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Abstract: European Union Allowances (EUAs) are rights to emit CO2 that may be sold or bought
by enterprises. They were originally created to try to reduce greenhouse gas emissions, although
they have become assets that may be used by financial intermediaries to seek for new business
opportunities. Therefore, forecasting the time evolution of their price is very important for agents
involved in their selling or buying. Neural Networks, an artificial intelligence paradigm, have been
proved to be accurate and reliable tools for time series forecasting, and have been widely used to
predict economic and energetic variables; two of them are used in this work, the Multilayer Preceptron
(MLP) and the Long Short-Term Memories (LSTM), along with another artificial intelligence algorithm
(XGBoost). They are combined with two preprocessing tools, decomposition of the time series into
its trend and fluctuation and decomposition into Intrinsic Mode Functions (IMF) by the Empirical
Mode Decomposition (EMD). The price prediction is obtained by adding those from each subseries.
These two tools are combined with the three forecasting tools to provide 20 future predictions of
EUA prices. The best results are provided by MLP-EMD, which is able to achieve a Mean Absolute
Percentage Error (MAPE) of 2.91% for the first predicted datum and 5.65% for the twentieth, with a
mean value of 4.44%.

Keywords: European Union allowances; CO2 price prediction; emission allowances; neural networks;
forecasting

1. Introduction

Since the European Union (EU) created the Emission Trading System (EU ETS) in
2005 to combat climate change, it has become one of the cornerstones of the European
environmental policy, with strong implications for industrial activities and repercussions
that reach all economic and social sectors. Its main goal is to reduce greenhouse gas
emission. It is supposed that companies producing carbon emissions must effectively
manage associated costs by buying or selling rights to emit CO2, the so-called European
Union Allowances (EUAs). The EU ETS is a cap-and-trade system, which includes only
large stationary sources of emissions belonging to the most pollutant industrial sectors of
the European economy (power plants, oil refineries, ferrous metallurgy, cement clinker or
lime, glass—including glass fiber—ceramic products by firing, and pulp, paper and board).

Companies involved can either use EUAs to compensate their emissions or sell them
to others that need them [1]; they are allowed to trade emission allowances freely within
the EU, so the system seeks to ensure that overall emissions are reduced, but also that cuts
are made by those companies that can achieve the most efficient abatement costs [2,3].
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Although the main EUA market goal was to give firms an incentive to move towards
a less fossil fuel-intensive production, it also provides a new asset and new business
development opportunities for financial intermediaries. Thus, current allowance prices, as
well as the predicted EUA prices, are critical for companies, brokers, traders, and investors,
and they can also affect decarbonization investment decisions [4–7]. Therefore, it may be
stated that, although the market is designed to encourage decarbonization investments in
the industrial sectors subject to the system, the consideration of emission allowances as
financial assets introduces a new component that may complicate the market’s effectiveness
in environmental terms.

Regarding the consideration of EUA as financial assets, it would be helpful to obtain
short-term reliable forecasts, since agents involved in this market need to make quick
buying and selling decisions in order to obtain maximum profitability [8].

However, in terms of the environmental component underlying the market, agents
involved in the decisions need to use a longer time horizon. For the system to work
properly, the EUA market must provide information that incentivizes decarbonization
decisions, even though investments in technological improvements or fuel substitution can
take long payback periods. Therefore, incentives for decarbonization decisions must be
credible and long-lasting, so that, rather than the information contained in the day-to-day
fluctuation of prices, it is the trend of EUA prices that is of interest. In order to favor
market stability and fulfillment of the objective of incentivizing decarbonization decisions
by maintaining EUA prices, in 2019 the EU created a mechanism—the Market Stability
Reserve (MSR)—with the aim of removing the excess of emission allowances that had
generated the crisis since 2008. The MSR was designed to absorb excess EUAs in the
short-term and to match the supply of EUAs in case of severe shortages in the long-term.
However, EUA prices have risen sharply in the last years and this increase can hardly be
explained by the purchasing needs of the companies included in the system, but rather
by the arrival of other investors in the market, outside the polluting sectors, which are
governed by objectives other than those initially set out in the EU ETS. In this case, we are
talking about the behavior of EUAs as financial assets, whose price has shown not only
rapid growth but also high volatility in the short-term.

The evolution of EUA prices has complicated the current economic situation, as their
sharp rise has affected the costs of various sectors, causing significant increases in electricity
prices. For example, the wholesale electricity market prices in Spain in September 2021
are three times higher than the year before. Although the cost of EUAs is not the only
factor responsible for this price increase, according to some estimates [9], in the case of
Spain, around 20% of this increase would be related to the rise of CO2 prices in the EU
ETS. Other European markets have experienced an evolution of wholesale electricity prices
very similar to the Spanish one. In this way, the energy price increase in Europe has
become macroeconomically significant [10]. Several factors, in addition to the CO2 rising
trend, are responsible for the rise of electricity prices: an increase of natural gas demand
forced by higher demand of electric energy along with a decrease in renewable electricity
production and a significant increase in coal prices. The pricing system in European
(and other) electricity markets assumes that the price of electricity reflects the marginal
production cost of the most expensive technology involved in generation. Therefore, fossil
fuel power producers incorporate the price of EUAs into the marginal cost, passing on CO2
prices into electricity prices and, where appropriate, incentivizing investment in renewable
sources. The maintenance of high EUAs prices, although may be compatible with the
environmental objective of the system and reinforce the incentives for decarbonization,
can also lead to problems derived from the increase in costs in all sectors, including the
loss of commercial competitiveness in Europe. In addition, the effects of higher electricity
prices on consumers can be very significant, affecting different social classes in different
ways. Therefore, prediction of the time evolution of EUA prices has become a fundamental
tool for enterprises dealing with them, both for the short-term, to manage their day-to-
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day evolution—linked to its behavior as a financial asset—and the long-term, related to
investments and decisions aimed at reducing the emission of greenhouse gases.

Prediction of EAU prices can be carried out by organizing them as times series so that
tools usually used to carry out predictions in this field could be applied to obtain those
future price predictions. It is generally accepted that economic variables follow nonlinear
processes [11]; non-linearity represents a major difficulty when modeling the dynamics of
time series describing those economic (and financial) variables’ evolution [12,13]. To deal
with those kinds of complex problems, classical linear forecasting tools such as ARIMA
are used along with other forecasting tools in [14] a Fourier Series Expansion optimized
with Particle Swarm Optimization (PSO) was used to refine the predictions provided by a
seasonal ARIMA to forecast electricity consumption, while in [15] ARIMA was combined
with Autoregressive Conditional Heteroscedasticity (ARCH) to forecast CO2 emissions in
Europe. The hybrid models clearly outperformed the basic ARIMA. Nevertheless, other
forecasting tools which could provide more accurate predictions when dealing with a
nonlinear behavior have been also used. The ARCH and Generalized ARCH (GARCH)
models have proved very useful for financial time series analysis. Thus, they have been
also used to forecast CO2 allowance prices, sometimes without any other tool [16], where a
modification of its basic structure (fractionally integrated asymmetric power GARCH) is
used, integrated into another forecasting model such as Markov chains [4,13] or by forming
a hybrid model with other forecasting tool such as ARIMA [15].

Despite the good results obtained by those models with some time series, the develop-
ment of new forecasting tools based on artificial intelligence have driven many researchers
to use them to forecast time series, as they are especially well suited to deal with the
nonlinear behavior of complex series [17]. In this work several forecasting tools were tested
and Artificial Intelligence models clearly outperformed statistical ones such as ARIMA or
GARCH in electricity price forecasting. Between them, Neural Networks (NN) have been
widely used to forecast variables related to economy or energy, as they have been able to
provide very accurate predictions. One of the most popular ones is the Multilayer Percep-
tron (MLP); it is one of the first neural models developed, and despite its simplicity, it has
been widely used, as it is able to provide very accurate predictions of complex nonlinear
time series. There are several fields where it has been used, such as forecasting of electric
power transactions [18], natural gas demand [19], electric energy consumption [20], stock
market variables [21,22] or electricity prices [23]. Despite its simplicity, MLP has been able
to provide accurate and reliable predictions of different variables such as those mentioned
above. In fact, it is able to provide predictions that are as good as those obtained with
other more elaborated neural models and, indeed, to outperform some of them [18]. They
have been also used to forecast CO2 emission allowance prices [24,25]. In [24] it provided
direct predictions of EUA prices while in [25] it was combined with a mixed data sampling
regression (MIDAS) to forecast carbon prices in a Chinese market with the help of several
energy, weather and environmental variables. Nevertheless, MLP is not the only neural
model usually used for time series forecasting. The development of new complex neural
structures known as deep learning neural networks, so-called because of the high number
of processing elements, has driven many researchers to use some of those structures to
forecast time series [17]. Long Short-Term Memory (LSTM) is one of such structures, as it
has provided very accurate and reliable results when applied to carry out very complex
data processing such as speech or text recognition, and they are able to analyze the time
and contextual dependencies present in those problems. This is why they are supposed
to be able to provide accurate predictions in time series forecasting; indeed, they have
been used to predict electric energy load [26–28] or electricity prices [29]. In [29] LSTM
clearly outperformed ARIMA. In [27] LSTM made up a hybrid model with VMD and a
Genetic Algorithm, while in [28] LSTM combined with Empirical Mode Decomposition
(EMD) and information related to day similarity was able to provided better predictions
than ARIMA, MLP and Support Vector Regression (SVR). Other Artificial Intelligence
tools have been also used for time series forecasting such as Random Forest (RF), Gradient
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Boosting (GB) and Extreme Gradient Boosting (XGBoost) [30] or SVR [31], although neural
networks are nowadays the preferred option because they are better suited for the time
series forecasting problem. In fact, when comparing performances, neural networks usually
outperform other forecasting tools, especially those known as statistical methods such as
ARIMA [20,25,27–29].

Although the forecasting tools described are able to provide accurate and reliable
predictions when forecasting time series, a lot of work has been carried out in order to
improve their performance by preprocessing available data. The aim is to modify the
time series to provide several ones which could be more efficiently predicted or to extract
information about the series time evolution that could help the forecasting tools to improve
performance. The Empirical Mode Decomposition (EMD) decomposes a time series into
a set of subseries, each one with a proper oscillatory behavior which is easier to predict;
they are separately forecasted and then added to obtain the original series forecasting.
This is a heuristic algorithm that suffers from a lack of mathematical theory supporting it,
and to overcome this problem, the Variational Mode Decomposition has been developed.
They both have been used with different forecasting tools such as LSTM [27,28], SVR [31]
or spiking neurons [32]. A simplified version of those decomposition processes could be
obtained by splitting the time series only into its trend and fluctuations. In this way two
series are obtained: one describing the global trend of data and the other their seasonal
and cyclic oscillations. It has provided good results when applied to electric consumption
forecasting [20] and also to EUA prices prediction [33]. Another approximation to this
decomposition is a regression algorithm that samples a dataset at different frequencies
(MIDAS), which have been developed to deal with econometric series, and have been also
applied to carbon prices forecasting [25]. All these algorithms have provided good results,
and it is not possible to select one as the best option, since they all have their pros and cons
and selecting one or another depends on the problem at hand and the researcher’s own
experience. In any case, preprocessing has become a fundamental step in the forecasting
process, as many works have proved that it has improved the performance of forecasting
tools when properly selected and applied to the time series to be predicted.

There are not many works devoted to forecast CO2 prices [24,25,32,33]. Nevertheless,
the increasing interest in environmental preservation and the influence that free auctioning
of EUA has on the final price of electric energy have increased the interest of researchers in
this field. Several works have appeared in which CO2 allowance prices are predicted not
only in Europe but also in other countries [25,31]. Most of them use neural networks tools
along with some kind of preprocessing to carry out this task.

The aim of this work is to test several forecasting tools along with a proper preprocess-
ing of data to provide accurate and robust predictions of 20 days ahead of carbon prices;
usually, a one-day-ahead prediction is provided in most works. Nevertheless, multistep
predictions could be potentially more interesting than those of one only data ahead because
a more complete time evolution of the forecasted variable is provided. Despite this, there
are few works that provide multistep predictions [25,33,34]. So, in this work 20 future
prices are provided each time a prediction is carried out. In this way, both short and long-
term predictions are provided at once, so that this information could be valuable for both
traders considering EUA as financial assets (who carry out shot-term buying and selling op-
erations) and agents involved in decision-making related to decarbonization polices (who
would prefer a long-term prediction of the price evolution).Two neural networks (MLP
and LSTM) that have proved to be very accurate forecasting tools have been used. Another
machine learning tool (XGBoost) has also been tested because, although it has been little
used in time series forecasting, it has provided very good results in classification problems.
Two preprocessing strategies have been tested to improve the prediction accuracy: the
decomposition of the original time series into its trend and fluctuations components and
the Empirical Mode Decomposition. The results obtained were analyzed to find out the
structure providing the best performance. They showed that a proper preprocessing of data
before being predicted by the forecasting tools clearly improves the prediction accuracy.
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The paper is organized as follows: Section 2 describes the models used to forecast
future CO2 prices along with the preprocessing algorithms, while Section 3 describes the
figures of merit used to measure the forecasting performance and the data preprocessing
applied to the original time series to improve the forecasting models accuracy. Then,
the simulation results obtained with the three models tested and the two preprocessing
algorithms are described. In Section 4, those results are compared, and the best performance
identified. Finally, Section 5 presents the conclusions.

2. Materials and Methods
2.1. Artificial Intelligence Tools for Time Series Forecasting

Neural Networks are a set of artificial intelligence algorithms which simulate the
structure of brains to try to mimic some of their abilities. They have been widely used to
forecast time series because of their capability to learn the dynamic behavior of complex
systems. They have provided very accurate predictions when dealing with nonlinear
systems, where other tools fail to provide them. There are several neural models, although
only some of them are used to carry out time series forecasting. One of the most widely
used in these tasks is Multilayer Perceptron (MLP) [35]. It is a very simple classical model
which is organized in a multilayer structure, with an input layer, several hidden ones and
an output layer. Information is processed while it flows from input to output, which is why
they are known as Feedforward Neural Networks (FFNN). There are several neural models
which also process information following this data flow, although MLP is the most popular
one; however, they are not able to deal with data strongly dependent on past information,
such as that found in speech processing. Thus, in order to address these kinds of problems,
new neural models have been developed in which feedback has been added to a FFNN to
provide the network the ability to retain past information to be processed with present data.
Thus, information may flow back from one layer to another preceding it, or among neurons
in the same layer, providing the network with a kind of “memory”, as those data may be
seen as past states of the network which can be processed along with new data presented
to the network. These types of networks are known as Recurrent Neural Networks (RNN),
and some of their models have been used to predict time series, as they are supposed to
perform well in forecasting tasks because of their ability to process “past” information
along with the present data. Since their structure is more complex than that of FFNNs,
MLP will be first described and then, based on its structure, that of the RNN used in this
work will be studied.

2.1.1. Multilayer Perceptron

The succeed of MLPs to provide accurate predictions comes from the fact that they
have proved to be universal approximations [36,37], as they can approximate any con-
tinuous function with one hidden layer, provided that this one has enough neurons. Its
simplicity and simple programming, along with this property, have made them one of the
most popular neural models for time series forecasting. In MLPs, the first layer is actually
the set of input data to the neural network. In the hidden layer (or layers if several of them
are considered), the information provided to the network is processed and then passed to
the output layer, which provides the network response. Each neuron in a layer processes
the information it receives from all the neurons in the previous one:

yj = σ
(
∑ wji xi + bj

)
, (1)

where xi represents the ith input of the jth neuron, wji the strength (weight) of the connec-
tions between this neuron and all those in the previous layer, yj the neuron output and bj a
bias constant.
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σ(·) is an activation function which provides the network the nonlinear characteristic
that allows the identification of the nonlinear behavior inherent to complex dynamics. In
the hidden layers it is usually the hyperbolic tangent or the logistic function:

yj =
1

1 + e−(∑ wji xi+bj)
(2)

In the output layer, this function is usually a linear one, because it is usually assumed
that this layer only provides an adaptation of the neural network response to the data
structure.

The neural network’s ability to approximate any system is provided by its learning
capability. Thus, it must be trained to learn the behavior of the system it tries to reproduce.
To do this, it must be trained with a specific set of data which must be arranged in pairs of
network inputs (patterns) and desired outputs, so that each time one of those input patterns
is presented to the network it provides an output response, which must be compared with
the desired one to obtain an error measurement. The errors obtained for all the patterns will
be summed to obtain a global error whose value must be minimized by properly adapting
each neuron’s weights in order to guarantee that the network has learned all the patterns.
The algorithm performing this process is the well-known “Backpropagation” [35].

A dataset different from that used for training must be processed to validate the
network to guarantee that it is able to provide a proper response to patterns different from
those previously learned. When dealing with time series, this means that the network will
be able to provide an accurate prediction of future values when past ones are provided as
network inputs.

2.1.2. Long Short-Term Memories

Long Short-Term Memory (LSTM) [38] have a multilayer structure similar to that of
MLP, but now the neural outputs of a layer are fed back to all the neurons in that layer. In
addition, a sort of “memory” is stored in each cell, recording past information received
by the neuron. However, all this information—new data, feedback and “memory”—is
not processed by neurons directly; in fact, several activation gates decide which of them
will be used whether or not a neuron output will be provided. To carry out this control
process, the neural model of the LSTM has three activation gates which process data from
the previous layer along with those from neurons in the same one providing signals that
control inputs, “memory” update and output:

ij = σ
(

Wi·
[
xt, ht−1

]
+ bi

)
, (3)

f j = σ
(

Wf·
[
xt, ht−1

]
+ b f

)
, (4)

oj = σ
(

Wo·
[
xt, ht−1

]
+ bo

)
. (5)

In these formulas, Wi, Wf and Wo represent weight matrices while [xt, ht−1] represents
an input vector made up with data from the previous layer, xt, and feedbacks (one time
step delayed) from neurons in the same layer, ht−1. bo, bf and bo are bias weights. σ is an
activation function which may be the logistic one or the hyperbolic tangent, although the
first one is preferred for the activation gates.

The cell input is:
zj = σ

(
Wz·

[
xt, ht−1

]
+ bz

)
. (6)

where Wz and bz represent a weight matrix and a bias, respectively.
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The cell “memory” ct
j is updated by taking into account both the cell input zj and its

past value ct−1
j according to the expression:

ct
j = ij · zj + f j · ct−1

j (7)

where ij decides whether or not new information is added to the “memory” and f j controls
whether old information should be retained or forgotten. Thus, it is usually known as the
“forget” gate.

Finally, the cell output is:
yj = oj · σ

(
ct

j

)
. (8)

As this cellular structure is rather more complex than that of other neural models, it is
usually known as “cellular block”, which, in addition, may be made up of one or several
neurons. In this last case, all the neurons in a block share the same control gates. Thus, a
layer will have several blocks, each one with one or several neurons. When used to carry
out very complex tasks, such as text or speech recognition, a high number of layers are
used. This is why this neural model (along with others with a high number of layers and
neurons in each one) is known as “deep learning” models.

LSTMs are trained with a variation of the well-known “Backpropagation” algorithm,
which is adapted to deal with the recurrent structure of this neural model. Two variants of
the basic algorithm are used: that known as “truncated Backpropagation Through Time”
(BPTT) for adjusting weights of cell outputs and output gates and “Real-Time Recurrent
Learning (RTRL),” used to adapt weights of cell inputs, input gates and forget gates [39].

2.1.3. XGBoost

XGBoost (Extreme Gradient Boosting) [40] is a machine learning algorithm for decision
trees boosting. It is an open-source library provided for most programming environments
used nowadays, and has become a very popular tool for machine learning, since it was
able to win many of the challenges proposed in the 2015 Kaggle and KDDcup competitions.
As previously stated, XGBoost is a machine learning system for tree boosting, that is to say,
XGBoost provides a procedure to define an ensemble of decision trees which carries out
classification or regression of the data presented as input to the model (this is why these
trees are usually known as CART: Classification and Regression Trees). A decision tree
provides an answer which may be binary (the data presented belongs or not to a certain
class) or numerical, which may be represented by a function. In tree boosting, this last one
is used, so that the output of the tree ensemble has the form:

ŷi =
K

∑
k=1

fk(xi), (9)

where xi represents an input (a vector defining a pattern to be classified), fk(xi) the function
describing the answer of each decision tree, K the number of trees and ŷi the answer of the
whole ensemble.

The whole tree ensemble is to be trained with a set of input-output pairs (xi, yi),
where xi represents the pattern to be classified and xi its desired output, by adjusting
the parameters defining the tree structure by minimizing a cost function in a supervised
process. Nevertheless, this is a harder problem than the learning strategies of other machine
learning models, such as the descend gradient usually used with neural networks, since
training all the trees at once may become too computationally intensive. Thus, a simplified
iterative strategy, known as “boosting”, is used to train one tree at each step.

The training process starts by fixing to zero the value of the first prediction:

ŷ0
i = 0. (10)
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In this expression, the superscript refers to the time step of the process. Now, a first
tree, defined by its representative function, is added to the tree ensemble, whose output is
now:

ŷ1
i = ŷ0

i + f1(xi) = f1(xi). (11)

This new tree is trained with a subset of the training dataset and then predictions for
the whole dataset are obtained. As a number of these predictions are probably different
from their expected values, a new tree is added and then trained with the set of misclassified
patterns. So, the ensemble prediction function now becomes:

ŷ2
i = ŷ1

i + f2(xi) = f1(xi) + f2(xi). (12)

The process is repeated until a certain accuracy is achieved, or the number of trees
reaches a certain previously fixed value. The prediction function of the tree ensemble will
be:

ŷt
i = ŷt−1

i + ft(xi) =
t

∑
k=1

fk(xi). (13)

The cost function to be minimized when training the trees is:

L = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk) (14)

where i stands for the number of patterns used for training and k for the number of trees.
l(ŷi, yi) is a measure of the errors obtained in each prediction. It is usually the Mean
Squared Error. Ω( fk) is a regularization term that measures the simplicity of the tree
structures. It helps to obtain a structure as simple as possible.

2.2. Data Preprocessing

Artificial Intelligence tools usually provide good performance when forecasting non-
linear time series. Even so, those results may be improved when input data are adequately
preprocessed in order to obtain a new dataset which could be more easily predicted by the
tool. Several works have proved the success of this strategy when applied to neural mod-
els [20,27,31,32,41]. Many times, preprocessing has a very sophisticated structure which is
more complex than that of the forecasting tool, therefore the question arises about whether
it is the forecasting tools which provide the prediction with success or the preprocessing
that is applied. To overcome this issue, two simple preprocessing strategies will be tested
in this work in order to prove that it is not necessary to use such complex structures to
improve the forecasting tool accuracy. The first one provides a simple decomposition of
the original series into its trend and superimposed oscillations while the second is a more
elaborated one, the Empirical Mode Decomposition (EMD), which decomposes the time
series into several simpler ones by means of an iterative procedure.

2.2.1. Trend and Fluctuations Decomposition

Many time series show a combination of different behaviors: long-term ones, which
define a certain trend of data, and short and medium-term variations superimposed on
it. Hence, it is usual in time series forecasting to decompose a time series into three
kinds of components: trend, seasonal, and cyclic. The first one represents, as pointed out
above, a long time rising or decreasing evolution, the second, an oscillatory evolution
associated to seasonal effects such as day of the week, month, season, weather, while the
third oscillation is caused by economic or social influences on data. Sometimes, a fourth
term related to noise may be also included, and in many time series, seasonal and cyclic
factors are difficult to identify as two isolated components, although the series shows a
clear oscillatory behavior. In those cases, the decomposition can be simplified if the series is
only split into trend and fluctuations, which comprise both seasonal and cyclic components
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around it (errors could be also assumed as integrated in this oscillatory component). This
decomposition will be used in this work because of its simplicity and easy programming.

To carry it out the trend component will be first extracted by means of a softening
process of the time series. There are a number of methods that can be used to do this
(splines, low-pass filters, moving average, etc.) although in this work, the moving average
with constant weights will be used because of its simplicity and because it has proved
to provide accurate predictions [20,33]. This algorithm replaces each element of the time
series by the mean value of the set made up of that element and (n−1) ones preceding it:

xt(t) =
1
n
(x(t) + x(t− 1) + . . . + x(t− (n− 1))). (15)

The fluctuations component will be obtained by subtracting the trend series from the
original one. Then, they are forecasted separately, and their predictions added to obtain
the prediction of the original series.

2.2.2. Empirical Mode Decomposition

As time series often have an oscillatory behavior, a good strategy to carry out the
preprocessing process could be to identify and extract periodical components which could
be more easily forecasted. This strategy has the drawback that it demands those compo-
nents to be associated with frequencies, which should be clearly identified, and this is not
usually the case. Instead, a lot of frequencies define the spectral profile of most of time
series. To overcome this problem, an empirical tool has been developed which decomposes
a time series with oscillatory behavior into a set of new series with an oscillatory behavior
closely related to a certain frequency. This tool is known as Empirical Mode Decomposition
(EMD) [42], and each one of the new series it provides is known as Intrinsic Mode Function
(IMF); it is a numerical method that requires adjustment until proper IMFs are obtained.
It is worth noting that an IMF is not a function but a time series which accomplish with
two properties: the number of local minima and maxima must be equal or differ only by
one and its mean value must be zero. The first condition may be also defined as: only one
extreme point can be between two consecutive zero-crossing points. The second one means
that the time series is stationary, a fact that makes its prediction easier.

In this way, an oscillatory time series can be decomposed into the sum of IMFs and a
residue:

x(t) = ∑
n

xn(t) + r(t). (16)

Taking into account these conditions, the EMD algorithm works as follows.
Take all maxima and minima points in the original time series and build two new

series by interpolating each set of points with cubic splines. Thus, two envelops will be
obtained, one for maxima and another for minima.

Obtain the mean series mn(t) of both envelops. Then, subtract this new one from the
original series. It is a candidate to be an IMF:

cn(t) = x(t)−mn(t). (17)

Verify whether this last series accomplishes the two properties of an IMF. If not, this
series will be considered as a new “original” series (xs(t) = cn(t)) and the processes of
maxima and minima extraction, mean calculation, subtraction and verification will be
repeated (s = 1, 2, . . . , S) until the series obtained accomplishes IMF’s conditions or a stop
criterion is achieved. This process is usually known as “sifting”.

Once a new IMF is obtained (xn(t) = cn(t)) it will be subtracted from the series from
which it was derived and the result will be considered as a new “original” one, which will
undergo the process described above:

xn(t) = xn−1(t)− cn(t). (18)
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The process will be repeated until a stop condition is achieved. Then, the last IMF will
be subtracted from its “original” series and the result will be considered as a residue.

This procedure demands two stop conditions: one for “sifting” and the other for the
whole process. The fists one should be accomplished when an IMF candidate fits the two
required conditions. Nevertheless, this could lead the algorithm to over-sifting, providing
a lot of meaningless IMFs. To avoid this effect, an early stopping criterion must be defined.
Usually, a low threshold for the IMF candidate variance is fixed, so that once it is reached,
the process will stop. The second stop condition will be reached when the residue, the
series obtained after a new IMF is subtracted from its “original” series, accomplished with
one of the following conditions: it is constant, has a constant slope or contains one only
extreme.

3. Results

The time series used in this work is the daily spot price of a ton of CO2 quoted on
the European Energy Exchange (EEX) in Leipzig, Germany. It ranges from 14 October
2009 to 1 January 2021 with a total of 2890 data, as seen in Figure 1. This plot shows two
different behaviors of prices: a more or less soft evolution with medium and low values
until 2018, and a clear rising trend with high values and steep variations after this year.
They have been arranged into a time series to train and then validate the performance of
the forecasting tools proposed in this work. Only past data of prices have been used to
forecast future values.
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It is usual in time series forecasting to use the first data (60–80% of them) to train
the model and the remaining (40–20%) to validate its performance. Two of such possi-
ble divisions have been tested in this work: 60–40% (training-validation) and 80–20%.
Training data will be used to learn the times series behavior by adjusting the model’s
inner parameters. Once the forecasting tool (neural networks or XGBoost) is trained, the
model so obtained is used to forecast with data from the validation dataset (the predictions
obtained in this manner will be compared with the actual values of this dataset to obtain a
measurement of the forecasting model accuracy).

Conversely, it should be taken into account that validation data with values signifi-
cantly higher than those used for training and with steep variations (as those at the end
of the time series) could jeopardize the accuracy of the forecasting models, as they have a
behavior different from those used form training. To find out whether or not this behavior
of the data worsens the performance of the forecasting models they will be also tested with
a simpler dataset with a less steep evolution: the time series made up with data from 2009
to 2016, where validation data are similar to those used for training. In other words, the last
data of the time series, those with higher values and steep variations, have been removed.



Energies 2021, 14, 7845 11 of 23

The different forecasting structures defined in this work will be tested with both datasets
and their corresponding performances compared.

The different behavior of both datasets may be better understood when statistical infor-
mation describing their data distribution is provided. They may be seen in Tables 1 and 2.
The total number of data along their mean values, standard deviation, minimum and
maximum values and the values defining each quartile are presented. From these data it
may be concluded that the time series from 2009 to 2016 presents a more bonded behavior
with lower fluctuations. Information regarding the scaled versions of both datasets (see
below) is also provided.

Table 1. Statistics of the original dataset.

Original MinMax Standard

Data 2890 2890 2890
Mean 11.895 0.297 0.000

Std 7.44 0.224 1.000
Min 2.750 0.000 −1.229
25% 5.920 0.103 −0.803
50% 8.145 0.175 −0.504
75% 15.875 0.427 0.534
Max 33.440 1.000 2.896

Table 2. Statistics of the reduced dataset.

Original MinMax Standard

Data 1834 1834 1834
Mean 8.543 0.414 0.000

Std 3.848 0.271 1.000
Min 2.680 0.000 −1.523
25% 5.602 0.206 −0.764
50% 7.185 0.318 −0.352
75% 12.415 0.687 1.006
Max 16.840 1.000 2.156

The performance of predictions will be measured with two figures of merit: the Mean
Absolute Percentage Error (MAPE) and the Root Mean Squared Error (RMSE):

MAPE =
1
N

N

∑
i=1

∣∣∣∣Ai − Fi
Ai

∣∣∣∣·100, (19)

RMSE =

√√√√ 1
N

N

∑
i=1

(Ai − Fi)
2 (20)

where Ai is an actual datum, Fi a forecasted one and N the total number of data predicted.

3.1. Data Scaling

The structure of the data shown in Figure 1 suggests that it may be difficult for the
forecasting tool to provide accurate predictions because a lot of extreme values appear.
To overcome this problem, very common in both regression and classification problems,
data were scaled before using them, that is to say, they were transformed into a new
bounded dataset. In the programming environment used in this work, Python, there
are two algorithms which are mainly used to carry out this task: normalization and
standardization. The first one transforms the original dataset into another in which values
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are included in interval [1]. There are several ways to do this, although in this work, the
Min-Max one has been selected because of its simplicity:

xn
i =

xi − xmin
xmax − xmin

(21)

where xn
i represents the normalized datum, xi the original one and xmax and xmin the

maximum and minimum data in the original data set.
The second algorithm transforms the dataset into another one with zero mean and

variations normalized to the standard deviation of data. This process is carried out with:

xs
i =

xi − x
σ

(22)

where xs
i is the standardized datum, xs

i the mean of the whole data set and σ their standard
deviation.

Both algorithms will be used with all the forecasting tools used in this work to find
out which one provides the best performance. It is worth noting that a process opposite to
that of scaling must be applied to the forecasted data. The corresponding expressions will
be obtained by reversing Equations (21) and (22).

3.2. Model Simulation

In this work, three artificial intelligence forecasting models have been tested: two
Neural Networks (MLP and LSTM) and a popular machine learning tool widely used to
solve data science problems, XGBoost. Each model will be simulated with three different
preprocessing scenarios: no preprocessing, trend-fluctuations, decomposition, and EMD.

The first preprocessing method consists of splitting the CO2 emission allowance price
series into two subseries (Figure 2): its trend and fluctuations around it. They both will be
independently forecasted, and their predictions added to obtain the predicted price.
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In the second preprocessing model, the times series is split into eight stationary
subseries (Figure 3), IMFs, which are independently forecasted and then added.

Before preprocessing the dataset, it has been scaled with both Min-Max normalization
and standardization. The whole sequence of the different actions carried out to perform
forecasting is described in the flowchart presented in Figure 4. As it may be seen, the process
starts by scaling data and then splitting them into trend-fluctuations or IMF subseries,
which are independently forecasted by each model. The predictions obtained are added
to obtain the price predictions after rescaling the values provided by those summations.
When data are not split, they are directly processed after scaled. This process is the same
for both training and validation.
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As pointed out above two datasets have been used: a simpler one, in which the data
to be forecasted (validation subset) have a more or less stationary behavior, and the whole
dataset, in which the data to be forecasted have values higher than those used for training
with steep oscillations. The first defines a “simpler” problem without too extreme values
and a “smooth” evolution. The second represents a harder problem with data with a
different behavior from those used for training. The aim of defining two different scenarios
is to check whether or not the forecasting models are able to provide good performances
with both “easier” and “more difficult” problems of the same nature.

Regarding the two neural models, different numbers of layers and neurons in each
one were tested. Nevertheless, structures with several hidden layers did not provide
better performances than those with one only hidden layer. In fact, this last structure
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outperformed those with several ones. This is a hardly surprising fact for a MLP because,
as pointed out above, an MLP with one hidden layer with enough neurons behaves as a
universal approximator. The case of LSTM is different, as it is usually used with a high
number of layers and neurons, making up what is known as a “deep learning” neural
network. However, this structure is applied to very complex problems, such as text or
speech processing. Forecasting time series, no matter how nonlinear it is, is a much simpler
problem to deal with. Thus, it looks reasonable to accept that a LSTM with one only layer
will be enough to obtain accurate predictions. Therefore, only the results obtained with
one hidden layer are presented in this work. The best performance was obtained with
100 neurons in the hidden layer for MLP and 100 memory blocks with one only cell in each
one for LSTM. In this last network, the depth of the time delays in feedback was 3. Higher
values were also tested, but the effect of gradient explosion appeared.

As these neural networks (and XGBoost) carry out a process of time series forecasting,
past data of prices are used to forecast future ones. Those past values (several data
preceding those to be forecasted) are the inputs to the neural networks (and XGBoost). The
number of past data which provides the most accurate predictions should be determined
by trial and error; therefore, several numbers of inputs between 1 and 100 were tested with
the three models for the two datasets used. For MLP, the best performances were obtained
with 60 inputs for the reduced dataset and 3 for the whole one. For LSTM, the best results
were obtained with 3 inputs for the 2 datasets.

Several structures were also tested for the XGBoost algorithm. The best results were
obtained with 1000 trees with a tree depth of 3 and 3 inputs for the two datasets.

The three forecasting models predicted 20 data at once, that is to say, they provided
forecasted values of the daily spot price of CO2 for the next 20 working days. So, the output
layer of both MLP and LSTM has 20 neurons. This value was selected because it represents
predictions for almost one month, four weeks, as the European Energy Exchange does not
work at weekend days. The aim of providing 20 future values is to obtain both short-term
and long-term predictions at once with one only forecasting model. The accuracy of the
predictions (errors) will refer to that of 1 day ahead, 2 days ahead, and so on for the
20 predicted data.

All simulations have been programmed in Python with Tensor Flow and Keras pack-
ages. The XGBoost library for Python has been also used. The programs have been run in a
personal computer with an Intel core i7-9700, 3.6 GHz with 32 Gbytes of RAM memory.
Simulations have intensively used the GPU included in a RTX 2070 SUPER graphic card
from Nvidia.

3.3. Prediction with MLP

The prediction errors (RMSE and MAPE) obtained with MLP are presented for both
the simplified dataset and the whole one in Tables 3 and 4. Several divisions of data for
training and validation were tested and the best results were obtained with 60–40% for the
first dataset and 80–20% for the second. This is hardly surprising, because the first one
takes into account data with values similar to those to be forecasted in the training subset,
nevertheless for the whole dataset a division of 60–40% does not consider data with a steep
rising trend for training, while in that of 80–20% a lot of data with that behavior are used.

The results in Table 3 show that the best performance was obtained when EMD was
used to preprocess the reduced dataset. Nevertheless, although the best results were
obtained with 60 inputs, a noticeable result was also obtained with a lower number of
inputs (3): while the short-term horizon predictions are clearly improved those of the long-
term ones got worse, providing a wider range of errors (as the higher standard deviation
obtained shows). So, they both have been included in Table 3 as structures providing
the best performance. It is difficult to decide which of them is the most accurate; in fact,
it becomes a matter of preference; it depends on which prediction horizon the user is
interested in.
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Table 3. Predictions with MLP for the reduced data set (2009–2016). 60% of them were used for
training and 40% for validation. Data have been scaled with standardization for “Without Prep.” and
“Trend-Fluc.” and with Min-Max for EMD.

Days
Ahead

Without Prep. Trend-Fluc. EMD (3 Inputs) EMD (60 Inputs)
RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

1 0.19 2.38 0.21 2.59 0.13 1.59 0.20 2.47
2 0.23 2.94 0.25 3.05 0.15 1.84 0.21 2.69
3 0.26 3.27 0.27 3.48 0.15 1.81 0.21 2.66
4 0.29 3.60 0.32 4.01 0.25 3.38 0.22 2.83
5 0.32 4.22 0.36 4.53 0.18 2.21 0.24 3.00
6 0.35 4.52 0.38 4.79 0.20 2.53 0.24 2.95
7 0.39 4.97 0.40 5.13 0.21 2.73 0.22 2.73
8 0.41 5.25 0.43 5.41 0.24 3.12 0.24 3.04
9 0.42 5.35 0.49 6.11 0.25 3.23 0.26 3.32
10 0.45 5.77 0.52 6.43 0.26 3.41 0.27 3.42
11 0.48 6.04 0.55 6.76 0.26 3.41 0.26 3.29
12 0.51 6.41 0.57 7.00 0.28 3.68 0.27 3.42
13 0.53 6.66 0.63 7.81 0.31 4.04 0.33 4.31
14 0.53 6.67 0.63 7.72 0.36 4.80 0.30 3.74
15 0.55 6.90 0.67 8.23 0.32 4.18 0.35 4.54
16 0.58 7.23 0.67 8.22 0.34 4.53 0.29 3.64
17 0.59 7.42 0.71 8.71 0.38 5.04 0.32 3.90
18 0.62 7.74 0.75 9.15 0.36 4.71 0.31 3.91
19 0.64 7.92 0.75 9.19 0.40 5.33 0.34 4.49
20 0.64 7.99 0.77 9.42 0.40 5.24 0.35 4.44

Mean 0.45 5.66 0.52 6.39 0.27 3.54 0.27 3.44

Std 0.14 1.69 0.18 2.11 0.08 1.15 0.05 0.64

Table 4. Predictions with MLP for the whole data set (2009–2020). 80% of them were used for
training and 20% for validation. Data have been scaled with standardization for “Without Prep.” and
“Trend-Fluc.” and with Min-Max for EMD.

Days
Ahead

Without Prep. Trend-Fluc. EMD
RMSE MAPE RMSE MAPE RMSE MAPE

1 0.72 2.19 0.72 2.24 0.92 2.91
2 0.97 2.99 0.96 2.99 0.97 3.14
3 1.18 3.66 1.16 3.66 1.01 3.26
4 1.35 4.18 1.31 4.13 1.08 3.48
5 1.51 4.60 1.49 4.67 1.16 3.68
6 1.64 5.05 1.63 5.11 1.19 3.75
7 1.74 5.42 1.75 5.47 1.22 3.91
8 1.86 5.77 1.82 5.76 1.28 4.05
9 1.94 6.19 1.91 6.01 1.35 4.30

10 2.04 6.47 2.00 6.23 1.45 4.69
11 2.13 6.72 2.08 6.43 1.42 4.52
12 2.20 6.98 2.15 6.71 1.48 4.78
13 2.28 7.25 2.23 6.91 1.52 4.85
14 2.38 7.52 2.31 7.15 1.55 4.98
15 2.45 7.73 2.39 7.41 1.60 5.03
16 2.53 7.89 2.46 7.64 1.64 5.22
17 2.64 8.29 2.53 7.86 1.69 5.43
18 2.70 8.49 2.62 8.15 1.73 5.51
19 2.78 8.64 2.65 8.35 1.76 5.68
20 2.86 9.00 2.74 8.68 1.77 5.65

Mean 2.00 6.25 1.95 6.08 1.39 4.44

Std 0.60 1.92 0.57 1.78 0.27 0.85
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The results obtained when the whole dataset was used (Table 4) show that, again, the
best predictions were obtained when EMD was used to preprocess the input data. It is
worth noting that these results were obtained, in all cases, with only 3 inputs.

When comparing the results obtained with the two datasets, it may be seen that
those obtained with the whole dataset are worse than those obtained with the reduced
one. Nevertheless, these worse results are not too high, and it may be stated that reliable
predictions were obtained. This fact shows the robustness of MLP as a forecasting tool, as
its performance has suffered only a slight worsening when dealing with more complex
data. In addition, it only needed three inputs to provide those results with the whole
dataset, a structure much simpler than that with 60 inputs for the reduced one.

3.4. Prediction with LSTM

Tables 5 and 6 show the results obtained with the two datasets used. The best results
were obtained with a distribution training-validation 60–40% for the reduced data set
and 80–20% for the whole one, a distribution equal to that obtained with MLP. Results in
Table 5 shows that now the best performance was obtained when no preprocessing was
applied to the reduced dataset. The accuracy obtained when data were preprocessed by
splitting them into trend and fluctuation was slightly better for the first two forecasted data
than those without preprocessing, although they are clearly worse for the remaining ones.
Data preprocessed with EMD provide clearly worse predictions than the option without
preprocessing for short-term forecasting, although similar results were obtained for the
long-term ones. When compared with the trend-fluctuations decomposition, it provides
significantly worse results for short-term predictions, while providing better results for
long-term ones.

Table 5. Predictions with LSTM for the reduced data set (2009–2016); 60% of them were used for
training and 40% for validation. Data have been scaled with standardization for “Without Prep.” and
“Trend-Fluc.” and with Min-Max for EMD.

Days
Ahead

Without Prep. Trend-Fluc. EMD
RMSE MAPE RMSE MAPE RMSE MAPE

1 0.18 2.14 0.16 1.91 0.48 5.61
2 0.23 2.77 0.22 2.72 0.48 5.64
3 0.26 3.29 0.27 3.32 0.50 5.95
4 0.30 3.74 0.31 3.88 0.50 5.90
5 0.33 4.18 0.35 4.39 0.48 5.81
6 0.36 4.57 0.39 4.92 0.51 6.13
7 0.39 4.90 0.43 5.41 0.52 6.39
8 0.41 5.27 0.46 5.89 0.50 6.16
9 0.44 5.59 0.50 6.34 0.49 6.14

10 0.46 5.88 0.53 6.75 0.52 6.42
11 0.49 6.14 0.56 7.14 0.60 7.51
12 0.51 6.40 0.59 7.54 0.51 6.42
13 0.53 6.66 0.62 7.91 0.61 7.69
14 0.56 6.91 0.65 8.32 0.55 6.98
15 0.58 7.17 0.68 8.71 0.56 7.08
16 0.60 7.42 0.70 9.08 0.62 7.81
17 0.62 7.66 0.73 9.46 0.57 7.30
18 0.63 7.89 0.75 9.80 0.61 7.75
19 0.65 8.10 0.78 10.12 0.59 7.51
20 0.67 8.32 0.80 10.36 0.68 8.82

Mean 0.46 5.75 0.52 6.70 0.54 6.75

Std 0.14 1.80 0.19 2.51 0.06 0.87
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Table 6. Predictions with LSTM for the whole data set (2009–2020). 80% of them were used for
training and 20% for validation. Data have been scaled with standardization for “Without Prep.” and
“Trend-Fluc.” and with Min-Max for EMD.

Days
Ahead

Without Prep. Trend-Fluc. EMD
RMSE MAPE RMSE MAPE RMSE MAPE

1 0.95 2.94 0.76 2.43 4.36 17.32
2 1.13 3.57 0.98 3.16 4.40 17.38
3 1.30 4.11 1.17 3.76 4.39 17.28
4 1.45 4.56 1.32 4.24 4.41 17.30
5 1.60 5.01 1.49 4.75 4.32 16.83
6 1.72 5.42 1.62 5.15 4.49 17.47
7 1.82 5.80 1.72 5.48 4.41 17.04
8 1.91 6.12 1.80 5.74 4.42 17.00
9 2.00 6.47 1.88 5.90 4.41 16.84

10 2.09 6.83 1.95 6.08 4.38 16.63
11 2.18 7.13 2.03 6.28 4.47 16.89
12 2.25 7.33 2.11 6.53 4.54 17.11
13 2.34 7.65 2.18 6.77 4.41 16.49
14 2.44 7.96 2.27 7.01 4.47 16.63
15 2.51 8.18 2.35 7.26 4.48 16.59
16 2.57 8.29 2.43 7.50 4.19 15.22
17 2.65 8.50 2.51 7.76 4.21 15.16
18 2.72 8.73 2.59 8.04 4.39 15.78
19 2.78 8.97 2.64 8.28 4.30 15.30
20 2.85 9.18 2.71 8.51 4.47 15.87

Mean 2.06 6.64 1.93 6.03 4.40 16.61

Std 0.55 1.83 0.55 1.68 0.09 0.73

Performances when the whole dataset was used are shown in Table 6. Now the best
accuracy was obtained with the trend-fluctuations preprocessing, although it was only
slightly better than that obtained without preprocessing. It provides an accuracy only
slightly worse than that obtained without preprocessing when the reduced dataset was
used (the best option for that case), and clearly better for the last forecasted data when the
same preprocessing process was applied to the reduced dataset. Nevertheless, the results
obtained when the data were preprocessed with EMD are surprisingly poor, and what
is more, long-term predictions are slightly better than short-term ones. They are much
worse than those obtained with the reduced dataset. So, it may be stated that LSTM when
EMD preprocessing was used has not been able to deal with the steep changes that appear
at the end of the whole time series, while the structures without preprocessing and with
trend-fluctuations decomposition were able to provide predictions that are only slightly
worse that those obtained with the reduced dataset. This fact shows the robustness of
LSTM with those two preprocessing models, as their performance suffers only a slightly
worsen when a more complex time series is forecasted.

3.5. Prediction with XGBoost

The results obtained with XGBoost are shown in Tables 7 and 8. The first one presents
the results obtained with the reduced dataset with a 60–40% division for training and
validation and the second those with the whole one and an 80–20% division. The best
performance obtained with the reduced dataset (Table 7) may be assumed as that provided
by the model without preprocessing. Nevertheless, this statement demands a detailed
explanation. The mean error of the twenty predictions is 8.54% for this model although that
obtained with the EMD decomposition is 8.27%. However, the errors provided by this last
model are almost constant for all predictions (as their very low standard deviation shows),
while those obtained with the model without preprocessing are lower for the short-term
predictions and higher for the long-term ones (higher standard deviation). This represents
a more logical behavior of the forecasting tool, which provides a balanced evolution, since
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predictions get worse as the time horizon increases. But if the user considers-long-term
predictions as more valuable than short-term ones, the best model should be that with
EMD decomposition.

Table 7. Predictions with XGBoost for the reduced data set (2009–2016). 60% of them were used for
training and 40% for validation. Data have been scaled with standardization for “Without Prep.” and
“Trend-Fluc.” and with Min-Max for EMD.

Days
Ahead

Without Prep. Trend-Fluc. EMD
RMSE MAPE RMSE MAPE RMSE MAPE

1 0.18 2.26 2.06 2.58 0.59 7.91
2 0.25 3.21 2.77 3.56 0.61 8.09
3 0.30 3.81 3.32 4.32 0.62 8.19
4 0.36 4.60 3.77 4.92 0.63 8.27
5 0.41 5.21 4.30 5.65 0.64 8.32
6 0.46 5.98 4.79 6.30 0.65 8.30
7 0.52 6.75 5.25 6.95 0.65 8.31
8 0.58 7.49 5.76 7.65 0.66 8.36
9 0.62 7.99 6.16 8.23 0.65 8.34

10 0.68 8.82 6.68 8.94 0.66 8.26
11 0.74 9.52 7.29 9.75 0.66 8.33
12 0.78 10.15 7.76 10.37 0.66 8.22
13 0.82 10.66 8.19 10.99 0.66 8.23
14 0.84 10.96 8.54 11.53 0.66 8.12
15 0.88 11.41 8.98 12.14 0.66 8.19
16 0.91 11.82 9.38 12.65 0.66 8.27
17 0.94 12.21 9.82 13.27 0.66 8.26
18 0.96 12.50 10.07 13.61 0.66 8.30
19 0.97 12.57 10.32 13.92 0.67 8.43
20 0.99 12.78 10.57 14.28 0.68 8.62

Mean 0.66 8.54 6.79 9.08 0.65 8.27

Std 0.26 3.35 2.63 3.62 0.02 0.14

Table 8. Predictions with XGBoost for the whole data set (2009–2020). 80% of them were used for
training and 20% for validation. Data have been scaled with standardization for “Without Prep.” and
“Trend-Fluc.” and with Min-Max for EMD.

Days
Ahead

Without Prep. Trend-Fluc. EMD
RMSE MAPE RMSE MAPE RMSE MAPE

1 3.40 9.72 2.60 8.66 30.49 123.22
2 3.39 10.14 2.75 9.29 30.48 123.14
3 3.73 11.50 2.84 9.67 30.52 123.20
4 3.40 10.78 2.93 10.07 30.50 123.05
5 3.55 11.51 3.06 10.47 30.41 122.65
6 3.66 11.98 3.06 10.56 30.40 122.50
7 3.44 11.37 3.14 10.83 30.39 122.35
8 3.63 12.06 3.19 11.04 30.39 122.30
9 3.68 12.38 3.23 11.13 30.39 122.19

10 2.93 9.61 3.29 11.33 30.37 121.96
11 2.88 9.33 3.36 11.61 30.36 121.84
12 2.84 9.07 3.39 11.69 30.31 121.49
13 3.00 9.60 3.49 12.02 30.34 121.53
14 3.28 10.63 3.63 12.58 30.33 121.44
15 3.32 10.64 3.73 12.85 30.34 121.39
16 3.62 11.71 3.78 12.91 30.31 121.10
17 3.69 11.87 3.85 13.04 30.30 120.95
18 3.97 12.89 3.93 13.23 30.31 120.90
19 3.95 12.77 4.03 13.48 30.27 120.66
20 4.25 14.00 4.08 13.74 30.30 120.70

Mean 3.48 11.18 3.37 11.51 30.38 121.93

Std 0.37 1.31 0.43 1.43 0.07 0.84

The predictions obtained with the whole dataset (Table 8) are clearly worse that
those obtained with the reduced one. The best performances were obtained with both the
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trend-fluctuation decomposition and without it, and it is surprising that the performance
obtained with the EMD decomposition is especially bad. The errors are almost constant but
with a so high value that it must be discarded as a forecasting model. When comparing the
results obtained by the two datasets (only for no preprocessing and the trend-fluctuation
decomposition) it may be seen that predictions get worse for the short-term remaining
similar for the long-term. This means that XGBoost have problems to deal with a more
complex dataset, at least in the short-term.

4. Discussion

When comparing the performance of the models simulated, it is clear that both MLP
and LSTM outperform XGBoost in all cases. Only short-term predictions errors when no
preprocessing and trend-fluctuations were used with the reduced dataset were similar to
those of MLP or LSTM. For the whole dataset, errors are so high, especially in the case
of EMD, that it may be stated that XGBoost is not a useful tool for forecasting this time
series. This is not surprising if one bears in mind that XGBoots was designed to carry out
classification tasks, so that it is not well suited for time series prediction. As it is proved in
this work, XGBoost is not able to provide better results than other machine learning tools
usually used in time series forecasting, such as the neural models used here.

Both MLP and LSTM were able to provide good predictions with the simplified dataset.
In fact, very similar results were obtained when forecasting without preprocessing and
when the trend-fluctuations were used: mean errors of 5.66% for MLP and 5.75% for LSTM
without preprocessing and 6.39 and 6.70% for the trend-fluctuation preprocessing were
obtained. This data also show that the accuracy of both models gets worse for the trend-
fluctuations decomposition. Nevertheless, the performance of MLP is clearly improved
when EMD is applied to the dataset (mean errors of 3.44 and 3.54%) while that of LSTM
remains unchanged (mean error of 6.75%). As pointed out before, two structures have been
tested with the MLP-EMD model because, although they provided almost equal mean
errors, the time evolution of the prediction accuracies clearly differ: the structure with
3 inputs provides lower errors for short-term predictions, while that with 60 ones is better
for long-term. From these results, it may be stated that the performance of MLP is clearly
improved when EMD is applied, so that this structure provides the best performance of all
the models tested with this dataset.

When the whole dataset is used, both MLP and LSTM provide similar results when no
preprocessing was used (mean error of 6.25% for MLP and 6.64% for LSTM) and with the
trend-fluctuations preprocessing (6.08 and 6.03%, respectively). However, their behavior
clearly differs when preprocessed with EMD: while the mean error provided by MLP
clearly decreases, providing a mean error of 4.44%, that obtained with LSTM undergoes a
strong increase to 16.61%.

When comparing the results provided by MLP and LSTM with the two datasets, it
may be seen that they are very similar, with a slight increase when no preprocessing was
used (they pass from 5.66 and 5.75% for MLP and LSTM, respectively, with the reduced
dataset to 6.25 and 6.64% with the whole one) and a slight decrease when trend-fluctuation
was applied (6.39 and 6.70% to 6.08 and 6.03%).

These facts prove the robustness of MLP and LSTM when forecasting time series, as
they are able to provide accurate prediction with both simpler and more complex time
series providing that the training dataset is properly selected (the whole dataset was split
into an 80–20% decomposition for the training-validation division instead of the 60–40%
used for the reduced one).

Both MLP and LSTM are able to provide equally accurate predictions when they
carry out forecasting directly, without preprocessing, achieving very similar errors. This
common behavior changes when preprocessing is included. They both provide similar
mean results when trend-fluctuations are included, although MLP behaves better for
long-term predictions while LSTM does for short-term ones; but, for the reduced dataset,
when EMD is included, MLP is able to improve its performance by decreasing its mean
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error to 3.44 and 3.54%, whereas LSTM is only able to provide a mean error almost equal
to that obtained with trend-fluctuations (although now with worse errors for short-time
predictions). This behavior is more striking for the whole data set, since while MLP clearly
improves accuracy when EMD was applied (its mean error falls to 4.44%) LSTM undergoes
a strong increase to 16.16% and, what is more striking, with all values very close to that
mean.

Therefore, it may be stated that both MLP and LSTM are able to provide accurate and
robust prediction when no preprocessing is included in the forecasting model, but when
it is included MLP clearly improves its performance when EMD is used, whereas LSTM
provides much worse results, in fact the worst ones achieved with the three options tested.

On the other hand, it may be very interesting to analyze the evolution of predictions re-
garding their time horizon in order to identify how they behave, and their accuracies evolve.
To do that, the one-day-ahead and the twenty-days-ahead predictions obtained in the vali-
dation set of the whole dataset provided by MLP-EMD are presented in Figures 5 and 6. It
may be seen in Figure 5 that one-day-ahead predictions are able to follow fluctuations of
CO2 price, providing a reliable estimation of its daily evolution. Nevertheless, predictions
with a time horizon of 20 days, as seen in Figure 6, are not able to follow daily fluctuations
but, instead, they represent a sort of mean value of fluctuating prices, in other words, they
provide a sort of trend of the time evolution of CO2 prices. So, it could be stated that the
model provides a prediction of the trend of the price evolution for the long-term instead of
an estimation of actual prices on that time horizon. This behavior may be very useful for
traders interested in the long-term evolution of prices because those predictions describe a
sort of trend of how they will evolve.
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This twofold behavior of the predicted data may be very useful, because it provides
valuable information to agents involved in purchasing and selling EUAs. They can serve



Energies 2021, 14, 7845 21 of 23

as a reference for managers of companies included in the EU ETS, as they can manage their
allowances portfolio with reliable information to help them make decisions about their
costs in the short-term. In addition, long-term forecasts may be very useful for managers
of polluting companies, as they provide fairly tight predictions of the price evolution trend.
The proposed model gives reliable trend information, with a time horizon that is more
suitable for making decisions on decarbonization in production processes.

5. Conclusions

Forecasting daily spot prices of CO2 has become a key issue in recent years due to
its upward trend that is affecting the final price of electricity. Several tools may be used
to carry out this task, although Neural Networks seem to be the most reliable option,
since they have proved to be one of the most accurate tools for time series forecasting.
Nevertheless, not all models are able to provide accurate and reliable predictions and the
best option for each particular time series should be identified by testing several ones.
In this work, two popular neural models (MLP and LSTM) have been used to forecast
the time series of daily spot prices of CO2. Another popular artificial intelligence tool
(XGBoost) has been also used for the sake of comparison. It provided poor performance
compared with those obtained with the neural models. Several works have proved that
the prediction accuracy of the forecasting models may be significantly improved when a
suitable data preprocessing is applied prior to carry out the forecasting process. Thus, in
this work, two techniques have been tested, trend-fluctuation decomposition and EMD,
to provide data preprocessing. The best results were obtained with a hybrid MLP-EMD
model, which provided a significant decrease in the forecasting errors. However, several of
the combinations tested were not able to overcome the corresponding single forecasting
tool, providing, in some cases, significantly higher errors. The robustness of the proposed
models has been tested by using two datasets: a simplified one with a soft evolution and
an enlarged one that included updated data with a rising trend with steep variations. The
combination of MLP-EMD was able to provide accurate and reliable predictions with them
both. Only a small increase of forecasting errors with the enlarged dataset was obtained,
a fact that proves the model to be a robust forecasting tool. It is worth noting that MLP
clearly outperforms LSTM as a forecasting tool despite the fact that this last seems, at first
glance, to be better fitted for time series forecasting because of its recurrent behavior and
inner “memory”. In fact, MLP has proved to be a more accurate and robust forecasting
tool. In addition, it has been able to take advantage of preprocessing techniques to improve
accuracy while LSTM was not.

Therefore, an accurate and robust forecasting tool has been proposed to predict the
time evolution of the daily spot price of CO2. Predictions for 20 working days (four weeks)
are provided at once with good accuracy, as means error of 2.91 % for the nearest prediction
(1 day ahead) and 5.65% for the furthest one (20 days ahead) were provided. Thus, it may
be a very useful tool for enterprises selling and purchasing emission allowances as well as
for electric energy trading companies, as the forecasting model presented in this work is
able to provide reliable predictions of the time evolution of daily spot prices of CO2, what
may help them to make decisions concerning their selling or purchasing activities.

On other hand, obtaining reliable allowance price predictions is important to market
participants (such as affected companies, traders or brokers) who need accuracy price
predictions to better manage their portfolios. Moreover, it is also crucial for the design
of environmental policies, since CO2 emission allowance prices provide information on
the marginal abatement costs in the industry. Thus, based on the evolution of prices, the
effectiveness of the environmental policies can be evaluated and the emission cap adjusted.
Therefore, a more accurate carbon price forecasting is essential to establish a stronger and
more efficient emission market.

Based on the results presented in this work, we aim at carrying out further research to
test the efficiency of preprocessing strategies different from those used here. Refinements
of EMD such as Ensemble Empirical Mode Decomposition (EEMD) or Variational Mode
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Decomposition (VMD) could be applied and their performances compared with those
obtained in this work. In addition, a study of different strategies to split data into training
and validation sets based on cross-validation should also be carried out to try to define a
model independent of the training-validation division dependence of accuracy pointed out
in this work.
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