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Abstract: In electrical engineering, partial discharge (PD) measurement has been widely used for
inspecting and judging insulation conditions of high voltage (HV) apparatus. However, on-site PD
measurement easily becomes contaminated by noises. Particularly, sinusoidal noise makes it difficult
to recognize real PD signal, thus leading to the misjudgment of insulation conditions. Therefore,
sinusoidal noise removal is necessary. In this paper, instantaneous frequency (IF) is introduced, and
the synchrosqueezing transform (SST) as well as singular spectrum analysis (SSA) is proposed for
sinusoidal noise removal. A continuous analytic wavelet transform is firstly applied to the noisy
PD signal and then the time frequency representation (TFR) is reassigned by SST. Narrow-band
sinusoidal noise has fixed IF, while PD signal has much larger frequency range and time-varying
IF. Due to the difference, the reassigned TFR enables the sinusoidal noise to be distinguished from
PD signal. After synthesizing the signal with the recognized IF, SSA is further applied to signal
refinement. At last, a numerical simulation is carried out to verify the effectiveness of the proposed
method, and its robustness to white noise is also validated. After the implementation of the proposed
method, wavelet thresholding can be further applied for white noise reduction.

Keywords: analytic wavelet; instantaneous frequency; partial discharge; sinusoidal noise removal;
singular spectrum analysis; synchrosqueezed transform; time frequency representation

1. Introduction

Partial discharge (PD) is a phenomenon that commonly occurs in various electrical
apparatus such as power transformers, gas insulated switchgears, and cables. It will
deteriorate and damage the insulation of apparatus, causing potential hazardous power
failure [1–4]. On the other hand, PD is also an indicator involving the insulation informa-
tion [5–8]. In order to prevent electrical accidents from happening, PD online monitoring
is very useful and necessary. For example, the ultra-high-frequency (UHF) method is
one of the most frequently used techniques [9–12]. Under different measuring systems or
scenarios, PD signals have different frequency characteristics and band ranges. Usually,
the PD signal is a nonstationary time varying signal with short time duration, and its
waveform is the damped exponential pulse (DEP) or the damped oscillatory pulse (DOP),
as shown in Equation (1), whereas the parameters vary greatly, i.e., the time constant τ, τ1,
τ2, and central frequency fc [13,14].{

DEP(t) = Ae−t/τ sin(2π fct)
DOP(t) = A

(
e−t/τ1 − e−t/τ2

)
sin(2π fct)

(1)
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However, on-site measured PD signal inevitably becomes contaminated by random
noises, among which Gaussian white noise and sinusoidal noise are the two main inter-
ferences [15,16]. Gaussian white noise is randomly distributed, and it is a probabilistic
interference. The reduction method of white noise has been widely studied. For example,
the well-known wavelet thresholding algorithm proposed by Donoho, as well as its various
improved versions proposed later [17,18].

In contrast, sinusoidal noise, also known as discrete spectrum interference (DSI), is
deterministic. Sinusoidal noise is usually from power line carrier communication systems
and radio transmission/communication systems [19,20]. The noise may consist of several
sinusoids, each of which have unknown parameters to be estimated, i.e., the amplitude,
frequency, and phase. For example, x = Asin(2πft) is a simple sinusoid signal with ampli-
tude A and frequency f. It is worth noting that the frequency of sinusoidal noise may vary
greatly from MHz to GHz under different scenarios.

There are also many studies regarding sinusoidal noise removal. An FFT-based
approach was proposed; however, there exists difficulty in deciding the threshold [21]. The
finite impulse response (FIR) filter and notch filter were also applied, but they are non-
adaptive, and some parameters have to be predetermined, and prior knowledge of the noise
frequency is needed [15,21]. The singular value decomposition (SVD) method was also
proposed in [16]. However, this method lacks generality, due to its basic assumption about
fixed number of selected singular values [22]. In [23], the empirical mode decomposition
(EMD) method was proposed to decompose the signal into a series of intrinsic mode
functions (IMFs). As an application [14], EMD, as well as its subsequent improvements,
has been applied in sinusoidal noise reduction of PD signal.

In addition, some time-frequency methods were also proposed [24,25]. For example,
the short-time Fourier transform (STFT) [26]. However, it cannot accurately represent the
frequency information of signals. This may lead to difficulties in distinguishing wide-band
PD signals from noise [15]. Wavelet transform and wavelet package decomposition (WPD)
have the same problem due to the Heisenberg uncertainty principle. Therefore, the time
frequency representation (TFR) needs to be sharpened or enhanced to provide a clear and
well-recognized representation. A TFR reassignment method (RM) was firstly proposed by
Auger and Flandrin in [27]. In this method, smoothed pseudo Wigner-Ville distribution is
adopted, and every point (t, ω) is reassigned to its corresponding centroid point (t’, ω’). The
value at point (t’, ω’) of the new TFR is the sum of the original values of all points reassigned
to it. This reassignment leads to an enhancement of the original TFR and greatly improves
its readability. Although RM works well, it is performed on the squared spectrogram
modulus, and there is no straightforward reconstruction technique [28]. Inspired by RM,
researchers [29,30] tried to find an alternative way, while enabling direct reconstruction
from TFR. Daubechies pioneered the well-known idea of synchrosqueezing transform (SST)
and introduced the concept of instantaneous frequency (IF). The TFR is obtained through
continuous wavelet transform (CWT) and reassigned by SST [31].

Each sinusoid of the sinusoidal noise has fixed IF identical to its frequency. Meanwhile,
nonsinusoidal signals do not have such characteristic. Nonsinusoidal signals include
pure PD signal and white noise. In term of this difference, it is proposed to distinguish
sinusoidal noise based on SST in this paper. After extraction of TFR with a specific IF
through the inverse SST, a synthetic signal is obtained. This synthetic signal greatly reduces
the energy of pure PD signal and white noise and can be regarded as the sum of the original
sinusoid with the same IF and the residue. Further techniques can then be applied for
refinement and remove the residue as much as possible. In this paper, the data-driven
algorithm SSA proposed in [32,33] is adopted. In SSA, singular value decomposition
(SVD) is firstly performed on the Hankel matrix of the synthetic signal, followed by a
hierarchical clustering (HC) to automatically separate eigenvalues and vectors belonging
to each sinusoid. The information of each sinusoid can be finally obtained. The proper
combination of SST and SSA enables precise removal of the sinusoidal noise. For sake of
robustness, the noise removal is operated in the frequency domain rather than the time
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domain by Fourier spectrum subtraction. The numerical simulation results verify the
effectiveness and robustness of the proposed method.

The rest of the paper is organized as follows: Section 2 briefly describes the principle
of IF and the SST. Section 3 introduces the recognition of IFs, information extraction
of sinusoidal noise by SSA, and the consequent removal. Sections 4 and 5, respectively,
present a numerical simulation and an experimental study by the proposed method. Finally,
conclusions are drawn in Section 6.

2. Background and Principle of IF and SST

The observed PD signal can be described as a composite model:

x(n) = f (n) + s(n) + w(n) n = 1, 2, . . . , N (2)

where x(n) is the measured PD signal, f (n) is the pure PD signal, s(n) is the sinusoidal
noise, and w(n) is Gaussian white noise with zero mean value and standard deviation σ.
The noises are independent of f (n), but they have different properties. w(n) is randomly
distributed, and its values cannot be predicted. In contrast, s(n) is a deterministic noise
whose parameters are unknown and to be estimated.

The sinusoidal noise has unknown numbers of sinusoids, and can be modelled as:

s(n) =
Nm

∑
i

si =
Nm

∑
i

Ai cos(2π fi/ fsan + ϕi) (3)

where Nm is the number of sinusoids, si is the i-th sinusoid, and Ai, fi, and ϕi are the
amplitude, frequency, and initial phase of each si, respectively. Meanwhile, fsa is the
sampling frequency.

2.1. Introduction of IF and SST

Assume a signal with the form x(t) = A(t)cos(ϕ(t)), its corresponding analytic signal
can be expressed as z(t) = x(t) + jH[x(t)], where H[x(t)] is the Hilbert transform of signal
x(t), such that

H[x(t)] = π−1P.V.
∫ +∞

−∞

x(τ)
t− τ

dτ (4)

where P.V. stands for the Cauchy principle value [28]. Then, the canonical IF of signal x(t)
is defined as the derivative of the angle of z(t):

IFx(t) =
1

2π

d
dt

arg(z(t)) (5)

Obviously, for any pure sinusoidal signal s(t) = Acos(2πf 0t + ϕ0), its IF is identical to
its frequency f 0. However, the IF of some nonsinusoidal signals may be difficult to specify
due to various choices of A(t) and ϕ(t).

Assume again an analytic wavelet ψ(t); then, the CWT of any real signal h(t) can be
computed as Equation (6) according to Parseval’s theorem [23]:

W f (a, b) =
∫ +∞
−∞ h(t) 1√

a ψ
(

t−b
a

)
dt

= 1
2π

∫ +∞
0 ĥ(ω)

√
aejωbψ̂(aω)dω

(6)

where ψ̂ is the Fourier transform of ψ(t), a is the scale, and b is the time. By notic-
ing Equation (7) and the fact that signal h(t) is real, the inverse CWT can be given as
Equation (8).∫ +∞

0 W f (a, b)a−3/2da = 1
2π

∫ +∞
0

∫ +∞
0 ĥ(ω)a−1ejωbψ̂(aω)dωda

=
∫ +∞

0 ψ̂(ξ) dξ
ξ ·

1
2π

∫ +∞
0 ĥ(ω)ejωbdω

(7)
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h(b) = Re
[

1
π

∫ +∞
0 ĥ(ω)ejωbdω

]
= Re

[
1
2

(∫ +∞
0 ψ̂(ξ) dξ

ξ

)−1
·
∫ +∞

0 W f (a, b)a−3/2da
]

∆
= Re

[
C−1

ψ ·
∫ +∞

0 W f (a, b)a−3/2da
] (8)

where Cψ is a constant, which is only related to ψ(t). A candidate IF fs of signal s(t)
based on the CWT is given in [23] as Equation (9), and the CWT of signal s(t) is shown in
Equation (10).

fs(a, b) =
1

2π

∂bW f (a, b)
jW f (a, b)

(9)

W f (a, b) =
∫ +∞
−∞ s(t) 1√

a ψ
(

t−b
a

)
dt

= 1
2π

∫ +∞
0 Aπ[δ(ω−ω0)ejφ0 + δ(ω + ω0)e−jφ0 ]

√
aejωbψ̂(aω)dω

= A
√

a
2 ψ̂(aω0)ej(ω0b+φ0)

(10)

where ω0 = 2πf 0, and δ() is the delta function. Based on Equation (6) to Equation (10), it can
be verified that the computed fs of s(t) is identical to its canonical IF, which is an important
and desired property. For any point (a,b) of the CWT TFR, SST reassigns it to another point
(ωs(a,b), b), where ωs = 2πfs. As a consequence, the reassigned TFR can be computed as

Ts(ω, b) =
∫ +∞

0
W f (a, b)a−3/2δ(ωs −ω)da (11)

By combination of Equations (8) and (11), signal h(t) can be obtained through inverse
SST, as shown in Equation (12).

h(b) = Re
[

C−1
ψ ·

∫ +∞

0
Ts(ω, b)dω

]
(12)

It can be seen that SST reassigns the CWT TFR, and inverse SST is able to perfectly
recover the analyzed signal. This property enables recognition of signals with specific IFs
and the direct reconstruction of them.

2.2. A SST Illustration of Sinusoids

Although the SST is theoretically perfect for signal analysis and reconstruction, practi-
cal implementation is of equal importance. Therefore, the choice of an analytic wavelet
and the discretization for computation are necessary. In [31], a strictly analytic wavelet
is proposed, named the “bump wavelet”, which is defined in the frequency domain, as
shown in Equation (13).

ψ̂(ω) = e
1− 1

1−(ω−µ)2/σ2 · χ(µ− σ, µ + σ) (13)

where χ() is the indicator function. Discretization for CWT and SST computation can
be linear or logarithmic; the latter is more efficient with no significant differences, as
proposed in [30] by Thakur. These selections are adopted in this paper for analysis in the
following sections.

The discrete form of CWT and SST is shown in Equation (14).
W f (ak, bk) = ∑

m
h[m] 1√

ak
ψ
[

m−bk
ak

]
Ts(ωl , bk) = (∆ω)−1 ∑

ak :|ωs(ak ,bk)−ωl |≤∆ωl /2
W f (ak, bk)a−3/2

k (∆a)k
(14)
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and the discrete reconstruction of signal h(t) is given in Equation (15).

h(n) = Re

[
C−1

ψ ∑
l

Ts(ωl , n)(∆ω)

]
(15)

As an example, we shall illustrate the effects of SST on a composite signal f (t) consisting
of two sinusoids. Assume that f (t) = cos(2πf 1t) + 2cos(2πf 2t + π/3), where f 1 and f 2,
respectively, equal 10 and 20 Hz, and the sampling frequency is 1000 Hz. The reassigned
TFR and its contour are shown in Figure 1a,b, respectively, and the color bar relates to the
absolute value of the TFR.

Energies 2021, 14, x FOR PEER REVIEW 5 of 23 

 

 

and the discretization for computation are necessary. In [31], a strictly analytic wavelet is 
proposed, named the “bump wavelet”, which is defined in the frequency domain, as 
shown in Equation (13). 

( ) ( ) ( )σμσμχωψ σμω +−⋅= −−
−

,ˆ 22 /1
11

e  (13)

where χ() is the indicator function. Discretization for CWT and SST computation can be 
linear or logarithmic; the latter is more efficient with no significant differences, as pro-
posed in [30] by Thakur. These selections are adopted in this paper for analysis in the 
following sections. 

The discrete form of CWT and SST is shown in Equation (14). 

( ) [ ]

( ) ( ) ( ) ( )
( )

1 3/ 2

: , /2

1,

, ,
k s k k l l

k
k k

m kk

s l k k k k k
a a b

m b
Wf a b h m

aa

T b Wf a b a a
ω ω ω

ψ

ω ω − −

− ≤Δ

  −
=    

 = Δ Δ





 (14)

and the discrete reconstruction of signal h(t) is given in Equation (15). 

( ) ( )( )











Δ= −

l
ls nTCnh ωωψ ,Re 1  (15)

As an example, we shall illustrate the effects of SST on a composite signal f(t) consist-
ing of two sinusoids. Assume that f(t) = cos(2πf1t) + 2cos(2πf2t + π/3), where f1 and f2, re-
spectively, equal 10 and 20 Hz, and the sampling frequency is 1000 Hz. The reassigned 
TFR and its contour are shown in Figure 1a,b, respectively, and the color bar relates to the 
absolute value of the TFR. 

 
(a) 

Energies 2021, 14, x FOR PEER REVIEW 6 of 23 

 

 

 
(b) 

Figure 1. Illustration of SST on f(t). (a) The reassigned CWT TFR and (b) its contour. 

It can be seen that the sinusoids of f(t) are well-separated from each other and easily 
recognized. Intuitively, the enhanced TFR have “flat ridges” in the 3-D coordinate, or 
straight lines parallel to time axis in the 2-D coordinate. In fact, on the contour time-fre-
quency plane, each of the parallel line corresponds to a unique IF value. The IF line can be 
seen as a unique characteristic and also the existing symbol for sinusoids. 

3. Methodology for Sinusoidal Noise Removal 
In order to remove sinusoidal noise from the measured PD signal, one possible way 

is to treat it as noise and suppress it as much as possible. However, taking into account 
that sinusoidal noise is deterministic, it can also be treated as the signal of interest from a 
different perspective, and some methods can be applied for their precise estimation and 
separation. Then, removal of the sinusoidal noise is achieved by simply subtracting it from 
the measured PD signal. Based on this idea, a method for sinusoidal noise removal is pro-
posed below. The method consists of four parts, i.e., time–frequency analysis, IF recogni-
tion and the extraction of synthetic signals, SSA based separation of sinusoids, and, finally, 
the Fourier spectrum subtraction. 

Since the IF of a sinusoid is identical to its own frequency, its energy concentrates on 
the specific IF line. Meanwhile, for nonsinusoidal signals such as the PD signal and white 
noise, their energy spread out on all or part of the time-frequency plane. As long as the 
sinusoid is dominant enough in measured PD, its specific IF line still remains recognizable 
with a small distortion. 

Once the sinusoid is recognized, its IF line should be firstly extracted. Synthetic signal 
with the recognized IF is then recovered by inverse SST. The recovered synthetic signal 
keeps almost all the energy of the sinusoid and excludes most energy of other nonsinus-
oidal signals, which means the domination of the sinusoid. Therefore, the recovered signal 
can be decomposed as a sinusoid and the residue. 

SSA can be applied for further separation. SVD is firstly applied to the Hankel matrix 
of the recovered synthetic signal, followed by HC to classify and assign the eigenvalues 
and vectors. After certain iterations, the sinusoid is finally reconstructed and extracted 
from the measured PD signal. 

Figure 1. Illustration of SST on f(t). (a) The reassigned CWT TFR and (b) its contour.

It can be seen that the sinusoids of f (t) are well-separated from each other and easily
recognized. Intuitively, the enhanced TFR have “flat ridges” in the 3-D coordinate, or
straight lines parallel to time axis in the 2-D coordinate. In fact, on the contour time-
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frequency plane, each of the parallel line corresponds to a unique IF value. The IF line can
be seen as a unique characteristic and also the existing symbol for sinusoids.

3. Methodology for Sinusoidal Noise Removal

In order to remove sinusoidal noise from the measured PD signal, one possible way
is to treat it as noise and suppress it as much as possible. However, taking into account
that sinusoidal noise is deterministic, it can also be treated as the signal of interest from a
different perspective, and some methods can be applied for their precise estimation and
separation. Then, removal of the sinusoidal noise is achieved by simply subtracting it
from the measured PD signal. Based on this idea, a method for sinusoidal noise removal
is proposed below. The method consists of four parts, i.e., time–frequency analysis, IF
recognition and the extraction of synthetic signals, SSA based separation of sinusoids, and,
finally, the Fourier spectrum subtraction.

Since the IF of a sinusoid is identical to its own frequency, its energy concentrates on
the specific IF line. Meanwhile, for nonsinusoidal signals such as the PD signal and white
noise, their energy spread out on all or part of the time-frequency plane. As long as the
sinusoid is dominant enough in measured PD, its specific IF line still remains recognizable
with a small distortion.

Once the sinusoid is recognized, its IF line should be firstly extracted. Synthetic signal
with the recognized IF is then recovered by inverse SST. The recovered synthetic signal
keeps almost all the energy of the sinusoid and excludes most energy of other nonsinusoidal
signals, which means the domination of the sinusoid. Therefore, the recovered signal can
be decomposed as a sinusoid and the residue.

SSA can be applied for further separation. SVD is firstly applied to the Hankel matrix
of the recovered synthetic signal, followed by HC to classify and assign the eigenvalues
and vectors. After certain iterations, the sinusoid is finally reconstructed and extracted
from the measured PD signal.

Although the extracted sinusoid can be directly subtracted from the measured PD
signal in time domain, tiny errors may accumulate during the estimation procedures
described above, thus leading to great distortions. In fact, a more robust way can be
applied for sinusoid removal, i.e., the sinusoid is subtracted from the measured PD signal
in the frequency domain instead of time domain through fast Fourier transform (FFT). The
detailed flow chart of the proposed method is shown in Figure 2. Dashed Block A is the
time–frequency analysis procedure, which has been introduced in Section 2. Block B and C
will be explained in the following subsections.
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post-processing 
if necessary

Figure 2. Flow chart of the proposed method.

3.1. IF Extraction and Synthetic Signal Recovery

As shown in Section 2, once the IF lines of sinusoidal noise are visible, they can then
be extracted. An analysis optimization method for ridge extraction has been proposed
by Carmona et al. in [34]. In this method, a trade-off is minimized between ridge values
and the TFR absolute values. However, the regularization parameters are difficult to
determine, and the solving is also very sophisticated. For simpler implementation, a
dynamic programming method is presented in [30,35] for ridge extraction, and it is utilized
in this paper. It is a forward/backward greedy algorithm, which aims to extract the ridges
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of the TFR absolute value. In the algorithm, a curve extraction process is performed for a
single ridge; as for multiple ridges, the process is performed again on the remaining TFR
after setting values of the extracted TFR ridges to zeros.

The curve extraction process is described as follows in detail: in the forward procedure,
computation is operated on the minus logarithm of the normalized TFR absolute value, i.e.,
on F = −ln(E), where E = |TFR|2/sum(|TFR|2). Minimization of F is equivalent to the
maximization of E, and thus the maximization of |TFR|. In the computation progress, both
values of F and the penalty traversing across frequency bins are taken into consideration.
For the (i, j) point of F, its value is adjusted to the sum of its original value and the penalized
minimum of the i − 1 th time bin. The computation on each time bin of F is operated from
the first time bin to the next. In the backward searching procedure, the minimum of F on
the last time bin is firstly retrieved, and computation is operated from the last time bin to
the previous. For the i th time bin, the j th frequency bin is recorded if the value of point (i,
j) is closest to the minimum on the i + 1 th time bin. The pseudo code of this algorithm is
shown in Algorithm 1.

Algorithm 1. Pseudo-code of ridge extraction algorithm.

Input: TFR, the penalty parameter λ, the threshold ε

Compute M = number of TFR rows; N = number of TFR columns; E = |TFR|2/sum(|TFR|2), F =
−ln(E)
%Forward Procedure
Fval← zeros(M, N), For i = 1:M, Fval(i,1)← F(i,1), end
For i = 2:N
For j = 1:M
For k = 1:M, Fval(j, i)←min[Fval(k, i − 1) + λ(k − j)2], end
Fval(j, i)← Fval(j, i) + F(j, i)
end
end
%Backward Procedure
Freq← zeros(1, N), Freq(N)← argmin[Fval(:, N)],
For i = N − 1:1
val← Fval(Freq(i + 1), i + 1)-F(Freq(i + 1), i + 1)
For j = 1:M
If |val-Fval(j, i) − λ(Freq(i + 1) − j)2| < ε, Freq(i) = j, break, end
end
end
Output: Freq

After extracting the IF of each sinusoid, inverse SST can be applied and the synthetic
signals corresponding to each IF can be recovered then. In these signals, sinusoid dominates
because it retains almost all its energy, while energies of other signals are greatly reduced.

3.2. SSA Analysis

For the synthetic signals obtained in the Section 3.1, each of them can be regarded as
a composite signal whose components have similar IF characteristics. As a consequence,
they can not be distinguished directly in frequency domain. However, the components
vary greatly from each other in waveform. By studying their different characteristics in the
time domain, the real sinusoid can be approximately separated.

A powerful tool named SSA for signal analysis in time domain is proposed in [32].
The underlying idea is that the Hankel matrix of composite signals is decomposed by SVD,
and the components can be classified by different singular values. Indeed, HC is utilized
such that the singular values can be assigned to predefined classes. The detailed procedure
is described as follows for separation of sinusoid from the synthetic signal:

Firstly, for a length-N signal, its Hankel matrix X is constructed. The size of X is L ×
K, where K = N − L + 1, L is defined by the user and set smaller than K.
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Secondly, SVD is applied to X, and X can be decomposed as the sum of R independent
matrices, as shown in Equation (16). X = UΣVT =

R
∑

i=1
Xi

Xi = σiuivi
T

(16)

where R is the rank of X, Σ = diag(σ1...σR), and each σi is the i th singular value. U and V
are the eigen matrices whose i th columns relate to σi. Therefore, each eigen triple (σi,ui,vi)
of Xi can be obtained.

Thirdly, HC is performed on the signals in time domain reconstructed by each Xi.
Before classification, each reconstructed xi(n) is obtained through diagonal averaging, as
shown in Equation (17).

xi(n) =



1
n

n
∑

j=1
Xi(j, n− j + 1) 1 ≤ n < L

1
L

L
∑

j=1
Xi(j, n− j + 1) L ≤ n ≤ K

1
N−n+1

L
∑

j=n−K+1
Xi(j, n− j + 1) K + 1 ≤ n ≤ N

(17)

The classification procedure is initialized by assigning each xi(n) to a distinct class,
and the minimal distance d between two classes is computed by Equation (18).

d(x, y) = 1− 〈x, y〉
‖x‖ · ‖y‖ (18)

where < > is the inner product of two vectors, and || ||is the two-norm operator of
a vector.

Then, the classification procedure is iterated by merging the two nearest classes into
a new class until the predefined number of classes is reached. Finally, the sinusoid is
approximately separated from other signals.

3.3. Sinusoidal Noise Removal

In Sections 3.1 and 3.2 above, it has been explained how to obtain the estimated
sinusoids. Intuitively, directly subtracting the estimated sinusoids from the measured
PD signal in time domain seems just enough. However, the estimated IF slightly differs
from the real frequency of each sinusoid. Therefore, a periodic oscillation error in the
time domain exists owing to this slight difference. Meanwhile, the SSA procedure also
brings inevitable errors. These errors will lead to great distortion. As an alternative, the
Fourier spectrum subtraction based on FFT in the frequency domain is proposed. It will
outperform the time domain subtraction and greatly reduce the errors.

The underlying reason behind the choice can be summarized as follows: firstly, the
Fourier spectrum of each sinusoid around its estimated IF can be easily recognized; also,
the slight difference between estimated IF and the real frequency may be cancelled due to
the resolution; finally, FFT is perfectly invertible, which ensures the accurate reconstruction
in time domain.

It is worth noting that the proposed method is only able to remove the sinusoidal
noise. Therefore, white noise still exists after the removal. For further denoising, a classic
method such as wavelet thresholding can be applied to refine the reconstructed PD signal.

4. Case Analysis of Sinusoidal Noise Removal in Noisy PD

In order to verify the effectiveness and robustness of the proposed method, a numerical
simulation is carried out in this section. DEP and DOP signals are adopted to simulate the
PD signal in this paper, as suggested in [13]. The signals are, respectively, denoted as s1



Energies 2021, 14, 7967 9 of 22

and s2, where s1 = Ae−t/τ1sin(2πf 0t), and s2 = A(e−t/τ1 − e−t/τ2)sin(2πf 0t). In this section,
three types of PD signals are directly obtained by assigning different parameters to s1 and
s2. They are denoted as PD1 to PD3, respectively, with their parameters shown in Table 1.

A more complex PD signal is then synthesized by the normalized combination of PD1
to PD3, i.e., PD = [PD3, PD1, PD2], and the peak amplitude of PD is normalized to be 1.
Pure PD in time domain and frequency domain are shown in Figure 3a,b.
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Figure 3. Pure PD signal. (a) In the time domain and (b) in the frequency domain.

There are two cases to be discussed here, i.e., (1) PD signal contaminated by sinusoidal
noise only and (2) PD signal contaminated by both sinusoidal noise and white noise.

4.1. Case 1: Sinusoidal Noise Only

The sinusoidal noise s(t) is set to be a composite of two sinusoids, i.e., s(t) = 0.2cos(2πf 1t
+ π/3) + 0.2cos(2πf 2t + π/4), where f 1 = 0.9 GHz and f 2 = 1.8 GHz, and its length is equal to
that of PD. The noisy PD in time domain and in frequency domain are shown in Figure 4a,b.
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Table 1. Parameters of DEP and DOP signals.

Signal Type A (mV) τ1,τ2 (ns) f 0 (GHz)
Sampling
Frequency
fs (GHz)

Signal
Length L

PD1 s1 2 1.5, - 0.4 20 1000
PD2 s2 4 1.2, 2.5 3 20 1000
PD3 s2 2 1.2, 2.5 5 20 1000
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Figure 4. Noisy PD with sinusoidal noise only. (a) In the time domain and (b) in the frequency
domain.

The CWT TFR and the reassigned TFR by SST are shown in Figure 5, where the color
bars relate to the absolute value of the TFR. It is clearly shown that CWT TFR is vague to
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analyze; meanwhile, the TFR is greatly enhanced by SST; thus, the IF lines of sinusoidal
noise can be distinguished and then extracted. Two straight lines can be clearly recognized
without uncertainty, which is inevitable in CWT.
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Figure 5. CWT TFR and the reassigned TFR. (a) CWT TFR, (b) contour of CWT TFR, (c) reassigned TFR, and (d) contour of
reassigned TFR.

Due to the fact that IF lines of sinusoidal noise are known to be constant as a priori, a
large λ as well as a small threshold ε shall be adopted to extract the value of the IF lines. In
this paper, they are set to be 3000 and 10−8, respectively. The extracted lines are shown in
Figure 6, and their values are, respectively, 0.8961 and 1.809 GHz. Obviously, the estimated
frequencies are quite close to the real ones.
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Figure 6. The extracted IF lines.

The synthetic signals are recovered from each IF by inverse SST, and they are con-
sequently refined by SSA. The refined signals denoted as srec1 and srec2 as well as their
Fourier spectrum are shown in Figure 7. The estimated amplitude, phase, and frequency of
each sinusoid are shown in Table 2. By calculating the relative errors, it can be seen that
estimated parameters are quite close to the real ones.

Table 2. Comparison between estimated parameters and the real ones.

Signal Estimated Parameters Values Relative Errors

Amplitude
(mv)

Phase
(rad)

Frequency
(GHz)

Amplitude
Error (%)

Phase
Error (%)

Frequency
Error (%)

srec1 0.198 π/2.973 0.896 1 0.91 0.43
srec2 0.199 π/3.994 1.809 0.3 0.15 0.50

After removing the sinusoidal noise, the finally reconstructed PD signal is obtained.
The reconstructed PD signal as well as the difference between it and pure PD signal is
shown in Figure 8. It can be seen that the reconstructed PD signal is almost equal to the
pure PD, except for a negligible oscillation error.

4.2. Case 2: Both Sinusoidal Noise and White Noise

Although the proposed method works well to remove the sinusoidal noise from pure
PD signal, white noise is not taken into consideration. The robustness of the method to
white noise is validated here. The Gaussian white noise is firstly added to pure PD signal
with the signal to noise ratio (SNR) set to be −2.2, and then the sinusoidal noise is also
added. Additionally, in order to study the performance of the proposed method, we decide
to set the frequency of one sinusoid closer to the band of frequencies corresponding to the
pure PD. The sinusoidal noise s(t) is then set to be s(t) = 0.2cos(2πf 1t + π/3) + 0.2cos(2πf 2t
+ π/4), where f 1 = 0.9 GHz and f 2 = 2.8 GHz. The noisy PD and its spectrum in frequency
domain are shown in Figure 9. Similarly, steps in Section 4.1 are performed once again for
signal reconstruction.
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The CWT TFR and the reassigned TFR are shown in Figure 10. Similar to the case
mentioned in Section 4.1, the IF lines of sinusoidal noise can still be recognized and
extracted, as shown in Figure 11. The refined synthetic signal of each sinusoid and the
spectrum in frequency domain are shown in Figure 12.
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The estimated amplitude, phase, and frequency of each sinusoid are also shown
in Table 3. The relative errors demonstrate the robustness of the proposed method to
white noise.

Table 3. Comparison between estimated parameters and the real ones.

Signal Estimated Parameters Values Relative Errors

Amplitude
(mV)

Phase
(rad)

Frequency
(GHz)

Amplitude
Error (%)

Phase
Error (%)

Frequency
Error (%)

srec1 0.2037 π/3.06 0.896 1.85 1.96 0.43
srec2 0.1991 π/3.963 2.816 0.45 0.93 0.57

After Fourier spectrum subtraction, the sinusoidal noise is almost removed from the
original noisy PD signal. Then, the processed PD signal is compared with the pure PD
signal contaminated by white noise only. The pure PD signal contaminated by white noise
only is shown in Figure 13. Meanwhile, the difference between it and the processed PD
signal is also shown. It can be seen that the proposed method still removes sinusoidal noise
effectively, while hardly distorting the pure PD signal or the white noise.
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Figure 13. PD signal after removal of sinusoidal noise and the error.

After the removal of sinusoidal noise, wavelet thresholding follows to suppress the
white noise. In this paper, db6 wavelet, hard thresholding, and the Stein’s unbiased risk
estimation (SURE) rule are selected. The decomposition level is set to be 5. The result is
shown in Figure 14a, and clearly both sinusoidal noise and white noise are well-reduced.
As a comparison, traditional EMD is also applied to the original noisy PD signal. The result
is shown in Figure 14b, and intuitively, the proposed method performs much better.
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Figure 14. Final reconstructed PD. (a) Proposed method and wavelet thresholding. (b) EMD.

In order to quantitatively evaluate the proposed method and EMD, three indexes are
introduced here, i.e., SNR, mean square error (MSE), and normalized correlation coefficient
(NCC) [36]. Smaller MSE and greater SNR and NCC stand for better results. The computed
results are shown in Table 4. It can be seen that the proposed method obviously outperforms
EMD, which is able to verify its effectiveness and robustness.

Table 4. Comparison of indexes by different methods.

Methods
Indexes

MSE SNR NCC

original (no methods
taken) 0.0618 −6.69 0.40

proposed + wavelet
thresholding 0.0042 5.01 0.84

EMD 0.0296 −3.49 0.47
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5. Experimental Case Analysis

In order to verify the effectiveness of the proposed method for real signals, the exper-
imental platform is set up in laboratory for PD signal measurement. The experiment is
conducted on gas-insulated switchgear (GIS) with sulfur hexafluoride (SF6) as the medium
and artificial defect to generate PD signal. The schematic diagram and measurement setup
of the experiment are shown in Figure 15.
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In the experiment, a power transformer with adjustable output voltage is used, and 
the needle-plane electrode is used as artificial defect. The generated PD signal will be able 
to propagate through the glass observation window and then be measured by the UHF 
antenna. The oscilloscope is Tektronix DPO7254C, and its sampling frequency is set to be 
10 GHz. The measured PD signal with 10,000 sampling points is shown in Figure 16, and 
the unit of its amplitude is mV. 

Figure 15. Experiment diagram. (a) Schematic diagram. (b) Measurement setup.

In the experiment, a power transformer with adjustable output voltage is used, and
the needle-plane electrode is used as artificial defect. The generated PD signal will be able
to propagate through the glass observation window and then be measured by the UHF
antenna. The oscilloscope is Tektronix DPO7254C, and its sampling frequency is set to be
10 GHz. The measured PD signal with 10,000 sampling points is shown in Figure 16, and
the unit of its amplitude is mV.



Energies 2021, 14, 7967 20 of 22

Energies 2021, 14, x FOR PEER REVIEW 21 of 23 

 

 

 
Figure 16. Measured PD signal. 

Since the laboratory is away from interference sources of sinusoidal noise, artificial 
sinusoidal noise is added to the measured PD signal to verify the effectiveness of the pro-
posed method in this paper, which is same as proposed in [6,11,12]. The sinusoidal noise 
s(t) is then set to be s(t) = 1cos(2πf1t + π/5) + 1.5cos(2πf2t + π/4) + 0.5cos(2πf2t + π/3), where 
f1 = 0.3 GHz, f2 = 0.5 GHz, and f3 = 0.9 GHz. The noisy PD signal as well as its processed 
version are shown in Figure 17. It can be seen that, in the processed PD signal, sinusoidal 
noise has been effectively removed, which verifies that the proposed method also works 
for real-measured signal. However, it should be noted that if the frequencies of each si-
nusoid are too close to each other, the proposed method may not be able to identify each 
IF. Consequently, it will fail to remove the sinusoidal noise. Additionally, an oscilloscope 
with high-enough sampling frequency is necessary, usually up to 10 GHz. 

  
(a) (b) 

Figure 17. Noisy and proposed PD signal. (a) Noisy PD signal. (b) Processed PD signal. 

  

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
sampling point

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
sampling point

-6

-4

-2

0

2

4

6

Figure 16. Measured PD signal.

Since the laboratory is away from interference sources of sinusoidal noise, artificial
sinusoidal noise is added to the measured PD signal to verify the effectiveness of the
proposed method in this paper, which is same as proposed in [6,11,12]. The sinusoidal
noise s(t) is then set to be s(t) = 1cos(2πf 1t + π/5) + 1.5cos(2πf 2t + π/4) + 0.5cos(2πf 2t +
π/3), where f 1 = 0.3 GHz, f 2 = 0.5 GHz, and f 3 = 0.9 GHz. The noisy PD signal as well as
its processed version are shown in Figure 17. It can be seen that, in the processed PD signal,
sinusoidal noise has been effectively removed, which verifies that the proposed method
also works for real-measured signal. However, it should be noted that if the frequencies
of each sinusoid are too close to each other, the proposed method may not be able to
identify each IF. Consequently, it will fail to remove the sinusoidal noise. Additionally, an
oscilloscope with high-enough sampling frequency is necessary, usually up to 10 GHz.
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6. Conclusions

In this paper, instantaneous frequency (IF) is introduced, and a new and effective
method based on combination of SST and SSA is proposed for sinusoidal noise removal in
PD signals.

SST is firstly used for IF recognition and ridge extraction, synthetic signals of the IFs
are then recovered by inverse SST. Consequently, SSA is performed on the synthetic signals
for further refinement, and, finally, Fourier spectrum subtraction removes the sinusoidal
noise. Based on the numerical simulation, the following conclusions can be drawn:

(1) SST sharpens the TFR obtained by CWT and greatly reduces the uncertainty to
recognize IF lines belonging to each sinusoid, even with smaller amplitudes than that
of PD signal.

(2) The proposed method works well to remove the sinusoidal noise; meanwhile, it hardly
distorts the waveform of other nonsinusoidal signals. Additionally, the proposed
method is robust to white noise and outperforms traditional EMD method.

(3) As for further research, more complex noises may be taken into consideration, such
as signals with transient frequencies.
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