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Abstract: Wireless sensor networks are used to monitor the operating status of the microgrids, which
can effectively improve the stability of power supplies. The topology control is a critical issue of
wireless sensor networks, which affects monitoring data transmission reliability and lifetime of
wireless sensor networks. Meanwhile, the data acquisition accuracy of wireless sensor networks has
a great impact on the quality of monitoring. Therefore, this paper focuses on improving wireless
sensor networks data acquisition satisfaction and energy efficiency. A joint acquisition time design
and sensor association optimization algorithm is proposed to prolong the lifetime of wireless sensor
networks and enhance the stability of monitoring, which considers the cluster heads selection, data
collection satisfaction and sensor association. First, a multi-constrained mixed-integer programming
problem, which combines acquisition time design and sensor association, is formulated to maximize
data acquisition satisfaction and minimize energy consumption. To solve this problem, we propose
an iterative algorithm based on block coordinate descent technology. In each iteration, the acquisition
time is obtained by Lagrangian duality. After that, the sensor association is modeled as a 0–1 knapsack
problem, and the three different methods are proposed to solve it. Finally, the simulations are
provided to demonstrate the efficiency of the algorithm proposed in this paper.

Keywords: microgrids; wireless sensor network; topology control; cluster members association;
acquisition time design

1. Introduction

Electricity is mainly generated from fossil fuels such as coal, oil and natural gas. These
sources are often referred to as traditional or non-renewable energy sources [1]. However,
these traditional modes of power generation have caused severe environmental pollution
and ecological damage. The sustainable modern energy sources have been used to solve
these problems. Consequently, microgrids are created as a hybrid system that combines
traditional and modern energy sources. The microgrid is an energy generation device
consisting of solar, wind and fuel cells, which is distributed in communities. In recent
years, microgrids have attracted more and more attention.

Microgrids are an integrated energy system composed of interconnected loads and
distributed energy. As a system, the microgrid can operate in parallel with the grid or on an
island. If the power system fails to connect to the microgrid or is geographically isolated,
the microgrid operates in island mode [2]. Therefore, how to control these distributed
energy devices to ensure the safe and reliable operation of the power system is an urgent
problem [3]. Typically, microgrids are located in the vicinity of consumers or remote areas,
and their operational status needs to be monitored in real-time. Thus, sensor nodes can
be deployed around the microgrid, and the information collected about the status of the
microgrid will be transmitted to the energy management system for processing [4].
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The implementation of wireless sensor network (WSN) in microgrids has become a
hot research topic. WSN has some advantages, including low cost, dynamic networking,
large-scale deployment, scalability, etc. WSN can effectively achieve the acquisition and
transmission of the status data of each object in the microgrids, and realize the monitoring
and diagnosis of related information of the microgrids. Furthermore, in terms of a smart
city’s energy, microgrid and blockchain technology are combined to build a consumer
community network. Then, multiple wireless sensor nodes are used to manage the large
amount of data generated in the network, improving the microgrid network’s efficiency [5].
Additionally, sensors and actuators and wireless communication technology can transmit
measurement data and command messages. The wireless sensor and actuator network
are a promising scenario to realize the intelligent management of microgrids and smart
grids [6].

Under the condition of limited energy, how to reduce the distortion of transmitted
data and extend the lifetime of the WSN is a crucial concern. In [7], an asynchronous
wake-up scheduling scheme for a WSN is proposed based on heterogeneous arbitration
while finding the trade-off between delay and energy consumption. Innovative DC grid
technology based on a WSN, combined with power-system-related solutions, provides
a reliable monitoring and fault detection system for the power system. It is necessary to
utilize sensors to monitor changes in transmission parameters (such as voltage, current
and power) [8]. The WSN can replace part of the communication infrastructure of the
microgrids and be deployed among the units of the microgrids to ensure the real-time
data flow [9]. However, it is quite important to effectively control the topology of sensor
nodes in microgrids, which contributes to a balance between energy consumption and data
satisfaction of sensor nodes.

Motivated by the above illustrations, we propose an energy-efficient algorithm by
jointly optimizing acquisition time design and sensor node association. The energy con-
sumption of sensor nodes is composed of acquisition energy consumption and transmission
energy consumption. The longer the data acquisition time, the higher the monitoring accu-
racy and data satisfaction. However, this will also lead to data redundancy and excessive
energy consumption so that a weighted balance is needed between the sensor’s energy
consumption and the satisfaction of the data. The main contributions of this paper can be
summarized as follows:

1. This paper comprehensively considers the factors that affect the quality of WSN
monitoring, such as data collection time, sensor association and cluster heads (CHs)
selection. A joint acquisition time and sensor association optimization algorithm
(ATSAO) is proposed to prolong the lifetime of the WSN and enhance the stability of
monitoring. The optimal topology and collection time control strategy are obtained.

2. The joint optimization problem is formulated as a multi-constrained mixed integer
programming problem, and an effective iterative algorithm is proposed based on
block coordinate descent (BCD) technology to obtain its sub-optimal solution to
achieve WSN energy consumption minimization and maximize the satisfaction of
collecting data to extend the lifetime of the sensor network and ensure the accuracy
and reliability of monitoring.

3. The sensor association is modeled as a 0–1 multi-knapsack optimization problem.
The methods with different complexity are proposed to address the problem, and
their performance differences are compared by simulation so that they can be selected
according to the actual needs in the project.

The rest of this paper is organized as follows: Section 2 summarizes the literature
review on WSN. In Section 3, we introduce the WSN system model for microgrid status
monitoring. Section 4 constructs a multi-constrained mixed-integer optimization problem
and propose an efficient multi-iterative algorithm to solve it. In Section 5, the simulation
results of the algorithms in this paper are presented. Compared with the existing work,
the uniqueness of this paper is discussed in Section 6. Finally, we conclude the paper
in Section 7.
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2. Literature Review

With the development of the power grid, the concept of microgrids came into being.
The microgrids is placed at the end of the entire grid-connected system. The WSN is
engaged in the management of power generation, power consumption, transmission and
distribution. In terms of power generation, the WSN detects the power generated by
the microgrid for large-scale applications. In addition, the WSN needs to monitor the
transmission status of the microgrid to transmit power effectively. However, the energy
of sensor nodes is limited. Under the condition of limited energy, how to improve the
efficiency of data transmission and the lifetime of the sensor network is a crucial concern.

A three-layer framework is proposed based on joint rate-aware fuzzy clustering and
stable sensor association that considers various factors of sensor energy efficiency [10].
In [11], fog computing was utilized to optimize the WSN connected to the microgrid. In the
grid-connected community (GCC), an energy model was modeled to evaluate the energy
consumption of the WSN and its performance in microgrids. The collected information
of sensor nodes is used to calculate the optimal value of data transmission by utilizing
the whale optimization algorithm, which reduces the energy consumption of the sensor
network and improves the throughput of the network. In [12], a load balancing and routing
strategy using the Glowworm swarm optimization approach (LBR-GSO) is adopted to
handle the energy consumption of sensor nodes.

In the WSN, the CHs consume more energy than other nodes, so the lifetime of the
CHs is shorter than other cluster members (CMs). Therefore, to extend the sensor network’s
lifetime, the load of the sensor nodes connected to the CHs must be balanced. This is the
load balancing clustering problem, which is an NP-hard. In [13], a routing algorithm
was proposed. The routing algorithm reduces and balances the energy consumption
in the network by finding a suitable path between each CH and the aggregation end.
In [14], a user association and resource allocation algorithm was investigated based on the
Stackelberg game. In [15], a distributed WSN scheme based on grid clustering and fuzzy
reinforcement learning was proposed to maximize the network life cycle while achieving
energy-efficient data aggregation. In [16], path operator calculus centrality was utilized to
optimize the centrality problem in routing, the harmony search algorithm was used to find
the main routing path, and then the particle swarm algorithm was used to estimate high
centrality nodes. At last, optimal routing with reduced energy consumption was found. As
a result, the hybrid algorithm reduced time delay and increased residual energy, effectively
balancing energy consumption.

Considering that different transmission protocols have an impact on the energy con-
sumption of sensor nodes. It is a challenging task to implement complex service quality
protocols and security mechanisms in sensor networks. In addition, the WSN should not
only focus on reducing the power consumption of sensor devices but also maintain the high
reliability and high throughput required for smart grids applications [17]. In [18], a new
data acquisition routing scheme was proposed based on bionic self-optimizing butterfly
matching optimization, a self-optimizing intelligent routing protocol. In [19], an "Efficient
Power Grid Link Routing Protocol" was proposed in WSN to expand the network’s lifetime.
First, the grid algorithm was utilized to divide the nodes into virtual units, and then
the intra-cluster and inter-cluster chains are used for data transmission, and each node
communicates with its neighboring nodes. The protocol can improve the stability of the
network and reduce energy consumption more than the low-energy adaptive clustering
hierarchy (LEACH) protocol.

In addition, area coverage is also a crucial issue in WSN, and it will impact the per-
ceived quality of the target area, namely, the coverage of non-penetrating obstacles in the
microgrids where sensors cannot be deployed or sensor signals cannot pass through. The
target coverage area is discretized in the deployment diagram representation of impenetra-
ble obstacles. In [20], a probabilistic detection model was utilized to represent sensors with
variable distance coverage. The area coverage problem was formulated as a mixed-integer
nonlinear programming problem, which was solved by an iterative process.
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3. System Model

In this section, we describe the system model. As shown in Figure 1, we consider a
microgrids system based on a smart factory. The system includes five types of facilities:
a workshop, a central energy plant, a wind generator, an integrated data network, pho-
tovoltaics and offices. New energy facilities such as wind generators and photovoltaics
intermittently generate electricity to reduce the impact on the center-dependence of the
grid. To ensure the stable operation of the entire microgrid system, a WSN consisting
of N sensors is deployed. The set of sensors are denoted as N , where |N | = N. Due to
the randomness of the deployment location in the practical scene, all sensor nodes are
deployed through the Poisson point process (PPP) with a density of ρ in this paper, includ-
ing temperature, voltage, current, light intensity and wind speed, etc., which presents a
relatively random sensor deployment to cover more application scenarios. Of course, wind
speed sensors and light intensity sensors are mainly deployed near wind generators and
photovoltaics, respectively, in actual scenarios. In order to obtain effective topology control,
all sensor nodes are divided into K clusters. The sensor nodes in each cluster will select one
of them to become the CH, and the other sensor nodes will become CMs. The set of CHs
are denoted as K, where |K| = K and Z =

{
Z1, · · · Zj, · · · ,ZK

}
, ∑m∈K |Zm| = N − K.

The CMs collect data and transmit it to the CH. The CH is responsible for collecting the
data from the CMs and transmitting them to the BS via the uplink channel after fusion.
Therefore, we have the following assumptions for the entire WSN. First, once the sensor is
deployed, the location will no longer change. Secondly, all sensors are homogeneous and
have the same data processing capacity and energy consumption model, but the size of the
data packets generated by each sensor in each round is different, which is related to the
data acquisition time. Finally, all sensors contain the same initial energy, and the energy
of the data transmission gradually decreases. When the energy is exhausted, the node is
considered to be dead.

Figure 1. A microgrids state detection system based on WSN.

Energy Consumption Model

The sensor operating time is mainly divided into two parts. The first part is data ac-
quisition. At this stage, each sensor collects a certain bit of data and waits to be transmitted
to the CH; the second part is the data transmission and reception stage, the CMs upload
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the collected data through the wireless channel, and CH receives the data and processes
data from CMs.

In the data acquisition stage, the energy consumption of the sensor node n can be
expressed as follows:

En,c = pc ∗ tn, (1)

where pc is the acquisition power, and tn is the acquisition time of sensor node n. In
addition, the longer the acquisition time of the sensor, the smaller the probability of
data distortion and the higher the satisfaction level that can be obtained. Therefore, the
satisfaction level of sensor node n can be defined as the utility function of time t:

σUn(tn), (2)

where σ > 0 is a coefficient of the satisfaction function. The utility function is a monotonic
increasing function of time tn. This function can be modeled as a logarithmic function
and is also used in [21,22]. Of course, the algorithm and simulation results presented in
this paper can be easily implemented when sensor nodes have different utility functions.
However, as the acquisition time of the sensor is longer, more amount of data are generated
correspondingly. The maximum acquisition time of data is defined as Tmax.

In the data transmission stage, the energy model in [23] was used. The energy model
mainly includes two parts: transmission power consumption and circuit power consump-
tion. In this paper, we introduce the transmission rate of the node into the energy model,
because the bandwidth and SNR of the channel have a certain impact on the transmission
energy consumption. So the energy consumption of sensor node n data transmission is
as follows:

En,t =
1
η
(pt + α) ∗ l ∗ tn

rn
, (3)

where η is defined as the efficiency of the power amplifier, pt is the transmission power, α is
the circuit power consumption of data transmission, l > 0 is the amount of data acquisition
per unit time and rn is the data transmission rate.

The energy consumption of the sensor node receiving acquisition data is expressed
as follows:

En,r = ec ∗ l ∗ tn, (4)

where ec is the circuit power for data reception. In addition, the CH receives data from all
CMs. In order to reduce energy consumption, the received data need to be fused into l · tn
and then transmitted to the BS. The energy consumption per bit of data fusion is denoted
as EDA.

According to the above energy model, the energy consumption of CHs and CMs in
each round can be obtained. xij is denoted as xij ∈ {0, 1} as a binary variable, which
represents the association status of CM i , where i ∈ L and j ∈ K. If xij = 1, this means
that the CM i chooses to access the CH j, otherwise xij = 0. Then, the following constraints
need to be added:

∑
j

xij = 1, ∀i ∈ L, (5)

∑
i

xij ≤ Nmax
j , ∀j ∈ K, (6)

xij ∈ {0, 1}, ∀i ∈ L, j ∈ K, (7)

where Nmax
j is the maximum number of CMs that CH j can access. Consequently, the

energy consumption of CM i in each round can be expressed as follows:

ECMi =
1
η
(pt + α) ∗ l ∗ ti ∑

j

xij

rij
(8)
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where rij is the transmission rate from CM i to CH j.
The energy consumption of each CH includes three parts: receiving data from CMs,

data fusion and sending data to the BS. The energy consumption of the CH j in each round
can be expressed as follows:

ECHj = ec ∗∑
i
(l ∗ ti ∗ xij) + EDA ∗

(
∑

i
(l ∗ ti ∗ xij) + l ∗ tj

)
+

1
η
(pt + α)

l ∗ tj

rcon
, (9)

where rcon is the transmission rate between the CHs and the BS. Since the location of the BS
is fixed, the CHs have been determined by the CHs selection algorithm, rcon is a constant.

4. Problem Formulation and Problem Solution

In order to reduce the WSN’s energy consumption and extend its lifetime, the topology
control of the WSN needs to be considered. The topology control generally includes two
parts: sensor association and CHs selection, which only considers the data transmission
phase of the WSN. Based on the existing work, in order to optimize the energy consumption
of sensor nodes during the entire working phase, this paper considers the following three
issues: acquisition time design, CHs selection and sensor association. First, the CHs
are selected based on the CHs selection algorithm. Then, a multi-constrained mixed
integer optimization problem of joint acquisition time design and sensor association is
formulated. By solving this optimization problem, the current acquisition time and the
sensor association under the current CHs can be determined. After that, select the CHs
again and repeat this process until the CHs, acquisition time and sensor associations do not
change. At this time, we think that a high-quality sub-optimal solution has been obtained.
Of course, since the initial acquisition time and sensor association are unknown, at the
beginning of the iteration, we randomly select K sensor nodes as CHs and the remaining
nodes automatically become CMs.

4.1. Cluster Heads Selection

According to the energy model used in this paper, to minimize the energy consumption
of the entire WSN, the CHs should be located in the center of the entire cluster. Therefore,
we choose the sensor node, which has the smallest sum of Euclidean distances with other
sensor nodes in the same cluster as the CHs in this paper. Other sensor nodes automatically
become CMs, and the specific formula for CHs selection is shown in the following formula:

CHj = arg min
q

{
∑ distq,Zm , ∀q ∈ Zm

}
, ∀j ∈ K, (10)

where Zm represents the set of Zm that removes the node q. ∑ distq,Zm is the sum of the
distances from node q to other nodes in the cluster.

4.2. Problem Formulation

In the previous part, we have selected the CHs by Equation (10). In this part, a joint
optimization problem of the acquisition time T = {tn, n ∈ N} and the sensor association
X = {xij, i ∈ L, j ∈ K} is formulated based on the result of the CHs selection. In order to
improve the satisfaction of sensor data acquisition, reduce the energy consumption of the
WSN and ensure the stable operation of the microgrids, we jointly optimize the acquisition
time T and sensor association X to maximize data satisfaction and minimize the energy
consumption of each round of WSN. Therefore, this paper constructs an optimization
problem as follows:
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P : max
T,X

∑
n

U(tn)− β

(
pc ∑

n
tn + ∑

i
ECMi + ∑

j
ECHj

)
s.t. ∑

j
xij = 1, ∀i ∈ L,

∑
i

xij ≤ Nmax
j , ∀j ∈ K

xij ∈ {0, 1}, ∀i ∈ L, ∀j ∈ K
0 ≤ tn ≤ Tmax, ∀n ∈ N

(11)

where β > 0 is the trade-off between satisfaction and energy consumption. First and third
constraints ensure the association of a single CH and the maximum number of CMs that the
CH can access are restricted through second constraint. Since the xij are binary variables,
the optimization problem P is a multi-constrained mixed-integer programming problem.
However, the mixed-integer programming problem is generally challenging to obtain the
optimal solution. If the brute force algorithm is used to obtain it, the algorithm complexity
is extremely high. Furthermore, it is still challenging to obtain the optimal solution when
the dimensionality of the optimization problem is high.

4.3. Problem Solution

For problem P, we use the BCD algorithm [24] to solve the original problem by
dividing it into two sub-problems, namely, the acquisition time T and the sensor association
X. Then, in each iteration, two sub-problems are solved in turn. When the iteration reaches
the prescribed accuracy, we think that the sub-optimal solution of the optimization problem
P has been obtained.

4.3.1. Acquisition Time Optimization

We first optimize the acquisition time T with given sensor association X. At this time,
the optimization problem P can be expressed as follows:

P1 : max
T

∑
n

U(tn)− β

(
pc ∑

n
tn + ∑

i
ECMi + ∑

j
ECHj

)

= ∑
n

U(tn)− β

(
pc ∑

n
tn + ∑

i

[
1
η
(pt + α) ∗ l ∗ ti ∗∑

j

xij

rij

]

+∑
j

[
ec ∗∑

i
(l ∗ ti ∗ xij) + EDA ∗

(
∑

i
(l ∗ ti ∗ xij) + l ∗ tj

)])

s.t. 0 < tn < Tmax, ∀n ∈ N .

(12)

It can be seen that when the satisfaction function U(·) is modeled as a convex function,
the problem is a convex optimization problem about T, so the strong duality condition
holds. Therefore, its Lagrangian function and dual problem can be constructed as follows:

L(T, λ, ν) = ∑
n

U(tn)− β

(
pc ∑

n
tn + ∑

i

[
1
η
(pt + α) ∗ l ∗ ti ∗∑

j

xij

rij

]
+ ∑

j

[
ec ∗∑

i
(l ∗ ti ∗ xij)

+EDA ∗
(
∑

i
(l ∗ ti ∗ xij) + l ∗ tj

)])
+ ∑

n
λntn + ∑

n
νn(Tmax − tn),

(13)
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where λ = {λn, ∀n ∈ N}, ν = {νn, ∀n ∈ N} is a non-negative Lagrangian multiplier.
Then the dual function is expressed as follows:

D(λ, ν) = max
T

L(T, λ, ν). (14)

The dual problem is as follows:

min
λ,ν

D(λ, ν)

s.t. λ � 0,

ν � 0.

(15)

In order to obtain the dual function, we take the first derivative of the Lagrangian function
with respect to T to obtain:

t∗n =


U′−1

[
β
(

pc +
(pt+α)l

η ∗∑
j

xij
rij

+ l(ec + EDA)∑
j

xij
)
− λn + νn

]
, i f n ∈ L,

U′−1
[

β(pc + l)− λn + νn

]
, i f n ∈ K,

(16)

when t∗n is found, and the dual function can be obtained. Then, we can solve the dual
problem to obtain the optimal solution of P1. For the dual problem, we use the sub-gradient
method to obtain the optimal Lagrangian multiplier. The iterative expression is as follows:

λ
(r+1)
n = [λr

n + srtn]
+, ∀n ∈ N , (17)

ν
(r+1)
n = [νr

n + sr(Tmax − tn)]
+, ∀n ∈ N , (18)

where [x]+ , max{x, 0}, sr is the r-th iteration step, and its value is set to sr = β/‖gr‖; gr

is the current gradient of the dual function for the r-th iteration. The details of subgradient
iteration can be seen from algorithm ATSAO.

4.3.2. Sensor Association Optimization

When the acquisition time T is given, the optimization problem of sensor association
X at this time can be expressed as follows:

P2 : min
X

∑
i

ECMi + ∑
j

ECHj

= ∑
i

[
1
η
(pt + α) ∗ l ∗ ti ∗∑

j

xij

rij

]
+ ∑

j

[
ec ∗∑

i
(l ∗ ti ∗ xij) + EDA ∗

(
∑

i
(l ∗ ti ∗ xij)

)]
s.t. ∑

j
xij = 1, ∀i ∈ L,

∑
i

xij ≤ Nmax
j , ∀j ∈ K,

xij ∈ {0, 1}, ∀i ∈ L, ∀j ∈ K.

(19)

Problem P2 is a 0–1 multi-knapsack problem. Dynamic programming is widely used
to solve the knapsack problem, but when the dimensionality of the problem to be solved is
very large, the solution efficiency of dynamic programming will be drastically reduced,
which is called the dimensionality disaster.

Based on the above description, we propose an approximate solution for problem P2
to obtain the sensor association X based on the method in [25]. This method iteratively
considers all objects that are not loaded into the backpack and calculates the Euclidean
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distance between the optimal and suboptimal returns each time. The object corresponding
to the maximum Euclidean distance will be loaded into the backpack in this iteration until
all objects are loaded into the backpack, at which time the algorithm stops iterating. See
the detailed algorithm ATSAO, where wij is a measure of the “desirability” of assigning
the item i to knapsack j. From question P2, wij can be calculated by the following formula,
which can be derived by Equation (19):

wij = ∑
i

∑
j

( 1
η (pt + α) ∗ l ∗ ti

rij
+ (ec + EDA) ∗ l ∗ ti

)
. (20)

4.4. Overall Algorithm Design

Based on the previous description, we propose a total iterative Algorithm 1 to obtain
the acquisition time T and sensor associations X to solve the problem effectively with low
computational complexity. First, the CHs, sensor association X and Lagrangian multipliers
{λ, ν} are randomly initialized, and then the acquisition time T from steps 6 to 9 is obtained
through multiple iterations of the sub-gradient algorithm, until the sub-gradient algorithm
converges to the specified accuracy. We can solve the problem P2 and obtain the sub-
optimal sensor association X based on above description from steps 10 to 22. In the process
of solving this problem, wij needs to be calculated. It represents the price of the knapsack
problem. Then, we iteratively consider all CMs. When all CMs are associated with the CHs,
the sensor association X is obtained. As for the problem P, we use multiple iterations to find
its solution. By applying the BCD method, the process of obtaining the acquisition time T
and the sensor association X requires multiple iterations to obtain a sub-optimal solution.
Finally, the CHs are selected based on the sensor association result according to the CHs
selection algorithm from steps 25 to 26. Of course, the CHs selection and acquisition time
T and sensor association X also need to be iterated many times until the CH and X no
longer change. This is because the CHs are randomly initialized during initialization, and
a high-quality topology control strategy can be obtained after multiple iterations. Finally,
after a finite number of iterations when the algorithm converges to the predetermined
accuracy, we believe that the problem P is successfully solved. The details of the algorithm
are summarized as algorithm ATSAO.

Figure 2 shows the flowchart of the ATSAO algorithm. Firstly, CHs and sensor
association are initialized randomly. Secondly, the BCD algorithm is used to solve the
optimization problem formulated in this paper. In each iteration, the acquisition time is
optimized through the Lagrangian dual method under the given sensor association. The
sensor association is optimized based on the optimization results of acquisition time. When
the change of the optimization objective function is below a predefined threshold, it shows
that the BCD algorithm converges. After that, a low-complexity CH selection algorithm is
proposed to obtain the CHs. After the CHs and sensor association are no longer changed,
the algorithm ATSAO converges.

In the system model of this paper, we assume that there are K CHs and N − K CMs
in the WSN, and the number of CMs in each cluster is |Z1|, · · · , |ZK|. In the ATSAO, the
algorithm complexity involved in solving the problem P2 is o(K(N − K)2), the complexity
of CHs selection algorithm is o(K(|Z1|2 + |Z2|2 + · · · + |Zk|2)). Due to |Z1|2 + |Z2|2 +
· · ·+ |Zk|2 ≤ (|Z1|+ |Z2|+ · · ·+ |Zk|)2 and (|Z1|+ |Z2|+ · · ·+ |Zk|)2 = (N − K)2, the
total algorithm complexity is o(K(N − K)2). If the problem P2 is solved by GREEDY
algorithm, its complexity is o(K(N − K)).
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Algorithm 1 Acquisition Time and Sensor Association Optimization (ATSAO).

1: Initialize CHs and sensor association X0 randomly.
2: Initialize (λ, ν)1 and r1, r2, r3 = 0.
3: repeat
4: repeat
5: repeat
6: Update Tr1 according to Equation (16).
7: Update (λ, ν)r1+1 according to Equations (17) and (18), respectively.
8: Update r1 = r1 + 1.
9: until Sub-gradient algorithm converges to a prescribed accuracy.

10: Calculate wij according to Equation (20).
11: while L 6= � do
12: d∗ = −∞.
13: for each node i ∈ L do
14: j′ = arg max

j
{wij, ∀i ∈ L}.

15: Calculate d = wij′ −max{wij, ∀j ∈ K}.
16: if d > d∗ then
17: d∗ = d.
18: xij′ = 1.
19: end if
20: end for
21: Remove node i from L.
22: end while
23: Update r2 = r2 + 1.
24: until The increase in the objective value is below a threshold, i.e., the convergence of

BCD algorithm.
25: Obtain the CHs through CHs selection algorithm.
26: Update r3 = r3 + 1.
27: until CHs and sensor association X no longer change.

Figure 2. The flowchart of the ATSAO algorithm.
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In addition, in order to obtain the lower bound of the problem P2, we use a GREEDY
algorithm with relatively low computation complexity. The GREEDY algorithm makes the
best choice based on the current situation at each step, regardless of the global situation,
which dramatically reduces the computation resource required to obtain the optimal
solution. However, the GREEDY algorithm is proven to have a particular gap between the
solution obtained when solving the 0–1 knapsack problem and the optimal solution. In
this paper, we will compare the performance gap with other algorithms.

In order to obtain the upper bound of the problem P2, we first relax the problem P2.
After the relaxation, the problem is as follows:

P2.1 min
X

∑
i

ECMi + ∑
j

ECHj

=∑
i

[
1
η
(pt + α) ∗ l ∗ ti ∑

j

xij

rij

]
+ ∑

j

[
ec ∗∑

i
(l ∗ ti ∗ xij) + EDA ∗ (∑

i
(l ∗ ti ∗ xij))

]

s.t. ∑
j

xij = 1, ∀i ∈ L,

∑
i

xij ≤ Nmax
j , ∀j ∈ K,

0 ≤ xij ≤ 1, ∀i ∈ L, ∀j ∈ K.

(21)

The objective function and constraints of the problem P2.1 are affine. Therefore, it is a
linear programming problem and can be directly solved through the CVX toolbox. The
sensor association X is obtained as a continuous variable between 0 and 1, which means
that a single CM allows the association of multiple CHs, i.e., “fraction sensor association
(FSA)”. This relaxation reduces the complexity of the problem and makes it no longer a
combinatorial problem. Therefore, the optimal sensor association X is successfully found
and the upper bound of the problem P2 has also been obtained through relaxation.

A lower bound of the problem P2 is obtained by the GREEDY algorithm, and its upper
bound is obtained by the relaxation method. They can replace steps 10 to 22 in algorithm
ATSAO, and the difference in performance is also shown in the simulation results section.

5. Experiment Simulation

In this part, we will demonstrate the effectiveness of the algorithm proposed in this
paper through simulation. We consider a WSN, where N sensor nodes are deployed
on a square area with an area of S, and the base station is located in the center of the
network. The path loss between CMs and CH and between CH and BS is modeled as
L(d) = 34 + 40 log d, where d > 0 indicates the Euclidean distance from the CH to the BS
and from CMs to the CH; it is also used in [26]. According to the different methods used
to obtain the user association in the second subsection, we will mark the three algorithms
proposed in this paper as GREEDY, ATSAO and Relax-CVX and compare them with the
classic topology control algorithm LEACH proposed in [27]. Since the classic LEACH
algorithm only considers the topology control , and does not consider the acquisition
energy consumption of sensor nodes. Therefore, we set the acquisition time of LEACH to
T in simulations of this paper. It is obvious that the value of T has a great impact on the
algorithm simulation results. In the simulation of this paper, we find that the optimal value
of acquisition time t∗ is between 0.01 s and 1 s. Therefore, the value of T is set to 0.1 s. It is
worth noting that the acquisition time T is designed only to explore the performance of
the algorithm not to be close to a certain standard. The simulation parameters used in this
paper are shown in Table 1. The performance evaluation is operated in Matlab 2020b. All
the simulations are performed on a desktop with an Intel Core i7-7700 3.6 GHz CPU and
16 GB memory.
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Table 1. Simulation parameters.

Variable Parameter Value

S Distribution area 500× 500
ρ Deployment density of WSN nodes 250
Nmax

j Maximum access number of CH 30
σ Satisfaction coefficient 1× 103

l Amount of data generated per unit time 40 bit
β Trade-off parameter 100
pc Data acquisition power 1 mW
pt Data transmission power 20 mW
η Power amplifier efficiency 0.9
α Circuit power 5 mW
ec Energy consumption for data receiving 5 nJ/bit
EDA Energy cost for data aggregation 0.5 nJ/bit
Tmax Maximum acquisition time 10 s

Simulation Results

Figure 3 shows the topology of the WSN and the results of the sensor association by
the ATSAO during the first round. In this paper, the number of CHs is set to five. According
to the CHs selection algorithm, the CHs are located in the center of the whole cluster, and
other sensor nodes are associated with a single CH to transmit data.

0 50 100 150 200 250 300 350 400 450 500
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50

100

150

200

250

300

350

400

450

500

Figure 3. Topology of WSN and result of sensor associaton by ATSAO.

Figure 4 shows the convergence performance of the algorithms proposed in this paper.
It can be seen from the figure that as the number of iterations increases, the objective
function value Equation (11) of the algorithms gradually increase. After about six iterations,
all algorithms tend to convergence. At this time, the CHs and sensor associations no longer
change. In addition, from the value of the objective function after the algorithms converge,
it can be seen that the performance gap between the ATSAO proposed in this paper and
the Relax-CVX is small. Compared with the GREEDY, the improvement is more significant
when the complexity increase is not large.
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Figure 4. Convergence behaviour of the proposed algorithm.

Figure 5 shows that the residual energy changes of all sensor nodes versus number
of iteration rounds. Compared with the LEACH, the algorithms proposed in this paper
can effectively reduce the energy consumption of the entire WSN and prolong its lifetime.
This is because energy consumption is considered when formulating the objective function
of the optimization problem. The sensor association is obtained by solving the proposed
optimization problem. Then, we select CHs according to the CHs selection algorithm,
and multiple iterations have been carried out. Compared with the LEACH, the proposed
algorithms in this paper can obtain a better topology control strategy and effectively reduce
the transmission energy consumption of all sensor nodes. The Relax-CVX obtains the
upper bound of the optimization problem by relaxing the knapsack problem. Therefore, it
obtains the best performance. As for the ATSAO, the distance between the optimal gain
and the sub-optimal gain is considered when selecting items to pack into the backpack.
Compared with the GREEDY algorithm, which only considers the current optimal choice,
the ATSAO can obtain better performance. Although compared to the Relax-CVX, the
lifetime of the WSN network using the ATSAO is slightly reduced, the time complexity
and computational complexity of the ATSAO are reduced significantly. Therefore, the
ATSAO achieves a tradeoff between complexity and performance, which is meaningful for
sensor nodes with limited computing capacity. The unreasonable CHs selection and sensor
association of LEACH algorithm lead to the maximum energy consumption, and finally
lead to the shortest lifetime of the WSN using the LEACH algorithm.

Figure 6 shows the change in the number of alive sensor nodes versus the neumber
of iteration rounds. It can be seen that the algorithms proposed in this paper can slow
down the death process of nodes. First, the Relax-CVX has the slowest death of sensor
nodes, followed by the ATSAO, and the WSN with LEACH has the shortest lifetime.
This is consistent with the relationship shown in Figure 3. It is because the slower the
energy consumption of the sensor, the longer the node lifetime. Furthermore, the LEACH
randomly selects nodes as CHs with a certain probability in each round. This seems to
be able to delay the death process of the elected CH nodes. However, if the elected CHs
are far from the cluster center, the transmission energy consumption of CMs will increase.
Although randomly selecting CHs in each round can alleviate the energy hole problem, it
will increase the energy consumption of the entire WSN, thereby shortening the lifetime.
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Figure 5. Residual energy of all nodes versus number of rounds.
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Figure 6. Number of nodes alive versus number of rounds.

Figure 7 shows that the data satisfaction per unit energy consumption of different
algorithms. The greater the acquisition time, the higher the data satisfaction, but the
corresponding energy consumption is also greater. Therefore, the data satisfaction per
unit energy is calculated to represent the comprehensive performance of the algorithm,
that is, to improve the data acquisition satisfaction as much as possible when the energy
consumption is the same. It can be seen from the Figure 6 that the algorithm proposed
in this paper can not only reduce the energy consumption of the WSN but also increases
the satisfaction of data acquisition. When formulating the optimization problem, we aim
to maximize the satisfaction of data collection and minimize the energy consumption of
the whole network. Less transmission energy consumption contributes to greater data
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acquisition satisfaction in the acquisition stage. Therefore, similar to the trend of energy
consumption, Relax-CVX obtained the highest data satisfaction, followed by the ATSAO.
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Figure 7. Data satisfaction per unit energy consumption.

Figure 8 shows the time consumed by different algorithms for each round, which
reflects the complexity of the algorithms. It can be seen from Figure 8 that Realx-CVX
consumes the most time per round, and the time consumed by the ATSAO in this paper is
similar to that consumed by GREEDY. Compared with Relax-CVX, the time complexity
of them is significantly reduced. Therefore, the ATSAO reduces the running time on the
basis of ensuring the performance, which is of great significance for sensor nodes with
limited energy.
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Figure 8. The time spent running each round.
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6. Discussion

To reduce the energy consumption of the WSN for microgrid status detection, this
paper considers the two stages of sensor acquisition and transmission, but most of the cur-
rent work only considers the transmission stage [28,29]. Although the energy consumption
of the acquisition stage is less than that of the transmission stage, such neglect does not
achieve the minimum energy loss in reality. In this paper, when formulating the objective
function of the optimization problem, the transmission energy consumption is taken into
consideration. Finally, the sensor association with the best energy is obtained by solving the
problem. In addition, for topology control, most of the current articles either select the CHs
first and then associate the CMs, or select the CHs based on a result of clustering [30–32].
Few works try to obtain the optimal topology control strategy through multiple iterations.
Considering that the initial clustering is generally not completely reasonable, and the CHs
selected on this basis will not be energy-optimal, which is the necessity of multiple itera-
tions. In this paper, the sensor association and the CHs selection are iterated many times
until the CHs and sensor association no longer change. At this time, they are relatively
considered to be optimal. In summary, this paper has made certain improvements based
on existing work and theoretically can well improve the energy utilization efficiency of the
WSN in the microgrid. The simulation results also show the effectiveness of the ATSAO
proposed in this paper. Of course, since the main work of this article is to design the
acquisition time and control sensor associations based on optimization problems, relatively
few factors are considered in the selection of CHs. The limitations of this part will be
improved in our future work.

7. Conclusions

To improve the monitoring quality and energy utilization efficiency of WSNs in
microgrids, this paper proposes the ATSAO algorithm to design the acquisition time and
perform topology control of WSN. First, the CHs are selected according to the CHs selection
algorithm, and then the acquisition time and sensor association are obtained by an iterative
algorithm based on BCD technology. Three methods of different complexity are used to
obtain the sensor association. Finally, a sub-optimal acquisition time and topology control
strategy are obtained. The simulation results show that the ATSAO can effectively reduce
the energy consumption of the WSN and improve the satisfaction of data acquisition,
thereby ensuring the power supply stability of the microgrids.

In the future, we will consider adding more practical constraints when formulating
optimization problems to improve the performance of ATSAO. In addition, our current
research is simulation-based, we will further implement real-time experiments.
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