].

• The acceleration performance is determined by the mass of the vehicle and the avail-
able torque of the propulsion system. For the same acceleration performance, an
increase of the degree of hybridization from 0% to 50% results in a decrease of the
total system power of 13.8% for an HEV with a turbocharged ICE and of 29.2% for an
HEV with a naturally aspirated ICE.

• Compared to non-hybrid vehicles, the optimal fuel consumption for camshaft-equipped
engines is achieved at a degree of hybridization of 45% with a reduction of 29.2% for
HEVs with turbocharged engines and a reduction of 31.9% for HEVs with naturally as-
pirated engines. However, the majority of the potential fuel-saving is already achieved
with a DOH of 25% with reductions of 28% and 30% for HEVs with turbocharged and
naturally aspirated engines, respectively.

• By equipping any of the engines investigated with an FVVT the fuel consumption of
a non-hybrid vehicle improves by 4% to 9%. However, by increasing the degree of
hybridization to 10% the savings amount only to 3% to 4% and decrease further to 1%
to 2% for a DOH range of 30% to 60%, depending on the engine type.

• With an increasing degree of hybridization, the internal combustion engine becomes
smaller while the electric machine increases in size. At a DOH of 45%, any shifting
of the operating point becomes obsolete since the ICE is well suited for the power
demand of the chosen driving cycle.
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• At a high DOH, the gearbox becomes obsolete due to the high torque available from
the electric machine. Thus, an HEV can be realized with a fixed transmission ratio,
which reduces the total mass, improves the mechanical transmission efficiency, and
achieves almost the identical fuel consumption as an HEV with all gears available.

In this paper, the potential of various spark-ignited internal combustion engine con-
cepts, such as naturally aspirated, turbocharged, and with or without a fully variable valve
train, is quantified for their application to hybrid electric vehicles. The results show that
independently of the applied engine concept, hybridization significantly decreases the fuel
consumption of the vehicle. Furthermore, at a sufficiently high degree of hybridization,
the gearbox can be omitted since the electric machine supplies enough torque at a low
rotational speed to allow any dynamic acceleration desired.

Further investigations are required to find a suitable transmission ratio between the
internal combustion engine, the electric machine, and the wheels while ensuring that all
propulsion components are within reasonable manufacturing ranges. The battery sizing
also requires investigations without regard to the size of the electric machine since a vehicle
with a small degree of hybridization, but with a high battery capacity might present an
advantage to consumers with a certain ratio of urban to extra-urban driving range. Last
not but not least, economic aspects must be included since the sizing of components
such as power electronics and batteries is more cost-sensitive than the potential optimal
fuel consumption.
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