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Abstract: The modernization and optimization of current power systems are the objectives of research
and development in the energy sector, which is motivated by the ever-increasing electricity demands.
The goal of such research and development is to render power electronic equipment more controllable,
to ensure maximal use of current circuits, system flexibility and efficiency, as well as the relatively
easy integration of renewable energy resources at all voltage levels. The current revolution in
communication technologies and the Internet of Things (IoT) offers us an opportunity to supervise
and regulate the power grid, in order to achieve more reliable, efficient, and cost-effective services.
One of the most critical aspects of efficient power system operation is the ability to predict energy
load requirements, i.e., load forecasting. Load forecasting is essential for balancing demand and
supply and for determining electricity prices. Typically, load forecasting has been supported through
the use of Artificial Neural Networks (ANNs), which, once trained on a set of data, can predict
future loads. The accuracy of the ANNs’ prediction depends on the quality and availability of the
training data. In this paper, we propose novel data pre-processing strategies, which we apply to the
data used to train an ANN, and subsequently evaluate the quality of the predictions it produces, to
demonstrate the benefits gained. The proposed strategies and the obtained results are illustrated
using consumption data from the Greek interconnected power system.

Keywords: smart grids; load forecasting; artificial neural networks; data pre-processing

1. Introduction

A power system must be designed, constructed and controlled in such a way that it is
safe, reliable, environmentally friendly, and practical; that is, it can supply high-quality
electricity at the lowest possible price. The reliability of a power system is determined
by the extent to which it covers the overall energy demands of consumers, even under
temporal and local fluctuations in the load, i.e., the system should be able to respond to
changes in the demand for active and reactive power on a continuous basis. The quality of
electricity is assessed with reference to known limits for voltage and frequency variations,
which are typically 5% and 0.5%, respectively.

For the power system to meet its operational criteria, it must be constantly managed
and optimized through the implementation of various methods. System optimization
adds a significant economic benefit, with major utilities saving hundreds of millions of
dollars each year in fuel costs, increased operating efficiency and system security. Different
optimization problems, such as economic transmission, unit engagement, hydrothermal
scheduling, optimum power flow, maintenance scheduling, etc., have been realized in
power system operation [1], using conventional and Artificial Intelligence (AI) techniques.
The latter have proved especially valuable in rendering the power system ‘smarter’.

A central theme in smart energy systems is load forecasting, as it plays a critical role in
many aspects of power system management and operation. Specifically, to schedule the ef-
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fective operation and sustainable capital extension of an electric power distribution system,
the system operator must be able to predict the need for power supply at various locations
and at all times. During operation, power generation must increase or decrease in tandem
with system load, and this on-demand power generation necessitates an adequate genera-
tion capacity. Knowing the load parameters in advance allows the electric utility operator
to optimallmanage grid capacity [2]. Many critical operational decisions, such as power
generation scheduling, fuel purchase scheduling, maintenance scheduling, and electricity
transaction preparation, are dependent on electric load forecasting; hence, the accuracy
of forecasts directly or indirecly impacts the overall economic viability and dependability
of any electricity utility. In a deregulated environment, all concerned parties conduct
load forecasting on a regular basis; hence, generation providers, transmission companies,
Independent System Operators (ISOs), and Regional Transmission Organizations (RTOs)
depend on accurate load forecasts to prepare, negotiate, and operate [3]. Approaches to the
load forecasting problem distinguish between short-term (STLF), medium-term (MTLF),
and long-term load forecasting (LTLF). Long-term predictions are generally necessary for
the scheduling of power systems, medium-term predictions are required for maintenance
and planning of fuel supply, and short-term predictions are required for the daily operation
of the power system.

Short-term load forecasting was traditionally performed using approaches such as
time series models, regression, and Kalman filtering. A variety of Artificial Intelligence
algorithms, Deep Learning and Neuro-Fuzzy methods have been developed and applied
in the field of electricity systems for optimal operation and management of the power
system, load forecasting and electricity price forecasting. For instance, Alamaniotis et al.
propose a Gaussian Process Regression (GPR) and a Relevance Vector Regression (RVR) to
approach the load forecasting issue based on historical load data for New England’s power
system [4]. Kontogiannis et al. [5] propose the design of a fuzzy control system that uses
environmental data, such as weather parameters, to achieve minimal energy consumption
in buildings. This fuzzy control system relies on decision tree metrics to determine the
importance of data features. In a similar effort, to promote AI methods based on RVRs,
Alamaniotis et al. reuse the historical data of New England’s power system to forecast
the price of electricity the next day [6]. In a later attempt [7], the author proposes a novel
hybrid methodology to address the same issue. Initially, it uses RVRs to determine the
price of the next day’s electricity. It then uses these prediction results in conjunction with a
micro-genetic algorithm to enhance the prediction and determine the final value.

The first attempts to address the issue of hourly load prediction using Multi-Layer
Perceptrons (MLPs) appeared in the early 1990s. In [8] Park et al. provide a theoretical
analysis and mathematical background for the application of three-layer perceptrons to load
prediction. Using historical load and temperature data, their proposed system managed
to produce three different forecast variables (peak load, total daily load and hourly load)
with Mean Average Percentage Error (MAPE) values of less than 3%. In an effort to extend
the existing techniques, Kun-Long Ho et al. applied an adaptive learning algorithm to
yield more accurate MLP predictions [9]. A different approach is presented in [10], where
a minimum distance measurement is used to find the correlations of the data used as
neuronal inputs. The differences lie in the fact that input data include information about
the total load and maximum and minimum temperature of the previous days, as well as the
predicted maximum and minimum temperature for the forecast day, which, together with
an enhanced learning algorithm, produce better prediction results. In a more sophisticated
approach, Kandil et al. used a simple MLP for short-term load forecasting [11]. In this
paper, they focused on increasing the amount of important and highly correlated data used
as neural network inputs. Thus, the authors used an hour indicator, day indicator, and the
estimated temperature at hour k, k-1 and k-2 as variable inputs. Special emphasis is given
to the fact that historical loads are not used as inputs.

A first attempt at short-term load forecasting based on the data of the Greek power
system is presented in [12]. A fully connected three-layer feedforward ANN consisting of
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63 input neurons, 24 hidden neurons and 24 output neurons was proposed by Bakirtzis et al.
to predict the hourly values of the next day’s loads. Mandal et al., based on a similar range
of days to the predicted day, use a solid method to predict energy prices several hours
ahead, and for load forecasting [13]. They measured the correlation coefficient between
the data and then integrated them into a three-layer MLP, which was trained with the
backpropagation algorithm, using historical half-hourly data for the Victoria electricity
sector. This study, without accounting for variables such as weather conditions and special
status days, offered a more accurate approach to the STLF issue compared to previous,
simpler methods. Another work related to STLF for the Greek Intercontinental Power
System is presented in [14]. In their work, Tsekouras et al. compared various neural
network training algorithms to predict hourly load demand by measuring the MAPE of
each separately. The proposed neural network creation does not significantly differ in terms
of structure, but it uses pre-processed input data. Such pre-processing is achieved via a
normalization function proposed by the authors. Alamaniotis and Tsoukalas [15] presented
a data-driven method for minutely active power forecasting based on Gaussian processes,
highlighting the importance of minute predictions, while Kontogiannis et al. [16] presented
a baseline performance comparison of neural network models for minutely active power
forecasts derived from residential data.

Another category of neural networks that has interested the research community
in recent decades and is directly applicable to load prediction are Radial Basis Function
Networks (RBFNs). An initial analysis of the application of RBFNs to short-term load
forecasting is presented in [17]. The proposed model is applied to STLF using load data
of an Australian region from January to August 2004, yielding satisfactory results. In [18],
Gontar et al. emphasizing the special importance and usefulness of RBFNs, recorded the
results obtained by inputting load data for Crete. To reflect the seasonality of the data, they
proposed the creation of four neural networks, one for each season. A fifth neural network
was used to predict the loads on special days and the weekend. A comparative study
using RBFNs is described in [19]. The authors, trying to achieve better a generalization
of data, faster execution time and lower prediction error, considered the application of
various algorithms for the training of neural networks. To evaluate the different learning
techniques, they compared the prediction results obtained from RBFNs to those of Decay
Radial Basis Function Networks (DRBFN), Support Vector Regression (SVR), Extreme
Learning Machine (ELM), Improved Second-Order algorithm (ISO) and Error Correction
algorithm (ErrCor).

Another approach to STLF with the application of hybrid models is presented in [20].
The researchers suggest the use of wavelet fuzzy neural networks (WFNN) and modified
fuzzy neural networks (FNCI) to predict the next hour’s load, and they used load data
from the Northern Region Load Dispatch Center in Delhi, India, as well as temperature,
wind speed and humidity data, to evaluate their proposed hybrid models, yielding better
prediction results than the traditional ANFIS model, which has been extensively used in
the literature. In [21], Panapakidis proposes a robust hybrid model to forecast day-ahead
and hour-ahead load predictions by using hourly load values of 10 buses of the Greek
Power System located in the area of Thessaloniki, North Greece. The hybrid model is based
on the combination of historical load and temperature data clustering and embedding
in an MLP neural network. Specifically, the author recommends using the minCEntropy
clustering algorithm on the training set to formulate k clusters. A different ANN is used
for each subset. As a result, the data from the corresponding clusters are used to train k
ANNs. The Euclidean distance is used to relate each pattern in the test set to k centroids,
and the results are fed into the corresponding ANN.

In the spirit of previous researchers, an innovative approach to load prediction was
described in [22]. Dong et al. proposed the implementation of a convolutional neural
network (CNN) enhanced with K-means clustering to achieve higher scalability in the
data and reduce the error rate in the forecast. Another hybrid load prediction system is
described in detail in [23], where the authors emphasize the importance of pre-processing
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load data and propose an improved neural network learning algorithm. The data entered
in the modification model refer to historical load data per hour and exogenous data
that directly affect the load behaviour, such as temperature and humidity. The Min-Max
normalization is applied, so that their values range between 0 and 1. Then, the data that
show a greater correlation are entered into an MLP neural network, which is trained
with a Modified Harmony Search (MHS) algorithm. In the category of hybrid models,
Ekonomou et al. proposed a load forecasting model based on the combination of MLP
neural networks and wavelet analysis [24]. The researchers manipulated historical load
data from the Bulgarian power system grid as time series and applied a wavelet de-noising
algorithm to remove their noise and split them into signals with different frequencies.
In [25], K-shape is proposed as a new clustering technique to categorize consumers based
on their load consumption behaviour. Another hybrid approach is described in [26]. The
researchers use various machine learning algorithms to optimize the data they use in
short-term load forecasting. Initially, they use the load data as time series and decompose
them based on the Intrinsic Mode Function (IMF) technique. Then, with the help of the
Particle Swarm Optimization (PSO) algorithm, data are filtered and used by the Extended
Kalman Filter (EKF), Extreme Learning Machine with Kernel (KELM) for STLF. The authors
conclude that this approach yields an acceptable forecasting accuracy and time performance.
Likewise, [27] uses day- or week-ahead load data to create clusters, which are fed to an
ANN. The errors that result from comparing this data with the actual ones are fed to a
WNN, where the final prediction and the various error metrics are calculated. This process
is repeated for various machine learning approaches. The results of these techniques are
compared with the MAPE and the normalized Root Mean Square Error (nRMSE), where
the approach with the least error is preferable.

Remaining in the hybrid model category, Massaoudi et al. propose a new technique for
daily load forecasting based on a model that integrates Extreme Gradient Boosting (XGB),
Light Extreme Gradient Boosting (LGBM), and MLP [28]. This combination produces
MAPE values close to 2.69%. A K-Medoids clustering approach is used in conjunction with
several deep learning prediction models in [29]. To reach 7.18% MAPE for the prediction of
the following day’s load, the authors employ Autoregressive Integrated Moving Average
(ARIMA), Deep Neural Networks (DNN), and Long Short-Term Memory (LSTM), as
well as an advanced data scaling strategy. In addition to the above work, Lizhen et al.
propose a hybrid neural network model that combines the Gated Recurrent Unit (GRU)
and convolutional neural networks (CNN) for feature extraction of time series data [30].
The authors do not place a high level of importance on pre-processing the input data
utilized by the GRU-CNN forecasting model, and the MAPE result is 2.88%. Similarly,
Farsi et al. studied STLF using a Parallel LSTM-CNN network (PLCNet) [31]. The input
data were scaled using the traditional min-max approach, yielding a MAPE of 2.08% for
the prediction.

The above papers are some of the extensive literature on the application of various
kinds of neural networks to short-term load forecasting. The bibliography is constantly
increasing as new deep learning methods are tried. The effects produced by the various
forms of data normalization, the various activation functions, and the various morphologies
of neural networks are presented in [32–34].

This paper presents two innovative data pre-processing techniques applied to short-
term load forecasting using artificial neural networks, beyond the simple and min–max
scaling procedures. The two primary pre-processing strategies that were suggested con-
centrate on the gravity of particular neural network input variables in relation to output
variables, resulting in superior prediction outcomes compared to traditional methods. Com-
pared to existing studies using data from the Greek interconnected system, this method
produces improved results in terms of Mean Squared Error (MSE), Mean Absolute Error
(MAE) and MAPE.
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2. Materials and Methods
2.1. Proposed Approach for STLF

Following a thorough review of the literature, two innovative data processing tech-
niques are suggested, which differ from earlier work in that they place emphasis on specific
input data, and their impact on the output variables of the neural network. The predictions
obtained from such pre-processed input lead to increased accuracy, as is demonstrated by
the results obtained. The next day’s load forecast, using historical data from previous days
and the previous hour, as well as the structure of the neural networks used, are discussed
in detail in this section.

2.2. Implementation for Short Term Load Forecasting

The data used in this study came from the Greek power system during the period
2013–2017 and refer to hourly load values. To make a more accurate forecast, weather
data, such as temperature, were used in addition to the historical data of the loads. Data
is separated into training and test sets in a ratio of 80% to 20%. Hence, the training set
comprises data for the years 2013–2016, and the predictions produced are compared to
data for year 2017 (test set). The neural networks employed were built using the Python
programming language and specifically the library scikit-learn.

A modified MLP neural network is used to predict the hourly value of the load. A
new input variable called H − 1Load is employed that refers to the value of the load in the
hour preceding that for which the prediction is made. Since the behaviour of the hourly
value of the load is represented with greater precision knowing the load of the Greek
interconnected system in the previous hour, the inclusion of this component improves
the model prediction. The improved neural network model consists of the following
input variables:

• Hour: The time of day for which the load forecast will be made. The time is expressed
as an integer with values ranging from 0 to 23.

• Week Day: It’s a characteristic coding to decide the day of the week. The coding is
done with integers ranging from 1 to 7, with 1 denoting Sunday, 2 denoting Monday,
and so on.

• Holiday: Binary coding is used to indicate whether a day is a holiday or a working day.
The number 1 is used to designate Greek state holidays, such as national anniversaries
and major religious holidays, as well as weekends. The other days, on the other hand,
are coded with number 0.

• Temperature: The hourly value (in Celsius) of the temperature of the day for which
the load is forecast.

• D-1 Load: The load value of the day preceding the one for which prediction is
made, at the corresponding time. For example, if the MLP neural network predicts
Wednesday at 17:00 then the value of Tuesday load at 17:00 is entered as input to the
neural network.

• D-7 Load: The value of the load at the corresponding time on the same day of the
previous week. If the load prediction for Wednesday 12 May 2017 at 17:00 is the
output of the neural network, then the value of the load for Wednesday 5 May 2017 at
17:00 is entered as the neural network’s input.

• H-1 Load: The value of the previous hour’s load on which the forecast is based. If the
load prediction for Wednesday 12 May 2017 at 17:00 is the neural network’s output,
then the value of the load on Wednesday 12 May 2017 at 16:00 is entered as the neural
network’s input.

The architecture of the MLP neural network that was used to predict the hourly value
of the load is shown in Figure 1. An input layer, a hidden layer, and an output layer
represent the three layers of a neural network. Seven neurons make up the input level.
Each neuron is associated with one of the variables listed above. There are 100 neurons
in the hidden layer. The value 100 was chosen experimentally as it was found to produce
better predictive values by dramatically reducing error. As can be seen from the literature,



Energies 2021, 14, 7788 6 of 14

neural networks with a single hidden layer address the STLF problem quite accurately. The
output layer is composed of a single neuron and refers to the hourly load value for which
the prediction is developed.

Figure 1. The structure of the proposed MLP neural network.

3. Results

The pre-processing techniques for the data input to the neural network are of particular
interest when developing the current prediction model. The MSE, MAE and MAPE metrics
are used to assess and compare the various scaling methods for the input data.

Initially the input data are not subjected to some kind of processing and are entered
into the three-layer perceptron in the original form of raw data. The results of this method
are compared to the real hourly load values for the respective day for the entire year of
2017. The real and forecasted values are graphically depicted in Figure 2, while the values
for the metric indicators are summarized in Table 1.

Figure 2. Graphic comparison of actual and predicted hourly load values without any pre-processing of the data.
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Table 1. MSE, MAE and MAPE values for the hourly load forecast. Input data are not subjected to
any scaling technique.

Scaling Method MSE MAE MAPE

Unscaled 44,111.39451 160.99752 2.72%

Next, the effect of a simple scaling of the input data on the prediction result of the
neural network is studied. Simple scaling is performed by dividing each input variable by
the maximum value of the corresponding dataset. This procedure is performed only for
the Temperature, D − 1Load, D − 7Load and H − 1Load variables in order to obtain values
within the field [0, 1]. Equation (1) gives the simple scaling for the temperature:

Tempscaled =
Tempi

Tempmax
(1)

where Tempi is the hourly temperature value of ith day and Tempmax is the maximum
hourly temperature value of the dataset. The D − 1Load, D − 7Load and H − 1Load data
are normalized in a similar way.

The scaled data are then fed into a neural network, which predicts the load’s hourly
value. The results of the proposed neural network are compared to real-time hourly values
from 2017. Figure 3 depicts its graphic display. The MSE, MAE, and MAPE metrics
calculated from this forecast using the same input data pre-processing technique are
summarized in Table 2.

Figure 3. Graphic comparison of actual and predicted hourly load values for the year 2017. The values predicted through
the simple scaling method are added.

Table 2. MSE, MAE and MAPE values for the hourly load forecast. Input data are subjected to a
simple scaling technique.

Scaling Method MSE MAE MAPE

Unscaled 44,111.39451 160.99752 2.72%
Simple Scaling 28,208.88762 131.14385 2.24%
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After an extensive study of the correlation of the data, and the way in which the
neural network manages them, this work proposed an innovative scaling method that will
provide appropriate weight to the variables D − 1Load, D − 7Load and H − 1Load, thereby
considerably improving the forecast results.

First, temperature data are scaled in the same way as in discussed above, using
Equation (1). After experimentation, it was observed that the D − 1Load, D − 7Load and
H− 1Load data determine, to a greater extent, the outcome of the neural network. Therefore,
it is considered reasonable and necessary to give them due consideration and as a result
of experimentation the coefficient 10 is the appropriate weight for these variables. The
proposed scaling technique is described by Equation (2):

LoadD−1
scaled =

LoadD−1
i

LoadD−1
max

× 10 (2)

Second, the scaled data are fed into the neural network. Figure 4 graphically depicts
the resulting outcomes, which correspond to real and predicted hourly values for the year
2017. The MSE, MAE, and MAPE values calculated from this forecast are compared in
Table 3. Our proposed data pre-processing technique significantly improves forecasting, so
the MAPE values fall.

Figure 4. Graphic comparison of actual and predicted hourly load values for the year 2017. The values predicted through
the proposed scaling method are added.

Table 3. MSE, MAE and MAPE values for the hourly load forecast. Input data is subjected to
enhanced scaling technique.

Scaling Method MSE MAE MAPE

Unscaled 44,111.39451 160.99752 2.72%
Simple Scaling 28,208.88762 131.14385 2.24%

Enhanced Scaling 22,111.66683 112.91976 1.92%
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The Min–Max method is a popular way of scaling neural network input data for
regression problems. The temperature data and historical load data are subjected to a
separate Min–Max scaling, as Equation (3) shows:

y =
x − min

max − min
(3)

where y is the new scaled value, x is the initial value, min and max are the minimum and
maximum values of the set, respectively.

The scaled data will now be inserted into the input layer to predict hourly load
values for the year 2017. As shown in Figure 5, the values of the forecast results using the
proposed MLP neural network are graphically compared to the real values. The values of
the estimated MSE, MAE, and MAPE metrics are summarized in Table 4.

Figure 5. Graphic comparison of actual and predicted hourly load values for the year 2017. The values predicted through
the min–max scaling method are added.

Table 4. MSE, MAE and MAPE values for the hourly load forecast. Input data are subjected to a
min–max scaling technique.

Scaling Method MSE MAE MAPE

Unscaled 44,111.39451 160.99752 2.72%
Simple Scaling 28,208.88762 131.14385 2.24%

Enhanced Scaling 22,111.66683 112.91976 1.92%
Min-Max Scaling 40,720.48741 159.61260 2.73%

While Min–Max scaling does not seem to do as well as the other two data pre-
processing methods, an improved Min–Max Scaling approach that stresses the value
and weight of input variables D − 1Load and D − 7Load in the forecast outcome should
also be considered. The temperature data are first scaled using the basic min–max equation,
while the historical load data are scaled using Equation (4):

y =
x − min

max − min
× 10 (4)
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where y represents the current scaled value, x represents the load’s hourly value, and
min and max represent the minimum and maximum values of all historical load results,
respectively. The variables D − 1Load and D − 7Load get values in the field [0, 10] using
Equation (4).

The data have now been scaled and entered into the proposed neural network. The
forecast’s outcome is a value in the interval [0, 10] that corresponds to the day’s hourly
load on which the forecast is conducted. This value can be translated to MW so that it can
be compared to the corresponding real hourly load value and the MSE, MAE, and MAPE
metrics can be correctly calculated. Equation (5) is used to convert this value to MW. The
load behaviour of all scaling methods evaluated is depicted in Figure 6.

x =
y × (xmax − xmin)

10
+ xmin (5)

Figure 6. Graphic comparison of actual and predicted hourly load values for the year 2017. All pre-processing methods of
the examined data are illustrated graphically.

The results of the MSE, MAE, and MAPE metrics are summarized in Table 5, which
serve as a reference point for all scaling approaches for the hourly load forecast for 2017.

Table 5. MSE, MAE and MAPE values for the hourly load forecast. The metrics for each scaling
approach investigated are aggregated.

Scaling Method MSE MAE MAPE

Unscaled 44,111.39451 160.99752 2.72%
Simple Scaling 28,208.88762 131.14385 2.24%

Enhanced Scaling 22,111.66683 112.91976 1.92%
Min-Max Scaling 40,720.48741 159.61260 2.73 %

Enh. Min-Max Scaling 18,985.37885 103.60419 1.76 %

Our improved Min–Max Scaling strateg produces a lower MAPE value in the predic-
tion. In terms of MLP performance, this approach sufficiently stresses the weight and value
of the input variables D − 1Load, D − 7Load, and H − 1Load, despite its relative simplicity.
It is worth noting that when this improved MLP neural network is combined with our
proposed enhanced scaling approach, the MAPE value drops below 2%, resulting in the
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lowest prediction value in the literature, based on data from the Greek interconnected
power system. Figures 7 and 8 show the value of the weight attached to the input data in
greater detail.

Figure 7. The various load curves for 2 weeks of 2017. The proposed method effectively follows the actual load curve.

Figure 8. A more detailed depiction of the various load curves.

4. Discussion

Short-term load forecasting is a growing area of study, in which interest is expected to
increase in coming years, as its outcomes impact virtually all aspects of the management
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and operation of a power system. Modelling, identification and performance analysis
are all used in the development of statistical load forecasting models. Computational
intelligence approaches are expected to be the driving force behind this field, because they
enable the generalization and simulation of non-linear dynamic systems.

Most STLF approaches employ neural networks of various kinds. In this work, we
developed an MLP and trained it using data from the Greek electricity system, thus
contributing to the literature on the application of ANNs to STLF in general, and to the
special case of the application of ANNs to the Greek electricity system. Moreover, it has
been demonstrated in the literature, and shown in this paper, that the accuracy of the
predictions achieved by the neural network can be greatly improved, if some kind of
pre-processing is applied to the input data [6,15] or if the output of the neural network is
post-processed [35]. There are also approaches that exploit correlations between input data
to improve the prediction performance of the neural network [36,37].

In this paper, we use historical load data, in contrast to approaches such as the one
in [37], and couple this with data pre-processing methods, in contrast to approaches such
as [35], rather than post-processing the output of the neural network. We show that the
simple scaling of input through normalization, such as the one proposed in [6], can be
further improved through our proposal for enhanced scaling, where the importance of
certain input variables on the total outcome of the neural network is taken into consid-
eration. Moreover, we propose an improvement to the Min–Max normalization used
by [15] by implementing enhanced Min–Max scaling, and demonstrate that the accuracy
of the prediction produced by the MLP is further increased. Hence, the overall prediction
performance of the MLP is significantly better when our proposed data pre-processing
techniques are applied, while the neural network maintains its simplicity, yielding MAPE
values below 2%.

Despite the simplicity of the MLP model described in our study, the obtained MAPE
results are more accurate than those produced by the complicated approaches presented
in [28,29]. Furthermore, when compared to [29], where a new way of scaling input data is
utilized, the results of our study are more accurate, highlighting the effectiveness of the sug-
gested scaling approach. The presented scaling technique in our study outperforms [30,31],
underlining the necessity of assigning more importance to specific input data.

Our future work will focus on investigating whether the coefficients we used for the
weighted enhancements on data pre-processing can be calculated in some formal manner,
rather than empirically derived. We also intend to study the impact of various clustering
techniques on the prediction performance, in order to compare our approach with the
works in [11,14].
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