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Abstract: Shaanxi is among the provinces with abundant coal resources in North China. These
enormous coal resources (approx. 4143 Gt) are widely distributed in the Ordos Basin and its marginal
fold belts. The main coal-bearing strata consist of the late Carboniferous Taiyuan Formation, the
early Permain Shanxi Formation, the late Triassic Wayaobao Formation, and the middle Jurassic
Yan’an Formation, which were respectively deposited in coastal plains and a lagoon environment,
a continental environment, an inland open lake and a confined lake environment. The Permo-
Carboniferous coals are low volatile bituminous and characterized by relatively high vitrinite content,
which decreases from south to north, and from the lower coal seams upwards. By contrast, the late
Triassic and middle Jurassic coals are highly volatile bituminous, but are respectively characterized by
relatively high vitrinite and high inertinite content. Minerals in the Permo-Carboniferous coals, the
late Triassic coals, and the middle Jurassic coals, are respectively dominated by kaolinite and calcite,
quartz and kaolinite, and quartz and calcite. Furthermore, contemporary coals deposited in different
coal fields or even different mines of the same coal field present different mineral characteristics. The
Permain Shanxi Formation coals from the Shanbei C-P coalfield in the north of Shaanxi Province are
characterized by higher kaolinite and lower carbonate contents compared to those from the Weibei
C-P coalfield in the south of Shaanxi Province. The distinctive mineralogical characteristics of coals
formed in different coalfields and different geological ages were ascribed to integrated influences of
different terrigenous detrital input from sediment provenance, sedimentary settings (e.g., subsidence
rate, sea transgression, and regression process), and hydrothermal activities.

Keywords: minerals in coals; sediment provenance; subsidence rate; sea transgression and regression;
hydrothermal influence; different coalfields in Shaanxi Province

1. Introduction

As an important part of the Ordos Basin, Shaanxi Province has become one of the
most significant bases for coal resource exploitation in China, with estimated coal reserves
of approx. 4143 Gt [1]. The coal production from both underground and open pit mines is
slightly increasing every year, attaining 6.79 Gt in 2020, which has been mainly utilized for
electric and heat power generation, coal chemical industry [1]. According to the geological
age and the geographic distribution, there are dominantly five important coalfields in
Shaanxi Province, comprising two Permo-Carboniferous (Weibei and Shanbei), one Triassic
(Shanbei), and two Jurassic (Huanglong and Shanbei) coalfields (Figure 1). Due to the dif-
ferent tectonic evolution stages and deposition conditions, mineralogical and geochemical
characteristics of coals vary remarkably among these coal fields [2–7].
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Figure 1. Distribution of the main coal fields in Shaanxi Provence and locations of sampling sites
(modified after Wang et al., 2011 [4]). (a) Location of Ordos basin; (b) distribution of the main coal
fields and locations of sampling sites in Shaanxi Provence.

The composition, abundance, distribution, and modes of occurrence of minerals in
coals may provide significant geologic information on coal depositional conditions, coal-
bearing sequence formation, regional geological history, and associated diagenetic and
epigenetic processes affecting coal formation [8–19]. Furthermore, minerals may signifi-
cantly affect the utilization of coal, from mining and grinding to combustion, gasification
and liquefaction technological problems, from coal cleaning to waste disposal, and from
environmental impacts to human health consequences [13,16,17,20–24]. In particular, typi-
cal mineral phases are important carriers of critical elements (e.g., Ga, Li, Zr, Hf, Nb, Ta,
rare earth elements and Y, etc.) and toxic elements (e.g., S, As, F, Hg) in coal [13,21,25–28].
Therefore, research on coal mineralogy is of great significance for possible pollution control
of toxic trace elements, for potential recovery of critical elements during coal combustion
and utilization, and for other integrated utilization of coals from both an environmental
and economic point of view.

Several studies have been conducted on the elemental and mineralogical charac-
teristics of coal seams in the Ordos Basin, with special emphasis on the geochemical
characteristics of hazardous elements (S, As, Hg, and Se) [2,3,29–32], and potential critical
elements (Ga, Li, Ge, Nb, Zr, and REY) in coals from several coal basins in the Ordos
Basin [4,6,7,33–37]. However, as important carriers of critical elements, the geological
controls on distribution, occurrence, and origin of minerals in coal are still not clear. To
a large extent, this restricts the integrated utilization of the enormous coal resources in
Ordos Basin. The present research focused on the main coalfields in Shaanxi Province,
and investigated the differences in composition, abundance, modes of occurrence, and
distribution of minerals in coals from these coalfields, aiming to investigate the origins and
geological factors that may have controlled the mineralogical characteristic differences of
coals from different coalfields and different geological ages. The findings in this research
will provide important geological and genetic implication of typical minerals in contempo-
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raneous coal seams, and further contribute to identifying the occurrence or enrichment of
potential critical or hazardous elements in typical minerals.

2. Geological Setting

The coal fields in Shaanxi Province are largely distributed in the Ordos Basin (Figure 1),
which is a large complex craton basin superimposed on the Paleozoic North China craton
and has undergone a series of tectonic movements, gradually evolving from the early
Paleozoic marginal sea basin, the late Carboniferous-middle Triassic intracraton basin,
and the late Triassic-early Cretaceous remnant craton basin, to the current intracontinental
depression basin [38].

The coal-bearing strata primarily consist of the late Carboniferous Taiyuan Formation,
the early Permian Shanxi formation, the late Triassic Wayaobao Formation, and the middle
Jurassic Yan’an Formation (Figures 2–4). The Taiyuan Formation continuously overlies the
late Carboniferous Benxi Formation and mainly consists of sandstones, mudstones, lime-
stones, muddy limestones, sideritic shales, claystones, and coal seams (Nos. 5–11 coals),
among which the No. 5 coal seam is the major minable seam and is 2.5 m thick on aver-
age. Continuously overlying the Taiyuan Formation, the Shanxi Formation is composed
of sandstone, mudstone, and four thin and discontinuous coal seams (Nos. 1–4 coals)
(Figure 2).

The late Triassic Wayaobao Formation parallel-unconformably underlies the early
Jurassic Fuxian Formation, and continuously overlies the late Triassic Yongping Formation
(Figure 3). The Wayaobao Formation is subdivided into five members from bottom to top,
and the lower four members are mainly composed of sandstone, mudstone, and several
coal seams, whereas the upper 5th member is composed of oil shale interbedded with
bauxitic mudstone and coal seams [39].

The middle Jurassic Yan’an Formation continuously overlies the Fuxian Formation
and underlies the Zhiluo Formation, and is also subdivided into five members (Figure 4).
The lower first member is composed of conglomeratic sandstone in the lower portion,
and of siltstone, mudstone, and coal seams (No. 5) in the upper portion. The upper four
members are composed of interbedded sandstone, mudstone, and coal seams (Nos. 1–4).

The coal fields were deposited on the early Paleozoic weathered basement, and have
been subjected to sea transgression since the late Carboniferous. The lower member of the
late Carboniferous Taiyuan Formation was primarily deposited in a confined epicontinental
sedimentary system, during which the Weibei Permo-Carboniferous coalfield was mainly
formed in a floodplain, confined carbonate platform, and tidal flat environment [40].
During the second and the upper member of the Taiyuan Formation period, the whole
Ordos Basin experienced the maximum transgression, and was mainly deposited in an
open epicontinental and bay-lagoon sedimentary system. In particular, the areas in the
south of Yulin City were largely deposited in a carbonate platform, and the Weibei Permo-
Carboniferous coalfield in the southern margin was partly deposited in a banded tidal flat,
the sediment source of which was derived from the south; whereas the Shanbei Permo-
Carboniferous coalfield in the north of Yulin City was mainly deposited in a floodplain
and the sediment source was derived from the north. Due to the influence of Hercynian
tectonic movement and corresponding regression of sea water from the east and west, the
early Permian Formation area was predominantly deposited in a continental delta and lake
sedimentary system. Due to the differential subsidence rate of the northern and southern
part, the former, having a slow subsidence rate, was mainly developed in alluvial and
continental delta sedimental facies, whereas the latter, having a rapid slow subsidence rate,
was predominantly formed in lacustrine sedimentary facies.
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Figure 2. The Late Carboniferous-early Permian coal-bearing stratigraphic column of Shaanxi Province.
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Figure 3. The late Triassic coal-bearing stratigraphic column of Shaanxi Province.
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Figure 4. The middle Jurassic coal-bearing stratigraphic column of Shaanxi Province.
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The late Triassic Wayaobao Formation was formed in a relatively stable tectonic setting
and primarily deposited in a continental fluvial, lake, and lake delta sedimentary envi-
ronment. Laterally, the areas in the north of Hengshan-Jiaxian City were predominantly
deposited in a fluvial sedimentary system, which was characterized by coarse-grained
sediments, and those in the south were predominantly deposited in lake and lake delta
sedimentary systems that were characterized by relatively fine-grained sediments. Verti-
cally, the 1st and 5th member of the Wayaobao Formation was mainly deposited in fluvial
sedimentary system, whereas the 2nd, 3rd, and 4th members were mainly in lake and lake
delta sedimentary systems. The Shanbei Triassic coalfield was largely formed in a lake and
lake delta environment.

The middle Jurassic Yan’an Formation is divided into five members. The 1st member
was mainly formed in a confined lacustrine sedimentary system, the 2nd member was
deposited in the concurrent sedimentary framework of alluvial, lake, and delta sedimentary
systems, and coal seams were partially formed in the peat mire of the delta plain. The
3rd member was deposited in the concurrent sedimentary framework of lake and delta
sedimentary systems; during the late period, the lake largely became shallow and the
delta was abandoned, on which coal seams were formed and widely distributed. The lake
further shrank and retrograded during the deposition of the 4th and 5th members, which
were formed in the concurrent sedimentary framework of confined lacustrine and alluvial
sedimentary systems.

3. Methodology

A total of one hundred and forty-two coal and non-coal samples were collected from
ten underground coal mines in the Shanbei Jurassic, Shanbei Carboniferous-Permian, Shan-
bei Triassic, Huanglong Jurassic, and Weibei Carboniferous-Permian coalfields (Figure 1).
Among these, twenty coal and non-coal rock samples of the early Permian Shanxi Forma-
tion (P1s) were obtained from the No. 3 coal seam of the Puran coal mine in the Shanbei
Carboniferous-Permian Coalfield and the No. 4 coal seam of the Sangshuping coal mine in
the Weibei Carboniferous-Permian Coalfield. Forty-seven coal and non-coal rock samples
the Late Carboniferous Taiyuan Formation (C2t) were respectively collected from the No. 5
and No. 11 coal seams of the Dongdong, Jinhuashan, Xiangshan, and Sangshuping coal
mines of the Weibei Carboniferous-Permian Coalfield (Figure 2). Thirteen coal and non-coal
rock samples of the late Triassic Wayaobao Formation (T3w) were collected from the No. 3
and No. 5 coal seams of the Yongming coal mine in the Shanbei Triassic Coalfield (Figure 3).
A total of 62 coal and non-coal rock samples of the middle Jurassic Yan’an Formation (J2y)
were respectively obtained from Nos. 1–3 coal seams of the Zhangjiawa and Cuijiagou
coal mines in the Shanbei Jurassic Coalfield and the No. 4 coal seam of the Dafoshi and
Chenjiashan coal mines in the Huanglong Jurassic Coalfield (Figure 4).

Proximate analysis was carried out following the ASTM Standards D3173, D3174, and
D3175 [41–43]. The total sulfur and forms of sulfur were analyzed following the ASTM
Standards D4239-18a and D2492-02 [44,45]. Vitrinite reflectance was measured according to
the ASTM Standard D2798-20 [46]. Mineralogical compositions of the studied samples were
analyzed by powder X-ray diffraction (XRD) using a Bruker D8 A25 diffractometer with
monochromatic Cu Kα radiation, 2 theta range of 4–60◦, step size of 0.19◦, and counting
time of 0.1 s/step. An internal reference method was used to semi-quantify the mineral
contents [47]. The morphology and modes of occurrence of minerals were observed by a
field emission-scanning electron microscope (FE-SEM, FEI Quanta™ 650 FEG, Thermal
Fisher, USA) coupled with an energy dispersive X-ray spectrometer (EDX; Genesis Apex 4,
EDAX Inc., Mahwah, NJ, USA).

4. Results
4.1. Standard Coal Characteristics

The results of proximate analysis including moisture content, ash, and volatile matter
yields in the coals within the different coalfields are summarized in Table 1. According to
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the Chinese Standards MT/T 850-2000 and GB/T 15224.1-2010, and ASTM Standard D388-
12 [48–50], coals of the late Carboniferous Taiyuan Formation in the Weibei Carboniferous-
Permian coalfield are characterized by low moisture content, low to high ash yield, and low
to medium volatile matter yield, belonging to low volatile bituminous (Table 1). Coals of
the early Permian Shanxi Formation in the Weibei Carboniferous-Permian coalfield contain
low moisture content, low ash yield, and low volatile matter yield; in contrast, the analyzed
coal samples from the Shanxi Formation in the Shanbei Carboniferous-Permian coalfield
contain low moisture content, high ash yield, and high volatile matter yield (Table 1).
Accordingly, the former falls within the low volatile bituminous coal rank, whereas the
latter falls within the high-volatile A bituminous rank, which is due to the differential
subsidence in the south and north of the eastern Ordos basin during this period. After
formation of the late Paleozoic coal seam, the subsidence rate was low in the northern area
where the coalification is low, whereas the subsidence rate was high in the southern area
where the coalification is high [40].

The Triassic Wayaobao Formation coals generally contain low moisture content, and
low to medium ash yields. The volatile matter yield indicates a high-volatile A bituminous
coal rank. The No. 3 coal is characterized by lower ash yield compared to the No. 5 coal of
the Wayaobao Formation (Table 1).

The middle Jurassic Yan’an Formation coals are predominantly represented by medium
moisture content, low ash yield, and high volatile matter yield, pointing to a high-volatile
A bituminous coal rank. However, it is worth noting that coals from the Shanbei Jurassic
Coalfield contain relatively higher moisture content and volatile matter yield but lower
ash yields than the Jurassic coal seams in the Huanglong coalfield. The lateral and vertical
variation of coal rank of coal seams formed in different geological ages is mainly attributed
to hypozonal metamorphism in the studied area [51].

With respect to the total sulfur content, the late Carboniferous Taiyuan Formation coals
from the Weibei C-P coal field are characterized by relatively high S content (avg. 1.8–4.6%),
belonging to medium- to high-sulfur coal [52]. The analyzed coal samples from the
Sangshuping coal mine of the Weibei coal field are typical superhigh-organic-sulfur (SHOS)
coals, with a high proportion of organic sulfur content [6]. The early Permian coal seams
in the Shanxi Formation from both the Weibei and Shanbei C-P coalfields are classified as
low-sulfur coals. The Triassic and Jurassic coals from the Shanbei and Huanglong coalfields
are primarily classified as low-sulfur coals with the exception of some coal samples from
the Yan’an Formation in the Shanbei Jurassic coal field (e.g., the Zhangjiawa coal mine),
which have relatively high S content. This is consistent with previous research showing
that the precursor peats of Jurassic coal seams in the Hengshan and Jingbian areas of
the Shanbei Jurassic coalfield were accumulated in the shores of shallow lakes and are
characterized by relatively high S content (>1.0%) [53].

4.2. Coal Petrology

Macerals in the late Carboniferous Taiyuan Formation coals are dominated by vitrinite
(avg. 69.5–79.5%), followed by inertite (20.5–29.5%), with trace amounts of liptinite (Table 1).
Those in the early Permian Shanxi Formation coals are also dominated by vitrinite, but coals
from the Weibei Carboniferous-Permian coalfield are also characterized by higher vitrinite
and lower inertinite contents compared to those from the Shanbei Carboniferous-Permian
coalfield.

The Late Triassic Nos. 3 and 5 coals consist mainly of vitrinite (77.5–76.2%), and to a
lesser extent inertite (22.3–23.4%), with trace liptinite content (<1.0%). The Middle Jurassic
coals generally contain relatively higher inertite contents ranging from 26.55% to 55.21%;
vitrinite contents in the Middle Jurassic coals range from 44.7% to 72.5% (Table 1).
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Table 1. Proximate analysis results and maceral contents for the studied coals from the main coal fields in Shaanxi Province.

Coal Seam Coalfield Coal Mine M, ad% A, d% V, daf% St, d% Vitrinite, % Inertinite,% Liptinite,%

Carboniferous-
Permian

Taiyuan
Formation

(C2t)

No. 5

Weibei
Carboniferous-Permian

(C-P)

Jinghuashan
(JHS) 0.1–0.3 (0.2) 7.1–33.0 (19.6) 15.7–27.5 (19.4) 0.7–3.6 (1.8) 76.4 23.5 0.1

No. 5 Dongdong
(DD) 0.3–0.5 (0.4) 7.6–30.6

(18.1) 15.8–25.5 (19.7) 1.1–9.7 (3.8) 79.5 20.5 0.00

No. 5 Xiangshan
(XS) 0.9–1.5 (1.2) 11.5–36.2 (19.0) 15.3–19.5 (16.6) 0.3–5.6 (2.2) 71.9 27.9 0.2

No. 11 Sangshuping
(SSP) 0.5–2.2 (1.0) 8.1–22.7

(14.8) 13.2–27.8 (16.3) 3.0–8.4 (4.6) 69.5 29.5 1.0

Shanxi
Formation

(P1s)

No. 3
Weibei

Carboniferous-Permian
(C-P)

Sangshuping
(SSP) 0.6–3.1 (1.2) 7.4–21.0

(12.1) 13.7–18.3 (16.2) 0.3–0.5 (0.4) 70.5 28.7 0.8

No. 4
Shanbei

Carboniferous-Permian
(C-P)

Puran
(PR) 1.8–2.9 (2.4) 15.3–45.0 (26.4) 38.7–41.9 (40.8) 0.2–0.4 (0.2) 61.2 38.1 0.7

Late Triassic
Wayaobao
Formation

(T3w)

No. 3

Shanbei Triassic
Yongming

(YM)

1.2–1.6 (1.5) 2.8–25.2
(9.2) 35.2–39.0 (37.3) 0.4–0.5 (0.5) 77.5 22.3 0.2

No. 5 1.3–1.7 (1.5) 6.7–38.4
(19.8) 36.4–44.6 (42.2) 0.3–0.8 (0.6) 76.2 23.4 0.5

Middle Jurassic
Yanan

Formation
(J2y)

No. 3

Shanbei Jurassic

Zhangjiawa
(ZJW) 2.9–4.4 (3.4) 6.7–26.7

(7.4) 34.9–46.3 (39.8) 1.2–4.1 (1.8) 47.0 52.0 1.0

No. 1

Chuijiagou
(CJG)

6.8–8.5 (7.3) 2.0–5.1
(3.9) 30.5–39.1 (34.6) 0.2–0.8 (0.4) 57.0 42.7 0.3

No. 2 5.1–7.0 (5.8) 2.3–21.9
(7.4) 37.9–47.0 (40.7) 0.3–0.5 (0.3) 72.5 26.6 0.9

No. 3 5.5–6.3 (6.0) 1.8–4.8
(3.1) 32.7–41.6 (36.9) 0.3–0.8 (0.3) 70.2 27.7 2.1

No. 4

Huanglong Jurassic

Dafoshi
(DFS) 3.1–3.6 (3.4) 7.0–17.4

(9.4) 29.1–38.9 (32.3) 0.1–0.2 (0.1) 44.7 55.2 0.1

No.4 Chenjiashan
(CJS) 3.1–5.0 (4.0) 6.7–26.7

(14.0) 30.7–41.0 (35.2) 0.2–0.3 (0.2) 51.4 47.8 0.9

ad, air dry basis; d, dry basis; daf, dry and ash free basis.
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The variation of maceral composition and proportion in coals from different coal fields
and different geological ages are largely influenced by the subsidence rate of basin basement
and the marine transgression process. Due to the slow subsidence in the northern area, in
addition to the marine transgression from southwest to northeast of the late Carboniferous-
early Permian epicontinental basin in North China, relatively oxidized raised bog was
more readily formed in the northern area, which is close to the sediment source. This
finding is also evidenced by the aforementioned obviously lower volatile matter yield of
Carboniferous-Permian coals in the northern area with respect to the southern area, which
is in accordance with a previous study that showed the vitrinite reflectance of coals of the
same geological age decreases from south to north due to the multiple effects of tectonism
and the subsidence rate [54].

4.3. Coal Mineralogy
4.3.1. Carboniferous-Permian Coals
Mineral Composition

Minerals in the late Carboniferous Taiyuan Formation coals (No. 5 and No. 11)
from the Weibei C-P Coalfield consist mainly of kaolinite (avg. 38.0–70.0%, on an ash
basis, which was recalculated using the ash yield values of the studied samples) and
calcite (avg. 21.3–35.2%, on an ash basis), with minor and different proportions of quartz,
tobelite, dolomite, pyrite, siderite, ankerite, and anatase in different coal mines (Table 2).
Furthermore, svanbergite, chalcopyrite, galenite, and apatite, although below the detection
limit of XRD analysis, were also identified in these coals by SEM-EDS analysis, as accessory
phases [6,55].

Minerals in the early Permian Shanxi Formation coals (No. 3) from the Weibei C-P
Coalfield are also mainly composed of kaolinite (avg. 47.9%), calcite (avg. 17.3%), in
addition to tobelite (avg. 18.2%) and ankerite (avg. 10.1%), with minor amounts of
apatite and quartz. In contrast, the early Permian Shanxi Formation coals (No. 4) in the
Shanbei C-P Coalfield are almost entirely composed of kaolinite (avg. 88.9%), with small
proportions of calcite (avg. 8.8%) and apatite (avg. 2.5%).

Modes of Occurrence of Minerals

Generally, kaolinite occurs in various forms in the C-P coals, sometimes identified as
lenticles or irregular debris along bedding planes (Figure 5a), demonstrating a terrigenous
detrital origin. In some cases, kaolinite, in conjunction with goyazite (Figure 5b) or apatite
(Figure 5c), is also found as infillings, presumably suggesting a co-precipitation from so-
lutions [7,55]. In a few cases, kaolinite also occurs as cell infillings (Figure 5d), coexisting
with pyrite (Figure 5e) or melanterite (Figure 5f), and to a lesser extent, epigenetic dissemi-
nated pyrite occurs on the surface of kaolinite, indicating an authigenic precipitation from
solutions during syngenetic to early diagenetic stages. In addition, there was input of felsic
volcanic debris during accumulation of the Late Carboniferous coals as evidenced by the
presence of high temperature quartz, and zircon in coals from the Weibei coalfield [4], and
vermicular kaolinite in partings of coals from the Shanbei coalfield [7]. Therefore, kaolinite
could also originate from alteration of synchronous volcanic inputs.

Carbonate minerals in the studied coals, principally dolomite and calcite, occur pri-
marily as irregular fracture infillings (Figure 6a,b), indicative of an epigenetic precipitation
from solutions [13,56–58]. In some cases, particles of siderite occur as cavity infillings of
kaolinite (Figure 6c), pointing to an authigenic origin [59,60]. The occurrence of euthe-
dral particles and fracture infilling of ankerite is also indicative of an epigenetic origin
(Figure 6c,d).

Pyrite is found as framboidal pyrite grains and fracture infillings (Figures 5e, 6b,c and 7a,b),
respectively indicating a syngenetic and epigenetic origin for pyrite crystallization [10,16,59].
In a few instances, chalcopyrite and galenite occur in the form of cavity infillings within
organic matter or kaolinite, indicating authigenic precipitation (Figure 7c,d).
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Table 2. Semi-quantitative mineral composition of coals from the Weibei and Shanbei C-P coal fields in Shaanxi Province as deduced from XRD analysis (%, on ash basis).

Coalfield Coal Mine Qtz Kln Cal Dol Sd Ank Py Tb Gp Ant Ap

C2t

No. 5

Weibei

JHS <dl-16.9
(5.1)

2.3–92.7
(41.4)

<dl-93.4
(35.2)

<dl-22.7
(6.0)

<dl-4.2
(1.0) <dl <dl-15.5

(4.4)
<dl-48.1

(6.9) <dl <dl <dl

No. 5 DD <dl-7.2
(0.8)

1.4–83.6
(38.0)

<dl-72.9
(25.4)

<dl-11.7
(4.8)

<dl-6.6
(1.5) <dl <dl-52.0

(19.1)
<dl-19.8

(8.8)
<dl-6.9

(1.3)
<dl-2.3

(0.2) <dl

No. 5 XS <dl-0.9
(0.1)

23.9–99.1
(70.0) <dl <dl-6.7

(1.7) <dl <dl-14.8
(3.3)

<dl-65.9
(22.1) <dl <dl <dl-1.0

(0.1) <dl

No. 11 SSP <dl 14.8–85.4
(58.2)

<dl-77.5
(21.3) <dl <dl <dl <dl-45.0

(9.7)
<dl-20.8

(6.1)
<dl-6.4

(1.1) <dl <dl

P1s

No. 3 Weibei SSP <dl-14.5
(1.6)

18.2–83.3
(47.9)

<dl-56.9
(17.3)

<dl-3.0
(0.4) <dl <dl-23.4

(10.1) <dl <dl-53.5
(18.2) <dl <dl <dl-27.4

(4.5)

No. 4 Shanbei PR <dl 63.1–97.8
(88.9)

<dl-36.9
(8.8) <dl <dl <dl <dl <dl <dl <dl <dl-9.3

(2.5)

Qtz, quartz; Kln, kaolinite; Cal, calcite; Dol, dolomite; Sd, siderite; Ank, ankerite; Py, pyrite; Tb, tobelite; Gp, gypsum; Ant, anatase; Ap, apatite; <dl, below XRD detection limit.



Energies 2021, 14, 7905 12 of 33

Figure 5. SEM images of kaolinite in the Carboniferous-Permian coals: (a) kaolinite lenses and
debris in Puran Permain coal; (b) kaolinite intergrown with goyazite in Jinhuashan Carboniferous
coal; (c) kaolinite intergrown with apatite in Puran Permain coal; (d) fusinite infilling with kaoli-
nite in Dongdong Carboniferous coal; (e,f), re-mineralized pyrite and melanterite in kaolinite of
Sangshuping Carboniferous coal.

In addition, apatite occurs as cavity infillings within kaolinite particles (Figures 5c and 7c)
and cell infillings of organic matter (Figure 8a), all of which indicates an authigenic origin.
Due to the occurrence of felsic volcanic debris during accumulation of the Late Carbonifer-
ous coals, apatite is presumably originated from inputs either from synchronous volcanic or
epiclastic inputs into palaeomires. Authigenic zircon also occasionally occurs as euhedral
crystals in the C-P coals (Figure 8b), which is either originated from the synchronous
volcanic input or detrital influx from the metamorphic or volcanic rocks in the basements.
Traces of barite were found filling the cavity of organic matter (Figure 8c), or occur as
cleat-filling veins (Figure 8d), representing a possible crystallization from hydrothermal
fluids or Ba-rich solutions that originated from alterations of feldspars or volcanic debris.
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Figure 6. SEM images of carbonate minerals in the Carboniferous-Permian coals: (a) fracture-filling
calcite in Sangshuping Carboniferous coal; (b) fracture-filling calcite and dolomite in Jinhuashan
Carboniferous coal; (c) euthedral particles of ankerite and siderite in Xiangshan Carboniferous coal;
(d) fracture-filling ankerite in Puran Permian coal.

Figure 7. SEM images of carbonate minerals in the Carboniferous-Permian coals: (a,b) euhedral
pyrite in Sangshuping Carboniferous coal; (c) cavity infilling of galenite in Puran Permian coal;
(d) cavity infilling of chalcopyrite in Dongdong Carboniferous coal.
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Figure 8. SEM images of heavy minerals in the Carboniferous-Permian coals. (a) microcrystals
of apatite in Dongdong Carboniferous coal; (b) euhedral zircon in Puran Permian coal; (c) barite
particles in Puran Permian coal; (d) cleating-filling barite veins in Jinhuashan Carboniferous coal.

Vertical Distribution of Minerals

The contents and composition of minerals remarkedly varies in different coal seams
of the Taiyuan Formation and Shanxi Formation in the Weibei C-P coal fields. In the
Taiyuan Formation No. 11 coal from the Sangshuping coal mine, kaolinite and tobelite
are higher in abundance in the middle and lower portion, whereas pyrite and gypsum
occur only in the roof and upper portion of the coal seam (Figure 9). Microcline was
only detected in the coal partings (Figure 9). In the Taiyuan Formation No. 5 coal from
the Xiangshan coal mine, kaolinite and illite are the dominant minerals and present an
inverse distribution along the coal seam; the former is higher in abundance in the upper
portion, whereas the latter is mainly higher in the lower portion (Figure 10), probably
due to the variation in the clastic influx ratio or the source of detritic material during the
peat accumulation process, or due to the alteration of kaolinite by hydrothermal solutions.
Dolomite, pyrite, and ankerite occur in the middle and lower portion (Figure 10). As
reported by Li et al. (2020b) [55], in the Taiyuan Formation No. 5 coal from the Jinhuashan
coal mine, calcite, dolomite, siderite, pyrite, and tobelite are higher in abundance in the
lower portion, decreasing towards the upper part (Figure 11). Dolomite and siderite have
a similar distribution, possibly indicating a similar origin. The parting contains higher
quartz, kaolinite, and illite compared to the coals, and tobelite occurs only in the bottom of
the coal seam (Figure 11). In the Taiyuan Formation No. 5 coal from the Dongdong coal
mine, kaolinite is relatively low in the middle and upper parts and increases towards the
lower parts (Figure 12). However, calcite has an inverse distribution to that of kaolinite.
Pyrite is a ubiquitous constituent throughout the No. 5 coal but is higher in the upper
parts. Tobelite is commonly identified in the middle and lower coal benches and presents a
similar distribution to kaolinite (Figure 12). Siderite is abundant in the middle coal benches
but appears to disappear in the upper and lower coal benches. Quartz is only found in the
upper coal benches. The parting (DD-5-13P) contains higher kaolinite and tobelite content.
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In the Shanxi Formation No. 4 coal from the Puran coal mine (Shanbei C-P coal field),
kaolinite displays an increasing tendency from the lower to the upper portion. Calcite is
found in the top and bottom coal benches but is below the detection limit in the middle
coal benches. Fluorapatite is only identified in the middle coal benches (Figure 13).

In the Shanxi Formation No. 3 coal from the Sangshuping coal mine, kaolinite also
displays an increasing tendency from the lower to upper part (Figure 14). Calcite content
is higher in the upper portion and bottom coal benches but is lower in the middle coal
benches. Quartz occurs in the top coal benches, whereas ankerite and tobelite occurs in
the middle and lower portion. Fluorapatite is only identified in a few coal samples in the
lower coal benches (Figure 14).

4.3.2. Triassic Coals

The minerals in the late Triassic Wayaobao Formation mainly comprise quartz (avg.
36.9–45.1%, on ash basis) and kaolinite (avg. 39.8–43.8%) (Table 3). In addition, a minor
proportion of calcite was identified in the lower coal benches of the No. 3 coal, and traces
of illite and albite were only found in sample YM3-2. Minor amounts of calcite, siderite,
ankerite, and pyrite, in addition to traces of illite and albite, are present in the No. 5 coal
(Figure 15).

Quartz and kaolinite have similar distribution patterns in the No. 3 coal (Table 3),
possibly indicating a similar source. In the No. 5 coal, the distribution of pyrite is similar
to that of ankerite, and calcite content decreases from the bottom to top of the No. 5 coal
and is absent from the parting (Figure 15), possibly because the non-coal rock has a low
permeability and keeps Ca-rich solutions percolating into the parting.

In the late Triassic coals, kaolinite is found as cleat or fracture infillings, intimately with
calcite and pyrite (Figure 16a–c), indicating an epigenetic origin. Calcite was also found in
the coals as fusinite cell-fillings or co-existing with kaolinite (Figure 16d–f), indicating an
authigenic origin and its formation after kaolinite.

4.3.3. Jurassic Coals
Mineral Composition

The minerals in the No. 3 coal from the Zhangjiawa coal mine and the Nos. 1, 2, and
3 coals from the Cuijiagou coal mine in the Shanbei coalfield consist mainly of quartz (avg.
31.3–81.7%, on an ash basis), calcite (avg. 1.2–46.6%), and kaolinite (avg. 6.1–21.1%), in
addition to minor amounts of pyrite, ankerite, dolomite, gypsum, and jarosite identified
in different coal seams. It is worth noting that the minerals in the No. 3 coal from the
Cuijiagou mine are dominated by quartz (up to 81.7% on average), with a minor proportion
of kaolinite (avg. 15.8%), and traces of calcite, pyrite, and gypsum.

The minerals in the No. 4 coal from the Dafoshi and Chenjiashan coal mines in
the Huanglong coalfield are composed mainly of quartz (avg. 35.4–45.1%), calcite (avg.
20.5–31.5%), and kaolinite (avg. 13.5–28.4%), with minor proportions of siderite (avg. 0.5%
in the Chenjiashan mine and 16.1% in the Dafoshi mine), ankerite (3.6% in the Dafoshi mine),
dolomite (3.3% in the Chenjiashan mine), and fluorapatite (2.1% in the Chenjiashan mine).

Mineral Distribution

In the Zhangjiawa coal mine, quartz and kaolinite have a similar vertical distribution
in the No. 3 coal, indicating a similar geological control (Figure 17). However, calcite has
an inverse distribution to kaolinite, which is most likely because the coal benches rich in
kaolinite and quartz have low permeability, which keeps Ca-rich fluids permeating into
the coal. Pyrite appears to be randomly distributed across the coal seam. Gypsum occurs
in the lower portion and jarasite is observed only in the lower coal bench (Figure 17).
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Figure 9. Vertical variations of minerals through the No. 11 coal section in the Sangshuping coal mine of the Weibei Carboniferous-Permian coalfield.
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Figure 10. Vertical variations of minerals through the No. 5 coal section in the Xiangshan coal mine of the Weibei C-P coalfield.

Figure 11. Vertical variations of minerals through the No. 5 coal section in the Jinghuashan coal mine of the Weibei C-P coalfield.
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Figure 12. Vertical variations of minerals through the No. 5 coal section in the Dongdong coal mine of the Weibei C-P coalfield.

Figure 13. Vertical variations of minerals through the No. 4 coal section in the Puran coal mine of the Shanbei C-P coalfield.
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Figure 14. Vertical variations of minerals through the No. 3 coal section in the Sangshuping coal mine of the Weibei C-P coalfield.



Energies 2021, 14, 7905 20 of 33

Table 3. Semi-quantitative mineral composition of coals from the Triassic and Jurassic coal fields in Shaanxi Province as deduced from XRD analysis (%, on ash basis).

Coalfield Coal
Mine Qtz Kln Cal Dol Sd Ank Py Ill Ab Gp F-Ap Jar

T3w

No. 3
Shanbei
Triassic

YM

23.2–59.8
(45.1)

35.5–57.1
(43.8)

<dl-19.6
(9.7) <dl <dl <dl <dl <dl-0.8

(0.2)
<dl-1.2

(0.3) <dl <dl <dl

No. 5 18.2–57.0
(36.9)

28.1–57.0
(39.7)

<dl-27.3
(9.4) <dl <dl-34.9

(9.5)
<dl-9.4

(2.6)
<dl-4.3

(1.5)
<dl-2.6

(0.4)
<dl-1.2

(0.2) <dl <dl <dl

J2y

No. 1

Shanbei
Jurassic

CJG

11.4–59.5
(31.3)

5.7–44.4
(20.0)

<dl-82.9
(46.6) <dl <dl <dl <dl-6.3

(0.8) <dl <dl <dl-2.1
(0.3) <dl <dl

No. 2 <dl -92.0
(34.2)

<dl-100
(21.1)

<dl-85.0
(36.5)

0.0–1.3
(0.1)

<dl-27.7
(3.2)

<dl-15.0
(3.4)

<dl-4.8
(1.2) <dl <dl <dl-4.3

(0.6) <dl <dl

No. 3 70.6–96.2
(81.7)

3.8–29.4
(15.8)

<dl-7.1
(1.2) <dl <dl <dl <dl-2.6

(0.8) <dl <dl <dl-2.6
(0.4) <dl <dl

No. 3 ZJW 3.0–63.3
(32.8)

<dl -21.8
(6.1)

2.6–90.9
(41.9) <dl <dl <dl 1.7–74.6

(15.0) <dl <dl <dl-14.1
(3.6) <dl <dl-8.5

(0.7)

No. 4
Huanglong

Jurassic

DFS 13.6–55.9
(35.4)

4.7–23.8
(13.5)

4.4–69.9
(31.5) <dl 1.2–29.4

(16.1)
<dl-16.0

(3.6) <dl <dl <dl <dl <dl <dl

No. 4 CJS 8.2–66.3
(45.1)

7.1–53.3
(28.4)

0.4–76.7
(20.5)

<dl-25.3
(3.3)

<dl-4.3
(0.5) <dl <dl <dl <dl <dl <dl-14.1

(2.1) <dl

Qtz, quartz; Kln, kaolinite; Cal, calcite; Dol, dolomite; Sd, siderite; Ank, ankerite; Py, pyrite; Ill, illite; Ab, albite; Gp, gypsum; Jrs, jarosite; F-Ap, Fluorapatite<dl, below XRD detection limit.
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Figure 15. Vertical variations of minerals through the No. 5 coal section in the Yongming coal mine of the Shanbei Triassic
coalfield.

Figure 16. SEM images of minerals occurring in the late Triassic coals: (a–c) cleat infillings of kaolinite,
pyrite, and calcite in the Yongming Triassic coal; (d–f) cell infillings of kaolinite and calcite in fusinite
of the Yongming Triassic coal.
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Figure 17. Vertical variations of minerals through the No. 3 coal section in the Zhangjiawa coal mine
from the Shanbei Jurassic coalfield.

In the Cuijiagou coal mine, quartz and kaolinite have a similar distribution and totally
decrease towards the upper part of the No. 1 coal seam (Figure 18); calcite occurs in the
middle and upper portion but is below the XRD detection limit in the bottom coal benches;
pyrite and gypsum only occur in the top of coal bench. In the No. 2 coal seam, quartz
and kaolinite are rich in the middle and lower coal benches but calcite is rich in the upper
coal benches through the coal section (Figure 19); pyrite, siderite, and gypsum are only
observed in the middle coal benches; dolomite and ankerite are present in the top or upper
part of coal seam. In the No. 3 coal seam, quartz is concentrated in the upper and lower
coal benches but kaolinite is rich in the middle coal benches; calcite, gypsum, and pyrite
are only randomly present in a few coal benches (Figure 20).

Figure 18. Vertical variations of minerals through the No. 1 coal section in the Chuijiagou coal mine
from the Shanbei Jurassic coalfield.
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Figure 19. Vertical variations of minerals through the No. 2 coal section in the Chuijiagou coal mine of the Shanbei Jurassic
coalfield.

Figure 20. Vertical variations of minerals through the No. 3 coal section in the Chuijiagou coal mine of the Shanbei Jurassic
coalfield.

In the Dafoshi coal mine, quartz, kaolinite, and siderite have a similar distribution
through the No. 4 coal section; calcite and ankerite have a similar distribution, which is the
reverse of that of quartz (Figure 21). By contrast, in the Chenjiashan coal mine, quartz and
kaolinite also have similar distribution tendencies along the No. 4 coal section, which are
similar to that of the ash yield; calcite and dolomite also present a similar distribution, with
higher contents in the middle coal benches; fluorapatite and siderite occur in the upper
coal benches (Figure 22).

Modes of Occurrence of Minerals

SEM-EDS shows that euhedral calcite and ankerite occur mainly as cell infillings,
pointing to an authigenic origin (Figure 23a,b), and in a few cases, calcite is present as
euhedral particles (Figure 23c). Euhedral barite crystal is observed filling the cavities
of calcite (Figure 23d). Kaolinite occurs as massive particles and cavity infillings within
organic matter, and occasionally coexists with fluorapatite (Figure 23e). Fluorapatite also
occurs as cleat infillings (Figure 23f), representing an epigenetic origin. Quartz is present
as irregular particles along the bedding planes (Figure 23e), or as cavity infillings within
organic matter (Figure 23f,g), indicative of both a detrital and authigenic origin. Sphalerite
occurs as inclusions within the calcite (Figure 23b), demonstrating its formation prior to
calcite. Euhedral pyrite particles are precipitated on the surface of calcite (Figure 23c),
or distributed along the fractures as cavity infillings within organic matter (Figure 23g),
both reflecting an epigenetic origin for its formation. In some cases, gypsum is found
occurring as fracture infillings, which indicates an epigenetic origin (Figure 23h), and rutile
occasionally occurs as finely dispersed particles within organic matter (Figure 23e).
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Figure 21. Vertical variations of minerals through the No. 4 coal section in the Dafoshi coal mine of
the Huanglong Jurassic coalfield.

Figure 22. Vertical variations of minerals through the No. 4 coal section in the Chenjiashan coal mine
of the Huanglong Jurassic coalfield.
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Figure 23. SEM images of minerals occurring in the middle Jurassic coals: (a) cell-filling
ankerite and calcite particles in Dafoshi Jurassic coal; (b) euhedral sphalerite and calcite
in Dafoshi Jurassic coal; (c) crystals of calcite and pyrite in Cuijiagou Jurassic coal; (d)
euhedral barite in the Zhangjiawa Jurassic coal; (e) syngenetic microcrystals of fluorapatite,
rutile, and kaolinite in the Chenjiashan Jurassic coal; (f) cleat infilling of fluorapatite in
the Chenjishan Jurassic coal; (g,h) fracture infilling of pyrite and gypsum in the Cuijiagou
Jurassic coal.
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5. Discussion
5.1. Origins of Typical Minerals in Different Coals
5.1.1. Clay Minerals

Kaolinite is the most common clay mineral occurring in all the coal seams in Shaanxi.
The various modes of occurrence of kaolinite in coals indicates different origins for its
formation. Those occurring in the form of lenticles and thin layers were inherited from the
source rocks, representing a terrigenous detrital origin. Those cell-, fracture-, and cleat-
filling kaolinites are of authigenic origins, which were formed by interaction of weathered
source rocks with syngenetic or epigenic fluids.

Tobelite is ubiquitously present in coals from the Weibei C-P coal field [6,55]. As previ-
ously mentioned, tobelite is a high-temperature hydrothermal indicator, usually occurring
in high-rank coals, and has also been found present in several Permo-Carboniferous coals
in China [60–62]. The well-developed fault structure and associated high-temperature
hydrothermal activities in the Weibei coalfield evidenced that tobelite in coals originated
from hydrothermal alteration of kaolinite with the active participation of NH4+ from
organic matter at a relatively high temperature.

5.1.2. Carbonate Minerals

Carbonate minerals, e.g., calcite, dolomite, ankerite, and siderite, are the main minerals
in the Shaanxi coals, especially in the Permo-Carboniferous and Jurassic coals. In most
cases, calcite and dolomite occur in the form of irregular fracture infillings (Figure 6b),
indicative of an epigenetic precipitation from solutions. In some cases, euhedral calcite and
ankerite occur as cell infillings (Figures 16f and 23a), and in a few cases, calcite is present
as massive particles (Figure 23c), pointing to an authigenic origin. However, the cell-filling
calcite and its coexistence with kaolinite indicate a later formation stage because palaeomire
is commonly acidic condition which hampers the formation of calcite during syngenetic
to early diagenetic stages. In contrast, particles of siderite occur as cavity infillings of
kaolinite (Figure 6c), indicating a syngenetic origin, which is in consonance with previous
research showing that siderite was commonly formed by authigenic precipitation during
the syngenetic to early diagenetic stage [10,59,63].

5.2. Change in Mineral Assemblages with Different Coal Fields and Geological Ages

The composition, proportions, and assemblages of minerals remarkably vary in dif-
ferent coal fields of different geological ages. Minerals in the late Carboniferous-early
Permian coals are dominated by kaolinite and calcite (Figure 24), due to the co-effect
of terrigenous/volcanic debris influx and paralic sedimentary environment. The late
Carboniferous-early Permian coal-bearing strata in North China was formed on the long-
term weathering basement of the Ordovician [40], and there was occasionally an input
of felsic volcanic debris during accumulation of the Late Carboniferous coals [4,7], which
provided abundant detrital influx for kaolinite precipitation [14,17]. Furthermore, the
late Carboniferous-early Permian coal-bearing strata in North China was deposited in an
epicontinental marine-influenced environment, which gave rise to the high sulfur con-
tent [10,64]. Due to the rapid tectonic subsidence rate of the basement and the relatively
abundant provenance system during the formation of the late Triassic coals, minerals in
the Wayaobao Formation coals are mainly composed of quartz and kaolinite (Figure 24).
In comparison, the middle Jurassic coals were formed in confined lacustrine sedimen-
tary environment with a relatively slow basement subsidence rate, and minerals in them
are dominantly composed of quartz and calcite (Figure 24), with a minor proportion of
kaolinite.
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Figure 24. Ternary plots of principle mineral compositions in coals of different geological ages.

Formed in the same geological age, coals deposited in different parts of the coal basin
have different mineral characteristics. For instance, the Shanxi Formation coals from the
Shanbei C-P coalfield in the north of Shaanxi Province are characterized by higher kaolinite
and lower carbonate (calcite, dolomite, and ankerite) contents compared to those from the
Weibei C-P coalfield in the south of Shaanxi Province, and tobelite occurs in coals from
the Weibei C-P coalfield rather than the Shanbei C-P coalfield. With respect to the Taiyuan
Formation No. 5 coals from the Weibei C-P coal field, the quartz content decreased and
pyrite content increased northwards from the Jinhuashan to Dongdong to Xiangshan coal
mine (Table 2). With respect to the Jurassic coals, those from the Shanbei Jurassic coalfield
in the north have different proportions of pyrite and gypsum, whereas those from the
Huanglong Jurassic coalfield have minor amount of fluorapatite.

5.3. Geological Controls on Mineralogical Characteristic Differences

The geological controls on minerals in coals commonly include terrigenous material
input, seawater invasion, volcanic ash fall, igneous intrusion, descending and ascending
groundwater, chemical compositions of groundwater, influence of hydrothermal solutions
and/or chemistry of circulating porewaters [13,15,56]. In the present research, the afore-
mentioned differences in mineral contents, compositions, and assemblages in different
coal fields of different geological ages are primarily influenced by the sedimentary settings
(including seawater invasion, tectonic setting, subsidence, and buried rate) and terrigenous
detrital input from sedimentary provenance, in addition to the intrusion of hydrothermal
fluids.

5.3.1. Influence of Sedimentary Setting

The peat-forming environment is to a large extent controlled by the sedimentary
settings during accumulation of the coal-bearing sequences. Coal-bearing sequences of
the late Carboniferous were deposited during the epicontinental transitional sedimentary
period, during which the coal was highly influenced by seawater and terrigenous clastics,
with a relatively high buried rate and low degree of oxidation and decomposition. As a
consequence, the Taiyuan Formation coals are commonly characterized by relatively high
sulfur, high vitrinite, and high pyrite contents. During the early seawater transgression
stage, the Taiyuan Formation No. 11 coal was formed in the lagoon-tidal flat environment
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on a confined carbonate platform and developed only in the Sangshuping coal mine in the
northeastern corner of the Weibei C-P coal field. It is characterized by super-high organic
sulfur content and relatively low pyrite content, similar to that of some Late Permian SHOS
coals in southern China that are formed in tidal flat environments on restricted carbonate
platforms [15,65–69]. As the seawater transgression further proceeded during the second
and the upper member of the Taiyuan Formation, the Taiyuan Formation No. 5 coals were
widely developed in the Weibei C-P coal field. Due to the sufficient iron supply, sulfur in
the No. 5 coals occurs predominantly in the form of pyritic sulfur, with high pyrite content.

The Triassic coals were formed during the late filling stage of a large inland lake
basin, and accordingly characterized by relatively high vitrinite and mineral contents with
low sulfur and pyrite contents. The Jurassic coals were deposited in similar sedimentary
settings to the Triassic coals, but with low terrigenous detrital supply, giving rise to low
mineral contents. As previously mentioned, different proportions of pyrite, gypsum, and
jaracite occur in the Shanbei Jurassic coals and sulfur content in some of the Shanbei
Jurassic coals are relatively high. These tiny differences were ascribed to the low influence
of terrigenous clastics during formation of the Shanbei Jurassic coals, which were formed
in a relatively occlusive confined lake sedimentary environment.

5.3.2. Influence of Terrigenous Detrital Input

Terrigenous detrital input from sedimentary provenance also plays a significant role
in coal mineralogical characteristics. During the Late Paleozoic, the sediment source
for the North China block is, to a large degree, mainly from the Yinshan Oldland [70].
However, the Weibei C-P coalfield and Huanglong Jurassic coalfield are situated on the
southwestern edge of North China, where the sediment source for the Late Paleozoic strata
is controversial. It was reported that during the Late Paleozoic, the sediment source for the
southcentral part of the North China block and the Ordos basin was controlled by detrital
supplies from both the Yinshan tectonic belt to the north and the Central China Orogenic
Belt (including Qinling, Dabie, Qilian, and Kunlun Mountain Ranges) to the south [6,60,71].
In the Weibei C-P coal field, quartz content in the Taiyuan Formation No. 5 coals increased
southwards from the Xiangshan to Dongdong to Jinhuashan coal mine, probably due to
the relatively high influence of terrigenous clastics from Qinling-Qilian Oldland, which is
characterized by abundant quartz and lithoclast contents [6,72].

During deposition of the Shanxi Formation, the northern margin of the Ordos Basin
was the Alxa Uplift and Yinshan Uplift, and the southern margin was the Qilian Uplift
and North Qinling Uplift. With the exception that the northern areas close to the Alxa
and Yinshan Uplift, which belong to inland piedmont clastic coal-bearing sequences, the
remaining areas belong to open basin clastic coal-bearing sequences. As a consequence,
due to the higher influence of terrigenous detrital inputs originating from the Yinshan
Oldland, which is rich in feldspar and mica but poor in quartz in composition, the Shanxi
Formation coals in the Shanbei C-P coalfield are characterized by higher ash yields and
mineral contents relative to those in the Weibei C-P coalfield, with minerals dominated by
kaolinite. Furthermore, relative to the north part of the Ordos Basin, the subsidence rate
was much higher in the south part during this period, which gave rise to higher coal rank
(low volatile bituminous) of the Shanxi Formation coal from the Weibei C-P coalfield.

During the deposition period of the Jurassic Yan’an Formation, due to the northward
push from the Qinling-Qilian orogenic belt, the uplift was stronger in the south than in
the north, and coal-bearing strata of the Yan’an Formation were mainly composed of
coarse clastic rocks in the south and fine clastic rocks in the north [73]. Consequently, the
Huanglong Jurassic coals in the south present relatively higher ash yields and mineral
contents due to the stronger terrigenous inputs of coarse clastic rocks from the southern
provenance.
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5.3.3. Influence of Hydrothermal Fluids

The mineral assemblages of coals from different coal fields and different geological
ages are to a large extent influenced by multiple hydrothermal activities during and after
the coalification stage. As discussed above, several minerals, e.g., calcite, dolomite, pyrite,
and occasionally chalcopyrite and barite in the studied coals, are confirmed as occurring
primarily as fracture and cleat infillings (Figures 5–8, 16 and 23), which is indicative of
epigenetic hydrothermal activities [56,58,66,73,74].

Furthermore, kaolinite occurs in various forms in the studied coals; some fracture or
cleat infilling of kaolinite in the Shanbei Jurassic coals also evidenced the epigenetic input
of hydrothermal fluids [7]. However, it is more common that kaolinite occurs as cell or pore
space infillings in the Weibei and Shanbei C-P coals, which precipitated from syngenetic
fluid derived from the weathered source region. The occurrence of apatite as cell infillings
of organic matter (Figure 8a) and cavity infillings within kaolinite particles (Figure 7c) also
indicated the input of syngenetic hydrothermal fluid.

In addition to the fracture and cleat infilling minerals, the ubiquitous occurrence of
tobelite in the Weibei C-P coalfield is most likely caused by the hydrothermal activities,
although this was not observed by SEM-EDX [6,55]. In particular, the Shanxi Formation
coals from the Weibei C-P coalfield present much high calcite content than those from
the Shanbei C-P coalfield; other carbonate minerals (dolomite and ankerite), in addition
to tobelite, are also present in coals from the Weibei C-P coalfield, but were not detected
in the coals from the Shanbei C-P coalfield. In addition, fracture-infilling pyrite also
occurs in tobelite-bearing samples (Figures 6b and 8d). This may indicate that the Shanxi
Formation coals from the Weibei C-P coalfield experienced much stronger influences of
other more hydrothermal fluids than those forming fracture- and cleat-infilling calcite
in coals from the Shanbei C-P coalfield. The presence of tobelite along with fracture-
infilling minerals (e.g., pyrite or quartz) in coal is commonly indicative of high temperature
(>200 ◦C) hydrothermal activities [75–78]. It has been confirmed that tectonic activities
were intensive in the Weibei C-P coalfield, with a well-developed folding structure in the
west and faulting structures intensely developed in the east [79]. The fault structures played
a key role in the movement and migration of hydrothermal fluids towards coal seams
during the syngenetic and epigenetic process, which highly influenced the mineralogical
and geochemical characteristics of coals. Furthermore, the high temperature hydrothermal
fluids along with the rapid subsidence rate also led to the high coal rank in the Weibei
C-P coalfield, as indicated by the relatively low volatile matter yield and high vitrinite
reflectance [54].

6. Conclusions

The late Carboniferous Taiyuan Formation, the early Permian Shanxi Formation, the
late Triassic Wayaobao Formation, and the middle Jurassic Yan’an Formation are the main
coal-bearing sequences in the Shaanxi Province. The Permo-Carboniferous coals, the late
Triassic coals, and the middle Jurassic coals are respectively characterized by medium-high,
low-medium, and low ash yields, which indicates that they were respectively formed in
lowland bog, medium bog, and highland bog environments. Coals from the Weibei C-P
coalfield belong to low volatile bituminous whereas coals from other coalfields belong to
high volatile bituminous.

Vitrinite is the dominant maceral in the Permo-Carboniferous coals, with an increasing
tendency from the north (the Shanbei C-P coal field) to the south (the Weibei C-P coal field),
probably due to the slow subsidence in the northern area and the marine transgression
from the southwest towards the northeast of the Permo-Carboniferous epicontinental basin
in North China. The late Triassic coals are also mainly composed of vitrinite, whereas the
middle Jurassic coals are characterized by much higher inertinite content, which is also
ascribed to the fast subsidence rate and peat burying rate during the late Triassic period.

The minerals in the late Carboniferous-early Permian coals are mainly composed of
kaolinite and calcite, whereas those in the late Triassic coals are dominated by quartz and
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kaolinite, and those in the middle Jurassic coals are dominated by quartz and calcite, with
relatively high kaolinite content. These different mineral assemblages in coals of different
geological ages are controlled by integrated influences of differential terrigenous detrital
input, sedimentary settings, sea transgression and regression processes, and hydrothermal
activities.
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