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Abstract: With increased usage, individual batteries within the battery pack will begin to show
disparate voltage and State of Charge (SOC) profiles, which will impact the time at which batteries
become balanced. Commercial battery management systems (BMSs), used in electric vehicles (EVs)
and microgrids, typically send out signals suggesting removal of individual batteries or entire packs
to prevent thermal runaway scenarios. To reuse these batteries, this paper presents an analysis
of an off-the-shelf Orion BMS with a constrained cycling approach to assess the voltage and SOC
balancing and thermal performances of such near-to-second life batteries. A scaled-down pack of
series-connected batteries in 6s1p and 6s2p topologies are cycled through a combination of US06
drive and constant charge (CC) profiles using an OPAL-RT real-time Hardware-in-the-loop (HIL)
simulator. These results are compared with those obtained from the Matlab/Simulink model to
present the error incurred in the simulation environment. Results suggest that the close-to-second
life batteries can be reused if operated in a constrained manner and that a scaled-up battery pack
topology reduces incurred error.

Keywords: orion battery management system; OPAL-RT; HIL simulation; battery modeling; charge
equalization; lithium-ion battery

1. Introduction

Lithium-ion (Li-ion) batteries are widely used in EV and microgrid applications;
however, they are susceptible to electrical instabilities brought on by slight chemical
variations between individual batteries [1–4]. These variations can cause significant voltage
imbalances between series-connected batteries, leading to increased individual battery
degradation and premature replacement or failure [5]. A cost-effective way of managing
these instabilities is by deploying a passive balancing BMS capable of dissipating excess
charge through resistive components. Active balancing is another way mismatches in
individual battery charge capacities can be dealt with; however, it introduces a large
number of additional components, increasing control complexity and reducing system
reliability. Thus, it is often less practical for many battery energy storage applications.
Additionally, multiple newly-developed battery chemistries such as Li-sulfur [6], and their
variants discussed in [7,8], are being researched for incorporation with BMSs to assess
prognostic properties of their parameters in conjunction with variation management [9].

Batteries that have experienced capacity degradation through extensive cycling,
termed as close-to-second life batteries, can be re-purposed and have recently gained
higher interest as industries and consumers continue to look for more sustainable alterna-
tives for their energy needs [10,11]. Near-to second life batteries must go through a close
inspection and assessment of their performance capability before determining possible
second life implementation. They also require more strict monitoring and protection as
chemical instabilities in these batteries are amplified compared to first-life batteries. It
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is common for second-life batteries to be implemented for grid service applications after
being used in EVs for the duration of their first life [12]. However, it is also possible to
reuse them in EV applications which may also reduce costs for consumers [13].

The key contributions of this paper are that it:

1. Provides a detailed component-wise comparison of the existing battery models,
2. Provides details on the configuration and operation of a Control-HIL (CHIL) testbed

for a commercial BMS,
3. Presents a comparison of simulation-based and commercial BMS results to assess

the resulting error introduced by operating close-to-second life batteries in a US06
drive profile,

4. Presents additional insights into the operation of the commercially available Orion
BMS for system integrators and recommendations for enhancing the future SOC
estimation for decreased battery degradation,

5. Provides a comparison of existing literature works that utilize the same commercial
passive balancing BMS while adding new supplemental information.

2. Related Work

Second-life batteries have become a popular idea for increasing the sustainability of
new lithium battery-based technologies, and thus, numerous reviews are available for
the research community. For example, Martinez-Laserna et al. [13] provides information
for second-life batteries from an economic, technical, and environmental perspective and
as well as provides a market value range of 44 to 180 USD/kWh for varying second-life
batteries. This review concludes that these prices make second-life alternatives more viable;
however, it asserts that continued research and development is needed in terms of battery
aging towards knowing how realizable second-life applications are. Towards this, Hossain
et al. [14] provides relevant data on power and capacity fade as a function of life cycles.
This review also discusses the practical uses, eligibility, and manufacturing of second-life
batteries while asserting that extension of first-life batteries for second-life use will have
significant environmental impacts and is therefore necessary. A battery tracking system,
posited by Zhao et al. [15], may help in this effort for increased standardization of the
process towards identifying near-to-second life batteries for their best possible usage, either
in a second life application or for recycling to be used in the new battery manufacturing
process. This review also provides further details on the challenges and opportunities of
the reuse and recycling of varying second-life batteries.

Towards battery management, Daowd et al. [16] and P. Deja [17] provide a review of
the functionalities, advantages, and disadvantages of various active and passive balancing
techniques employed by BMSs. One such example of an active balancing control of series-
connected second-life batteries for dealing with capacity mismatches is implemented
in [18]. However, it is suggested that active balancing approaches require a higher number
of electronic components, thereby increasing the financial constraints of the design. Hence,
passive balancing techniques are commonly implemented using commercial off-the-shelf
passive BMSs which support grid storage applications [19], mainly towards achieving
network stability. Towards this, Lacap et al. [20] deploys an Orion BMS for monitoring
and management of second-life batteries for use in a real-world photovoltaic (PV) and grid
storage time-shifting application. Numerous works have also implemented these techniques
for EV applications. For instance, Rezal et al. [21] expressed the ability to cycle batteries
using constant current constant voltage (CCCV) charging and to discharge with a defined
cut-off voltage. In addition, Braco et al. in [22], performs substantial second life charge-
discharge cycling to analyze capacity and internal resistance towards the aging performance
of second-life batteries. Similarly, Yusof et al. [23] cycles batteries with CCCV charging but
instead uses drive profiles for the discharge portion of the cycle. With respect to using real-
time simulators to emulate such scenarios, Kollmer et al. [24] discuss the implementation of
OPAL-RT real-time HIL simulators to create a testbed meant for evaluation of cyberattacks
in a microgrid. Another example of a testbed for simulation of a PV and Wind energy-based
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second life grid storage application geared towards EV charging is demonstrated in [25].
Finally, Taylor et al. [19] also proposes an RTDS HIL testbed for simulating a battery pack
with the Orion BMS to assess the impact of battery energy storage on the power grid. All
these works consider a series-connected battery pack topology and none of the discussed
works analyze passive balancing operation on a CHIL testbed.

The rest of the paper is organized as follows. Section 3 describes the steps involved
in configuring a CHIL testbed with an Orion BMS. Section 4 describes the details of the
selected battery model parameters used in both the simulation and for the Orion BMS.
Section 5 presents and discusses the results obtained from both simulation and the Orion
BMS. Section 6 concludes the paper by providing a comparison of the incurred error,
balancing times, and distribution of the balancing data from both the simulation and
the Orion BMS. In addition, a comparison of the existing literature with the obtained
conclusions, along with the possible options for future work, are discussed.

3. BMS Testbed Configuration

To analyze the performance of battery pack topologies on the balancing operation,
an OPAL-RT bench equipped with a battery cell simulator, a temperature simulator, a pro-
grammable single-quadrant DC power supply (in a current control mode), and an OP5700
real-time simulator is used in conjunction with the Orion BMS to form a CHIL testbed.
This testbed allows charging and discharging operations by means of an automated re-
lay controlled by the Matlab/Simulink model, which switches the current flow from the
programmable DC power supply across the resistor in the event of a negative current
in the simulation. This in effect, is read as a charging/discharging current by the Orion
BMS’s DHAB S/125 open-loop hall effect current sensor, which is placed between the relay
and the resistor. The relay is operated using a DB-37 digital output port and a 12V DC
supply voltage from the real-time simulator. Communication between other simulation
peripherals is facilitated by two common communication protocols, TCP/IP and controller
area network (CAN). The CAN bus network interfaces using PCIe slots that are also located
on the real-time simulator. The Orion BMS is powered by a separate, additional power
supply providing a 16 V output. Orion connects with a battery cell simulator using six
voltage probes and six negative temperature coefficient thermistors to read individual
battery voltages and temperatures. The precision of temperature measurements obtained
from the Orion BMS has an integer step of 1 ◦C. The Orion BMS allows for the configuration
of a target ∆V, where ∆V is the allowable difference between maximum and minimum
voltages of individual batteries in a battery pack topology. The CHIL testbed used for
validation of the Orion BMS can be visualized in Figure 1 including an overview of the
communication pathways, feedback loops, supply currents/voltages, and measurement
locations for Orion BMS sensors.

Figure 1. An illustration of the CHIL testbed setup and operation (middle and right), with the battery model used (left).
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4. Battery Modeling Approach

Several Li-ion models for simulation, including the Rint/Simple model, SAFT RC
model, linear model, and Thevenin model derivatives, are available online, with the SAFT
RC model having the highest SOC estimation accuracy. Table 1 provides an extensive list
of existing battery models along with their dynamicity, which is described by the number
of variable functions within them. Variable functions provide information on the set of
variables for which the relationship would need to be developed, in addition to inputs,
for the model to be operational.

Table 1. List of Battery Models.

Models Components Input Variable
Functions

Battery
Types Supp-

orted

Simulation
Software

Used

Internal
Resis-
tances

Diodes Capacitances DC
Source

Rint/Simple Battery
Model [26–30] R0 - - Current OCV and

R0
- Lithium PLECS

Linear Model [31,32] Rc, Rd 2 - Voltage,
Current

Rc, Rd,
OCV, SOC,

IL
OCV(SOC) Lithium Advisor

NREL SAFT
2-Capacitance /SAFT RC

Model [26,33–35]

Ra, Re,
Rt

- Ca, Ce Current
Ra, R0, Re,
Rt, V[Ca],
V[Ce], IL

R0, Ra, Re(SOC),
OCV(SOC),

IL(t)
Lithium

Matlab,
Pspice,

Advisor

Thevenin Models and their Derivatives

Basic Thevenin
Model [26,36–43] R0, Rb1 - Ci1

Voltage,
Current

Ci1 , R0, IL,
V[Ci1 ],

OCV, SOC
IL(t)

Lithium,
Lead Acid,

Nickel-Metal
Hydride

Matlab,
Pspice

Dual
Polarization/Second

Order
Model [26,39,44,45]

R0, Rpa,
Rpc

- Cpa, Cpc
Voltage,
Current

R0, Rpa,
Rpc, Cpa,
Cpc, IL,
OCV

IL(t) Lithium PSCAD,
Matlab

First Order
Model/Modified

Thevenin
Model [27,46,47]

R0, Rb1 - Ci1
Voltage,
Current

Ci1 , R0, IL,
V[Ci1 ],

OCV, SOC
OCV(SOC), IL(t)

Lithium,
Lead Acid Advisor

Resistive
Thevenin/Modified

Simple Model/Modified
Thevenin Model (Pang

et al.) [27,28,31,39,48–50]

Rc, Rd 2 - Voltage,
Current

Rc, Rd,
OCV, IL

IL(t)
Lead Acid,

Lithium Advisor

Reactive Battery
Model/Modified

Thevenin Model (Pang
et al.) [27,28,48]

Rc, Rd,
R0

2 Ci1
Voltage,
Current

Rc, Rd,
V[Ci1 ],

OCV, IL

IL(t)
Lead Acid,

Lithium Advisor

mth Order Linear
Parameter

Varying/Electrical
Analogue

Model [39,51–54]

R0, Rb1 ,
. . . Rbm

- Ci1 , . . . Cim
Voltage,
Current

R0, Rb1 . . .
Rbm , Ci1
. . . Cim ,

OCV, SOC,
IL

OCV(SOC);
R0(SOC),

Rb1 (SOC), . . .
Rbm (SOC);

Ci1 (SOC), . . .
Cim (SOC); IL(t)

Lithium,
Lead Acid,

Nickel-Metal
Hydride

Matlab

A battery model, as a result, develops the relationship between internal parameters
and the external application of the battery to identify and simulate their dynamic working
characteristics. Internal parameters include, but are not limited to, open circuit voltage
(OCV) and internal/ohmic/electrolytic (R0), capacitor (Ra), end (Re), terminal (Rt), charg-
ing (Rc), discharging (Rd), concentration polarization (Rpc), activation/electrochemical
polarization (Rpa), and polarization/faradic/lumped interfacial reaction (Rbx ) resistances,
where x ∈ {Z+ranging from 1 to m} is the number of RC branch pairs. In addition, main
capacitance (Ce) representing the capability of the battery to store charge chemically, sec-
ondary capacitance (Ca) representing the limiting behavior of battery to deliver current
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depending on diffusion material and time constants (τ), concentration polarization (Cpc),
activation/electrochemical polarization (Cpa), and polarization/interfacial (Cix ) capaci-
tances where x ∈ {Z+ranging from 1 to m} is the number of RC branches constituting the
remaining internal battery parameters [55]. External application parameters include load
current (IL) varying with time (t), V[X], which indicates voltage applied across element
X, where X ∈ {Ca, Ce, Cix}, and the output is the battery open terminal voltage. These
models indicate the behavioral approximation of a real battery. Supported battery types
and simulation software(s) used are also presented to indicate the extent of scalability of
each model.

The m-RC model, also termed as the table based or dual polarization model in various
literatures, allows modeling of the dynamics of battery components by including all the
inputs and components of all the other models listed in Table 1. A simplified representation
of this model is shown in Figure 2. The m value is limited to 2 in order to allow simplified
modeling of the battery. With this limited m value, the required parameters/variables
are R0(SOC), Ra(SOC), Re(SOC), time constants τ1(SOC) (= CaRa) and τ2(SOC) (= CeRe),
OCV(SOC), and IL(t). The resulting open terminal voltage (OTV) varying with t across the
modeled battery is represented as shown in Equation (1).

OTV(t) = OCV − ILR0 − ILRae
-t
τ1 − ILRee

-t
τ2 , (1)

Figure 2. Simplified representation of 2-RC model equivalency.

Hybrid pulse power characterization and electrochemical impedance spectroscopy
test results from a 3.6 V nominal voltage, 2.75 Ah capacity NCR18650PF battery, found
in [56], are used to build this model based on the steps shown in [57]. This modeling
technique is similar to the Verband der Automobilindustrie current step-based method
for modeling the battery [58]. The beginning values of SOC in the modeled battery pack
range from [9.6%, 85.9%] to replicate close-to-second life batteries. The resulting modeled
battery pack contains battery stacks consisting of 6 series-connected batteries where the
minimum number of series connections for the operation of the Orion BMS is 4. For the
first simulation, a single stack (6s1p) is used, while for the second simulation, two battery
stacks are connected in an interleaved manner (for 6s2p topology) [59].

The capacity rating (dependent on battery temperature) of each battery is obtained
from the battery’s datasheet. Each series-connected battery is equipped with balancing
circuitry capable of mimicking the Orion BMS’s capabilities. The balancing current (for
both 6s1p and 6s2p topologies) is set to 200 mA as determined from the Orion BMS’s
operation manual. The OPAL-RT’s RT Lab software provides an interface to model using
Matlab/Simulink and control the real-time simulators using a TCP/IP protocol. Dur-
ing simulation, the Orion BMS returns balancing commands feedback to the battery pack
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model in order to emulate its individual battery balancing capability. Balancing operation
is realized by monitoring battery charging/discharging current and voltage parameters.
The difference in voltage between each individual battery (Vbn) and the lowest voltage
battery (Vbmin) is compared against the configured target ∆V. Here, n is the number of
series-connected batteries. If the difference is greater than target ∆V, the switch correspond-
ing to that battery’s number, Sn, will close, thereby completing the balancing circuit and
allowing for the dissipation of excess charge. After a balancing period defined by the Orion
BMS’s algorithm (approximately 100 s), switch Sn will reopen, and a monitoring check
delay (approximately 10 s) will be performed before determining again if batteries need to
continue to be balanced.

SOC = SOCtx +
∫ ty

tx {aIc+(a−1)Id}dt
Cp × 100%,

where, a =

{
0, while discharging
1, while charging

(2)

Towards SOC calculation, both the simulation and the Orion BMS implement a stan-
dard coulomb counting method by using charging/discharging current (Ic/Id) and capacity
(Cp), acquired from monitoring, to determine a SOC increase or decrease, as shown in
Equation (2). In Equation (2), SOCtx is the SOC measured at initial time instant tx and
ty = tx + ∆t is the elapsed time, where ∆t is the SOC measurement duration between in-
stances tx and ty. In addition to coulomb counting, the Orion BMS implements a secondary
SOC adjustment (correction) algorithm where the lowest (OCVmin) and highest (OCVmax)
individual battery OCVs are used to help determine actual SOC values of the battery pack
based on a configurable SOC vs. OCV plot. By selecting the NCR18650PF battery within
the Orion BMS’s utility, nominal capacity and SOC vs. OCV look-up table checkpoints
are set by default. Values for SOC vs. OCV for both the simulation and the Orion BMS’s
default settings are superimposed in Figure 3a, where checkpoint values for SOC adjust-
ment are also marked. The battery pack model topologies, circuitry, and individual battery
components can be visualized in Figure 1, whereas the operational flowchart for battery
balancing and SOC calculation for both the simulation and the Orion BMS can be seen in
Figure 3b.

(a) (b)

Figure 3. (a) SOC vs. OCV plot for simulation and Orion BMS, (b) Simulation and Orion BMS Operational Flowchart.
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5. Simulation and Orion BMS Results Discussion

Assessments have been conducted in order to analyze the second life battery balancing
capabilities of the Orion BMS and include subjection to a rigorous charge-drive cycle.
A US06 current profile, shown in Figure 4, where each {US(N + 1) − US(N)} portion with a
duration of approximately 10 min, has been selected for the drive portions of the sequence,
and a CC of 1.375 A and 0.6875 A (through each individual battery) is selected for the
charge portions of the sequence based on the datasheet, for 6s1p and 6s2p topologies
respectively. Battery sequencing is realized by alternating drive and charge portions
where drive time and charge time are incremented by one US06 iteration and 7.5 min,
respectively, until a cumulative maximum drive duration of 80 min and a cumulative
maximum charge duration of 60 min has been achieved. To properly sequence the 6s1p
topology, the US06(1) drive portion is omitted. For the 6s2p topology, the US06(1) drive
portion is placed at the end of the sequence in order to keep continuity, and an additional
alternating sequence is also used because of the increased capacity. Although the US06
current profile has a maximum charge (regenerative) and discharge currents of 7.57 A and
−20.82 A, respectively, the drive current is limited to ±1.5 A within the simulation model.
This limit is obtained from the datasheet of the programmable DC power supply. A ∆V
target of 50 mV is set in the Orion BMS utility as the voltage threshold at which balancing
is triggered for any individual battery outside of this limit in comparison to the lowest
series-connected individual battery voltage. A breakdown of the battery pack topologies,
charge-drive sequences, ∆V targets, and current limits being used during each test can be
found in Table 2.

Figure 4. CompleteUS06 current profile containing iterations, obtained from [56] out of which a
±1.5 A region is used in the sequence.

Table 2. Implemented battery pack topologies and and their corresponding specifications.

Simulation
Number Topology Sequence Target ∆V CC US06 Current

Range

1 6s1p
CC(7.5)-US(2)-CC(15)-US(3)-CC(22.5)-US(4)-
CC(30)-US(5)-CC(37.5)-US(6)-CC(45)-US(7)-
CC(52.5)-US(8)-CC(60)

50 mV C/2 ±1.5 A

2 6s2p
CC(7.5)-US(2)-CC(15)-US(3)-CC(22.5)-US(4)-
CC(30)-US(5)-CC(37.5)-US(6)-CC(45)-US(7)-
CC(52.5)-US(8)-CC(60)-US(1) [Repeat Twice]

50 mV C/4 ±1.5 A

Labels: CC(t), where t = charge time in minutes; US(N), where N = Number of US06 iterations; C/α = 2.75 Ah/α C-rate, where α ∈ {2,4}.

The alternating charge-drive sequence used for both battery pack topologies can be
visualized in Figure 5a and is subsequently shown in its entirety in Figure 5a–f. Individual
battery voltages of the first topology, for both the simulation and the Orion BMS, can be
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seen converging in Figure 5a,b respectively. Similarly, individual battery voltages of the
second topology, for both the simulation and the Orion BMS, are shown in Figure 5c,d,
respectively. Balancing time for the 6s1p topology is shown in Figure 5a,b,e, as a dotted
line at 36,830 s. Similarly for the 6s2p topology, a balancing time of 74,220 s is shown in
Figure 5c–e. Total battery pack SOC from both the simulation and the Orion BMS for both
6s1p and 6s2p topologies can be seen together in Figure 5e. Maximum measured battery
pack temperatures from both the simulation and the Orion BMS for both topologies can be
seen in Figure 5f. Temperatures for the 6s2p topology are considerably lower considering
that the current flow through each individual battery is half (0.6875 A) compared to the
6s1p topology (1.375 A). It should also be noted that maximum temperatures stabilized
with a decrease in SOC imbalances, for both topologies.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Plots for: Voltage equalization during (a) Simulation, and (b) Orion BMS operation, both for the 6s1p topology,
(c) Simulation, and (d) Orion BMS operation, both for the 6s2p topology, (e) SOC% values and (f) Temperature values for
both 6s1p and 6s2p topologies.

As shown in Figure 6 for both topologies, the interquartile range decreases in compari-
son with simulation, meaning that data from the Orion BMS is less dispersed. While Orion
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BMS’s voltage distribution presents close to a normal distribution, its SOC distribution
shows right skewness resulting from the SOC frequently reaching the maximum value as
evident in Figure 5e. In addition, a significant reduction in the density and quantity of
outliers from 6s1p to 6s2p suggest that the unusual or error introducing data points reduce
as the topology gets scaled up.

Figure 6. Box plots of simulation BMS and Orion BMS results for 6s1p and 6s2p topologies.

The voltage and SOC for the simulation and the Orion BMS (for each battery topology)
are evaluated at four evenly spaced timestamps (t0−3 for 6s1p and t4−7 for 6s2p) where t3
and t7 are balancing times of 6s1p and 6s2p topologies, respectively. ∆V, balancing time,
and SOC differences (∆SOC) between the simulation and the Orion BMS are evaluated
at each timestamp and are tabulated in Table 3a–c, respectively. In Table 3a,b, ∆V for
both topologies decreases to below 50 mV, with 6s1p having a higher overshoot of voltage
balancing at the balanced stage. In Table 3c, ∆SOC between the simulation and the Orion
BMS for both battery topologies is calculated for all timestamps and shows significant
differences in SOC calculation. At the end of the balancing period for both 6s1p and
6s2p, ∆SOC reduces significantly; however, they still present a difference of 6.16% and
8.06%, respectively. Additionally, although the ∆V values for both topologies suggest that
the Orion BMS closely follows the simulation ∆V and subsequently the balancing times,
the ∆SOC between the two presents a significant difference in values for both topologies.

Throughout both 6s1p and 6s2p cycling, it can be seen that for the Orion BMS, SOC
values often reach 100% due to maximum individual battery voltage reaching 4.2 V, which
is considered ‘fully charged’ within the Orion BMS’s utility. Minimum individual battery
voltages also affect the SOC calculations when the SOC correction algorithms SOC vs. OCV
checkpoints are reached. Due to the large differences in individual battery voltages within
the modeled battery pack, a back and forth swing in SOC (in Orion BMS) from t = 0 to t0
can be seen in Figure 5e. Another observation that can be seen in Figure 5e is the SOC dip
experienced by the simulation (for both topologies) within the first sequence resulting in
mismatched pack SOC minimums between the simulation and the Orion BMS. This can
be attributed to the simulation taking into account the loss of individual battery charge
due to each battery’s dissipative balancing current, whereas for the Orion BMS, since these
currents do not pass through the current hall sensor, they are not registered as a loss in
SOC when using the coulomb counting method. Furthermore, the mean squared error
(MSE) between the results obtained from simulation and Orion BMS is calculated using
Equation (3), where YSimulated ∈ simulated BMS’s pack SOC or pack voltage, and YOrion ∈
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Orion BMS’s pack SOC or pack voltage, for both topologies. The number of data points, k,
used for this calculation are 36,830 and 74,220 for 1s1p and 1s2p topologies respectively.

MSE% =
100%

k

k

∑
j=1

(YSimulated(j)−YOrion(j))2 (3)

The results show that the MSE drops from 6.42% to 6.24% for voltage and from 13.7%
to 10.09% for SOC when the topology is scaled-up from 6s1p to 6s2p.

Table 3. ∆ values corresponding to time stamps t0, t1, t2, t3, t4, t5, t6, and t7 for.

(a) 6s1p Topology

Time (in seconds)
t0 t1 t2 t3

9207 18,410 27,620 36,830

Simulation ∆V 0.451 0.314 0.204 0.036

Orion BMS ∆V 0.561 0.418 0.317 0.042

(b) 6s2p interleaved topology

Time (in seconds)
t4 t5 t6 t7

18,550 37,110 55,660 74,220

Simulation ∆V 0.514 0.387 0.207 0.048

Orion BMS ∆V 0.584 0.502 0.317 0.049

(c) Simulation versus Orion BMS for both topologies

Time (in
seconds)

t0 t1 t2 t3

9207 18,410 27,620 36,830

∆SOC6s1p 29.05% 44.26% 32.44% 6.16%

Time (in seconds)
t4 t5 t6 t7

18,550 37,110 55,660 74,220

∆SOC6s2p 38.65% 35.06% 27.53% 8.06%

6. Conclusions

Towards the emerging field of second-life batteries, this paper presents an experiment
aimed at comparing the operational differences of a commercial passive balancing Orion
BMS for two different battery pack topologies consisting of second-life batteries. An OPAL-
RT real-time HIL testbed is used to feed the BMS’s sensors voltage, current, and temperature
values from a Matlab/Simulink model, and the results from the simulation and the Orion
BMS are compared. The recommendations based on the suggested outcomes for operating
near-to-second life batteries using a passive BMS can be enumerated as follows:

(1) The disparity in SOC vs. OCV checkpoints, seen in Figure 3a, introduces SOC
identification error. Thus, the default SOC adjustment algorithm’s checkpoint values in
commercial BMSs must be analyzed and updated for every battery chemistry based on
their applicable SOC-OCV test results, while also taking into consideration applicable
battery models seen in Table 1, for every battery chemistry.

(2) As the simulated BMS voltages present a gradual increase up to the upper voltage
threshold of 4.2 V (as seen in Figure 5b,d), the constrained operation thus keeps the battery
within safe operation thresholds. Hence, Orion BMS would benefit from constrained
cycling approaches depending on the state of individual battery parameters.
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(3) SOC minimums and maximums in the Orion BMS frequently reach extremes,
as seen in Figure 5e, and may signal early battery replacement. In addition, these extremes
also appear to be influenced by balancing currents because of the visible dips in the first
sequence. These dips could affect mid-range SOC calculations, which, as a result, might
not trigger SOC adjustment algorithms. Hence, this further strengthens the requirement of
operating commercial BMSs in a constrained cycling manner.

(4) As the Orion BMS only measures temperatures in increments of 1 ◦C, the results
in Figure 5f do not present the complete temperature dynamics as opposed to the simu-
lation BMS. Hence, increasing temperature measurement precision as well as taking into
account the change in capacity resulting from thermal variations could improve the SOC
calculations of the Orion BMS.

(5) The interleaved battery topology (6s2p) significantly decreased overshooting volt-
ages at timestamps t3 and t7, seen in Figure 5e and Table 3a. This suggests that lower target
∆V values can be implemented for scaled-up battery topologies. In addition, a scaled-up
battery topology with higher capacity series components reduces the incurred error, as evi-
dent from the MSE reduction of 0.18% in the case of voltage and 3.61% in the case of SOC.
A similar pattern can also be seen with the diminishing outliers evident in Figure 6.

Table 4 provides a comparison of literature works that use the commercially available
Orion BMS. This includes it’s deployment application, the topology of the battery pack,
the charge and discharge methodology, the discussed topics related to the Orion BMS,
and the conclusions about the Orion BMS of each paper. Although other works provide
insight into the balancing performance, protection capabilities, and a few operational
details of the Orion BMS, none provide detailed operation of how balancing and SOC
estimation algorithms work while providing substantial SOC estimation limitations and
recommendations using varying battery topologies. The fact that several literature works
have encountered SOC estimation issues suggests that, although inadequate SOC estima-
tion has been previously reported on, conclusions (1), (3), (4) and (5) have identified some
key areas for BMS research and improvement. Lastly, conclusion (2) moves the discussion
on cycling limitations further by proposing that adaptability of BMSs may be the key to
increased capacity utilization.

Table 4. List of Existing Literatures using Orion BMS.

Literature Application Topology Cycling Approach Orion BMS Functionality Discussed Conclusion(s)

Dega et al. [17]
Functional

Testing 224s1p

Charge: CC of 0.3C
Discharge: Varying load
current values ranging from
0.5C to 1.1C

• Balancing during charging and discharging
for several currents
• Over voltage and over temperature protec-
tion relays

• Active Balancing can provide faster battery
balancing with minimal heat loss.
• Financial constraints may hinder the imple-
mentation of active balancing BMSs.

Taylor et al. [19] Grid-Support 12s1p
Charge: C/10 for 10.5 h
Discharge: 1C max based on
PQ support required.

• Voltage monitoring and protection relays
•Minimum voltage for balancing thresholds
• Presents a few SOC estimation limitations

• SOC estimation algorithms may be calibrated
over the lifetime of a battery.
• A low balancing current may reduce overall
battery pack capacity.

Lacap et al. [20] Grid-Support 108s16p

Charge: CC-CV load leveling
with approximately 0.2C CC.
Discharge: CC peak shaving
at less than 0.2C.

• SOC and voltage acquisition accuracy
limitations
• Protection capabilities and control of relays

• Improper battery system component analysis
as well as current ripples may reduce SOC esti-
mation accuracy.
• Improved SOC estimation algorithms will
improve battery operation windows.

Rezal et al. [21]
Functional
Analysis 26s2p

Charge: None
Discharge: None

• Orion BMS specific hardware configuration
• Orion BMS specific software configuration

• Operational summary of Orion BMS has been
provided.

Yusof et al. [23] EV 26s2p

Charge: CC-CV at approx-
imately 0.3 CC.
Discharge: 18.27 km of EV
driving at varying C rates.

• Balancing performance during charging and
discharging
• BMS hardware configuration within an EV

• The Orion BMS may be used in order to send
information signals to external controllers.

This paper EV
6s1p,
6s2p

Charge: Increasing duration
intervals of CC at C/2 and
C/4 for 1s1p and 2s2p
respectively. (1.375 A each)
Discharge: Increasing dura-
tion intervals of the US06
drive profiles.

• Operational specifics of balancing and SOC
estimation algorithms
• Details SOC estimation limitations and
recommendations
• Varying topology BMS monitoring and
balancing performance
• The ability to be used within a testbed for
system/controller validation.

• Primary and secondary Orion SOC algorithms
may be insufficient for SOC estimation in second
life applications.
• BMSs may benefit from regularly updated
tertiary algorithms that account for degradation
factors, thermal capacity variations, and usage
patterns.
• Scaled-up battery packs utilizing smaller ∆V
target values allow for increased usable capacity.
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From the aforementioned conclusions and CHIL testing capabilities of the developed
test bench, several future works are possible for expansion of BMS testing and optimization.
Based on conclusions (1) and (2), the effectiveness of providing a BMS with the ability to
take into account the effects of aging resulting from varying degrees of environmental
and operational factors towards SOC estimation can be studied. As stated in conclusion
(4), temperature variations can play a role in battery capacity and thus low temperature
measurement accuracy may affect SOC determination of individual series cells. There-
fore, varying temperature simulations in order to show cell SOC mismatches that may
accompany low-temperature measurement accuracy as well as an analysis about their
effects on battery health can be performed. Conclusions (3) and (5) suggest a study on
the effectiveness of using adaptive balancing currents on separate batteries and varying
scaled-up battery pack topologies may be useful for future BMS algorithm optimization.
Lastly, conclusions (1) and (5) encourage the completion of a comparative study on the per-
formance of varying battery pack configurations such as interleaved and non-interleaved
configurations with several different battery chemistries which may indicate the capabilities
of this commercial BMS for handling various applications.
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