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Abstract: With the development of modern industry and scientific technology, production equipment
plays an increasingly important role in military and industrial production, and the fault detection
signal of gears and bearings state in transmission equipment becomes very important. Therefore,
this paper proposes a gear-bearing composite fault signal decomposition and reconstruction method,
which combines the marine predator algorithm (MPA) and variational mode decomposition (VMD)
technologies. For the parameters’ selection of VMD, the optimization algorithm allows us to quickly
and accurately obtain the results with the best kurtosis correlation index after signal decomposition
and reconstruction. The experiments demonstrate the excellent performance of our method in the
field of separation and denoising mixed gear-bearing fault signals.

Keywords: mechanical composite fault; feature separation; VMD; MAP

1. Introduction

Equipment condition monitoring and fault diagnosis technologies have become an
urgent need for equipment management and maintenance. These technologies can foresee
accidents, ensure personal equipment safety, and also greatly improve production efficiency.
At present, one of the common fault diagnosis methods is the analysis of the vibration sig-
nals of individual drive components [1]. However, compound faults of gears and bearings
occur extremely frequently in common transmission component problems [2]. Therefore,
the research on the separation of the characteristics of gear and bearing compound faults is
of great significance.

Efficient planning of the energy that exists in all aspects of society, such as consump-
tion [3] and fuel [4–7], is an important study. Zhang et al. [6] proposed a model combining
genetic algorithms and neural networks to improve the accuracy of wind energy prediction
and, thus, effectively enhance the development and utilization of energy. This paper focuses
on the effective decomposition and reconstruction of the fault signal energy of transmission
devices in mechanical engineering. Signal decomposition plays an important role in fault
diagnosis [8,9]. Soualhi A [9] uses empirical mode decomposition (EMD), together with
the Hilbert transform (HT), to extract the temporal components of the vibration signal, and
then performs classification to monitor the signal. Variable mode decomposition (VMD)
plays an important role in the separation of mechanical compound fault signals [10]. It
is mainly a variational problem based on Wiener Hilbert transformations and frequency
mixing. VMD determines the central frequencies and bandwidths of several band-limited
intrinsic mode functions [11]. VMD adaptively separates the frequency domain and modal
components of the signal, under the condition that the sum of the estimated bandwidths of
each component is minimized. Huang et al. [12] proposed a method to denoise the original
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signal by combining VMD and simultaneous wavelet transform (SSWT) algorithms. Zhong
et al. [13] proposed a new method to distinguish foreign object debris (FOD) signals
from clutter signals, based on optimal VMD and support vector data description (SVDD).
Usually, experimenters follow the experimental experience to give the parameters of VMD.
However, the improper choice of parameters may eliminate part of the off-scale noise
and even some useful target information by mistake. There have been some studies on
parameter optimization for VMD [14–16]. For example, Zhang et al. [14] used the bacterial
foraging algorithm (BFA) to obtain the best combination of VMD parameters.

In this paper, we use the marine predator algorithm (MPA) to find the optimal modal
number and penalty factor in VMD. The composite signal is decomposed according to
the optimal parameters. Then, the bearing and gear signals are reconstructed separately
with more effective information, based on the proposed new fault characteristic frequency
index (FCFI) index. Experimental results also demonstrate that the signal obtained by our
method has a better index, which means a better separation of the bearing and gear signals.
The contributions of this paper are summarized in the following two points:

1. We proposed a variable-scale, adaptive feature separation method, based on VMD
and MPA algorithms, applied it to the feature separation of gear-bearing composite fault
signals, and realized the fault signal reconstruction.

2. In the signal separation and reconstruction, the intelligent algorithm MPA was
introduced. The algorithm aimed to minimize the kurtosis of the reconstructed signal and
realized the iterative solution of VMD parameters.

This paper contains the following sections. Section 1 introduces the research back-
ground and motivation of this paper. Section 2 gives the simulation signals and related
parameters required for the experiments, which lays the foundation for the experiments
to be conducted later. Section 3 introduces our variable-scale adaptive feature separation
method, which specifically includes the method framework, decomposition and reconstruc-
tion of composite signals, and optimizations of VMD parameters based on MPA. Section 4
shows the experimental results and analysis. Section 5 summarizes the work of this paper.

2. Sensing Systems and Signal Models

For gears and rolling bearings, due to the uniqueness of the measured object, the
vibration signal is mainly concentrated in the middle and high frequency parts, so we
generally choose vibration acceleration sensors to measure the faults [17]. This paper is an
analysis of the composite fault signal of gear-bearing in a gearbox. Based on the gear and
bearing fault characteristics in the actual transmission system, we define the expression of
the fault vibration signal in the time domain as follows [1].

f (t) = xg(t) + xb(t) + n(t)

xg(t) =
P

∑
p=1

Ap cos(2πp fpt)[1 +
Q

∑
q=1

Bp
q cos(2πq frt)]

xb(t) = e−bT
I

∑
i=1

Ci sin(2πn fcit) T = mod(t, 1/ fo).

(1)

The fault signal (x(t)) consists of the vibration signals induced by the local faults in
gears (xg(t)) and bearings (xb(t)), as well as the multi-scale strong noise signals (n(t)).
Localized gear faults have a modulating effect on the meshing vibration of the gear. So, the
gear vibration signal contains not only the meshing frequency and its harmonic components
but also the side band structure, caused by amplitude and frequency modulation. In
Equation (1), fp denotes the gear meshing frequency, Ap is the harmonic amplitude of the
carrier signal with the gear meshing frequency as the base wave, P and Q are the number
of harmonics, fr denotes modulation frequency, and Bq is the harmonic amplitude of the
modulated signal with the gear rotation rate as the base wave. Common bearing faults
modulate the vibration signal of the rotating bearing and create a fixed period of envelope
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variation in the fault signal. xb(t), fci, and Ci are the resonant frequency and amplitude
determined by the bearing structure, respectively. fo indicates the frequency of bearing
failure, and b is the pulse attenuation coefficient. Other detailed simulation parameters can
be found in Section 4.

3. Proposed Method
3.1. Algorithm Framework

The general framework of the multi-scale adaptive signal decomposition reconstruc-
tion method is shown in Figure 1. First, we randomly select 20 pairs of initial values
[K,α] and use them as parameters for VMD decomposition to generate 20 modules, each
containing ki decomposition. Second, we classify each module based on FCFI metrics and
reconstruct the gear and bearing failure signals. Then, we obtain the kurtosis value of
the reconstructed signal by calculation. Third, we optimize the parameter selection by
MPA algorithm with the objective of kurtosis minimization. Based on the currently solved
parameter [K,α], we iteratively loop the above steps to find the optimal parameter. Finally,
we perform VMD decomposition, according to the optimal parameter results, and recon-
struct the obtained components, according to FCFI. The following section details the VMD
decomposition, module reconstruction, and MPA iterative optimization search methods.

Figure 1. The overall framework diagram of the multi-scale adaptive signal decomposition recon-
struction method.
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3.2. VMD Decomposition and Reconfiguration

This section is divided into two parts, consisting of the decomposition and reconstruc-
tion of the composite signal.

3.2.1. Decomposition

First, the input signal ( f (t)) is decomposed into K modal functions (UK(t)). Then, a
Hilbert variation is applied to each UK(t) to solve for the resolved signal and the predicted
center frequency (e−jωkt). Next, we solve the variational problem to find UK(t), such that
the sum of the estimated bandwidths of each mode is minimized, with the constraint that
the sum of all UK(t) equals to the input signal f (t).

min
(Uk)(ωk)

{
∑
k
||∂t
[(

δ(t) +
j

πt

)
uk(t)

]
e−jωkt||22

}

s.t.
K

∑
k=1

uk = f (t)

(2)

where ∂t is the partial derivative of t, δ(t) is the shock function, and K is the number of
modes obtained after decomposition.

With the Lagrange multiplier (γ) and quadratic penalty factor (α), the transformation
of Equation (2) leads to the Lagrange function of increasing type, as shown in Equation (3):

L({Uk}, {ωk}, γ) = α ∑
k
||∂t
[(

δ(t) +
j

πt

)
Uk(t)

]
e−jωk(t)||22

+ || f (t)−∑
k

Uk(t)||22 +
〈

γ(t), f (t)−∑
k

Uk(t)

〉
.

(3)

The modal components (Uk) and central frequency (ωk), corresponding to the optimal
solution of Equation (3), are given in Equation (4):

Ûk
n+1

(ω) =

f̂ (ω)− ∑
i 6=k

Ûi(ω) + λ̂(ω) /2

1 + 2α(ω−ωk)
2

ωn+1
k =

∫ ∞
0 ω| Ûk(ω)|2dω∫ ∞

0 | Ûk(ω)|2dω
,

(4)

where Ûk
n+1 is the Wiener filter of the current residual, and f̂ (ω)− ∑

i 6=k
Ûi(ω), ωn+1

k is the

central frequency of the current modal function rate.
When the value of K is appropriate, the VMD can eliminate noise outside the frequency

of each mode, thus highlighting the abrupt features of the signal and weakening the
influence of the noise. When the value of α is appropriate, the VMD can guarantee the
total signal bandwidth be the smallest possible, thus ensuring the accuracy of subsequent
reconfigurations. Therefore, the selection of the correct and appropriate parameters is of
great significance to the VMD decomposition results [18].

3.2.2. Reconfiguration

In order to obtain gear and bearing faults separately, this paper uses FCFI to identify
the bearing fault information content in each model. The definition of FCFI is as follows:

FCFI =
N

∑
i=1

(1/rankX(max(X( f )|i ∗ fc − 0.5bw 6 i ∗ fc + 0.5bw))), (5)
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where N denotes the order of the characteristic frequency of bearing failure, rankX(•)
denotes the index value in parentheses in the ranking after sorting the envelope spectrum
amplitudes from largest to smallest, max(•) denotes the maximum amplitude of the signal
envelope spectrum X( f ) in the frequency range i ∗ fc − 0.5bw 6 i ∗ fc + 0.5bw, and fc
denotes the bearing fault characteristic frequency.

3.3. MPA Algorithm

The modal number (K) and the penalty parameter (α) have an important influence
on the decomposition effect of VMD. However, there is no uniform or definite method for
determining these two parameters. Intelligent optimization algorithms, such as the gray
wolf [19] and genetic algorithms, were designed to achieve fast and efficient searches of
global optimums. In order to achieve a better decomposition effect of VMD algorithm, this
chapter uses the marine predator algorithm(MPA) to optimize the modal number (K) and
penalty factor (α) of VMD. MPA is one of the popular intelligent optimization algorithms,
which is inspired by the survival of the fittest theory of the ocean. This algorithm has a
stronger meritocracy and higher accuracy than other optimization algorithms [20].

Viswanathan [21] proposed that predators usually choose the optimal foraging strat-
egy to maximize their contact rate with prey in their natural environment. In general, the
next state or location of their foraging is dependent on the current state and transition
probability to the next location. Similarly, in the ocean, many marine organisms follow the
Levi’s flight pattern as the optimal foraging strategy [22]. It is a special type of stochastic
swimming, characterized by many small steps, involving longer relocations, that come
from probability distributions with power-law tails.

Similar to most heuristic optimization algorithms, MPA randomly initializes prey
locations within the search space to initiate the optimization process. Each element (xij) of
the prey matrix is initialized by:

xij = xmin + rand(xmax − xmin). (6)

The final obtained prey matrix is of size nd, where n is the size of the population and
d is the position of each dimension, i.e., the dimension of the solution to the problem. For
each individual element in the prey matrix xi = [xi1, xi2, ..., xid], we calculate their fitness.
Then n copies of the individual with the best result are used to form the Elite matrix.

Then we use three steps to complete the overall iterative process. First, when the
number of iterations is less than one-third of the maximum number of iterations, we have

si = RB ⊗ (Elitei − RB ⊗ Preyi), i = 1...n

Preyi = Preyi + P.R⊗ si,
(7)

where RB is a vector, with dimension s, consisting of random numbers generated by using
Brownian random walks, and d is the solution size of the problem; si represents the step size
of the move; P is a constant equal to 0.5; R is a vector consisting of uniformly distributed
random numbers between 0 and 1 with dimension d; and RB obeys generalized Gaussian
distribution. Each element (RBi) can be calculated by the following expression:

RBi =
1√
2π

exp(− x2

2
). (8)

Second, when the number of iterations is greater than one-third of the maximum
number of iterations and less than two-thirds of it, we split the population into two parts
for the operation. The first half of the population follows up the rules:

si = RL ⊗ (Elitei − RL ⊗ Preyi), i = 1...n/2

Preyi = Preyi + P.R⊗ si,
(9)
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where RL is a vector coming out of the composition of the Levy distribution with dimension
(d). Each element (RL) can be calculated by the following expressions:

RLi = C× x
y1/a ,

x = Normal(0, σx
2), σx =

Γ(1 + β)sin(πβ
2 )

Γ( 1+β
2 )β2

β−1
2

1/β

,

y = Normal(0, σy
2), σy = 1,

(10)

where C and β are constants equal to 0.05 and 1.5, respectively. The second half of the
population update rule is as follows:

si = RB ⊗ (RB ⊗ Elitei − Preyi), i = 1...n/2

Preyi = Elitei + P.CF⊗ si,
(11)

where CF is the adaptive parameter for the step size (si), which is defined as:

CF = (1− Iter
Max_Iter

)(2
Iter

Max_Iter ). (12)

Third, when the number of iterations is greater than two-thirds of the maximum num-
ber of iterations, the third stage is entered, and the population update rule are as follows:

si = RL ⊗ (RL ⊗ Elitei − Preyi), i = 1...n

Preyi = Elitei + P.CF⊗ si.
(13)

In the optimization process, we choose the inverse of the kurtosis as the judging
criterion. We define that the main metric of the fault signal is the signal abrupt change
degree. For mechanical transmission parts, kurtosis is one of the most commonly used
indicators to characterize the degree of shock and sharpness of vibration signals, and it is a
data statistic of the signal distribution characteristics [23]. For a discrete data set (x), its
kurtosis is defined as:

Ku =
E(x− µ)4

σ4 , (14)

where E(x− µ)4 is the fourth-order mathematical expectation, µ is the mean of x, and σ is
the standard deviation of x.

In our method, the specific steps of using MPA to find the optimal VMD decomposition
parameters are as follows.

1. Set the algorithm parameters and initialize the population. To improve the computa-
tional efficiency and accuracy, the values of K and α are set to [1, 10] and [1000, 4000], respec-
tively. Then we select 20 pairs of initial values from them as parameters for VMD decom-
position, and then reconstruct the obtained components and calculate their signal kurtosis.

2. Calculate the fitness value, and record the optimal position.
3. According to the iterative phase, the predator updates its position by selecting the

corresponding update method from Equations (7), (9), (11) and (13).
4. Calculate the fitness value, according to Equation (14), and update the optimal

position.
5. Judge whether the stopping condition is satisfied, and if not, repeat steps 3–5;

otherwise, output the optimal result of the algorithm.

4. Experiments and Results Analysis

In this section, we perform the experimental parameter setting, verify the convergence
of the MPA algorithm, and analyze the results of the separation and reconstruction of
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the composite signal by the method in this paper. Finally, we quantitatively compare the
performance of the tired different methods.

4.1. Experiment Settings

In this experiment, we simulated a signal with a duration of 1s and a sampling
frequency of 6000 Hz, according to Equation (1), where the specific parameters were taken
as shown in Table 1. The time domain waveform of the simulated gear fault signal (xg(t)),
bearing fault signal (xb(t)), multi-scale strong noise (n(t)), and mixed signal (main input
signal) (x(t)) are, respectively, shown in Figure 2. From the Figure 2, it can be seen that the
simulated gear and bearing fault signals have obvious modulation. However, it is difficult
to find obvious modulation in the mixed signal after adding multi-scale strong noise.

Figure 2. Composite fault simulation signal.
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Table 1. Compound fault signal simulation parameters.

Bearing Simulation Signal Parameters

Parameter Name Numerical value

Resonant Frequency Order (I) 2

Resonant Frequency ( fci) [1600, 3000]

Gear Simulation Signal Parameters

Parameter Name Numerical value

Engagement Frequency Order (P) 3

Magnitude Modulation Order (Q) 3

Engagement Frequency ( fp) 180

Engagement Frequency Amplitude (Ap) [1, 1.2, 0.5]

Fault Frequency ( fr) 8.9

Amplitude Modulation Factor (Bq)
[0.3, 0.15, 0.1]

[0.4, 0.25, 0.15]
[0.2, 0.15, 0.05]

Outer Ring Fault Frequency ( fo) 62

Resonance Frequency Amplitude (Ci) [1.5, 2]

Attenuation Coefficient (b) 100

4.2. Parameter Optimization

VMD decomposition is performed on the main input signal ( f (t)). The number
of decomposition layers (K) ranges from [1, 10], and the traversal range of the penalty
coefficient α is [1000, 4000]. The execution process of the MPA algorithm is shown in
Figure 3. It can be seen from the figure that it gets the maximum kurtosis value of 2.97 that
tends to converge. Meanwhile, it corresponds to K and α of 4 and 2200, respectively.

Figure 3. The convergence result of the MPA algorithm.

4.3. Decomposition and Reconstruction of Signals

The center frequency and bandwidth are obtained according to the optimal parameters,
and the decomposed signals can be obtained by band-pass filtering of the main input signal;
the decomposition results are shown in Figure 4.
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Figure 4. The results of VMD decomposition.

For each component signal obtained by decomposition, the larger its FCFI, and the
more bearing-sensitive it is. Otherwise, the component signal is considered to be insensitive.
In Equation (5), N is set to 3 and fc is set to 10 for this experiment. All amplitudes of
each component envelope spectrum obtained from the decomposition are arranged in
descending order, and the results are shown in Figure 5.

The dashed boxes indicate the three frequency bands with a bandwidth of 10 Hz.
From top to bottom of Figure 5, the calculated FCFI values for each of the four compo-
nents are 0.33, 0.33, 1.83, and 1.83, respectively. It means that the latter two components
contain the most bearing-related information. Therefore, the third and fourth components
are reconstructed to obtain the bearing signal, and the remaining two components are
reconstructed to obtain the gear signal. The results are shown in Figure 6.

It can be seen that the proposed method in this paper can effectively separate the
gear-bearing composite fault signal. By observing the time domain, we can see a very
obvious modulation phenomenon and shock component. From the frequency spectrum,
we can clearly find the 1-fold and 3-fold engagement frequency fm(180) of the gear signal,
while the two resonant frequencies, fc1(1600) and fc2 (3000), of the bearing signal are also
very clear.

4.4. Quantitative Analysis and Comparison

To further quantitatively compare the separation effect of the three methods on the
composite fault signal, we introduce the average Pearson correlation coefficient [24] for
judging, which is defined by the following equation:

ρ =
1
2
[

∑L
i=1 (x′g − x̄′g)(xg − x̄g)√

∑L
i=1 (x′g − x̄′g)

2
√

∑L
i=1 (xg − x̄g)

2
+

∑L
i=1 (x′b − x̄′b)(xb − x̄b)√

∑L
i=1 (x′b − x̄′b)

2
√

∑L
i=1 (xb − x̄b)

2
]. (15)

Larger average Pearson correlation coefficients indicate a better separation effect of
methods. In Equation (15), L denotes the data length with the value of 6000. x′g and
xg denote the gear signal obtained by separation and the simulated original gear signal,
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respectively. x′b and xb denote the separated bearing signals and simulated original bearing
signals; x̄′g, x̄g, x̄′b, and x̄b represent their mean values.

Figure 5. Envelope spectrum of component signals.

In the context of this paper, we composed three different decomposition methods,
which are empirical mode decomposition (EMD) [25], VMD with parameters [3, 2000], and
our variable scale adaptive decomposition method. The calculated Pearson correlation
coefficients for the three methods are shown in Table 2. From the table, we can see that
the correlation coefficients of the methods in this paper are improved, to different degrees,
compared with the other two methods, which indicates better signal separation.
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Figure 6. Reconstructing signal time domain waveforms and spectra. (Top) gear signals; (Bottom)
bearing signals.

Table 2. Average Pearson correlation coefficients of the three methods.

EMD VMD Parameter as Our Method[3, 2000]

Average Correlation Coefficient (ρ) 0.5232 0.4778 0.5914

Furthermore, we compared the FCFI metrics of these three approaches, and the results
are shown in Figure 7. From the Figure 7, we can see that the adaptive signal decomposition
and reconstruction algorithm proposed in this paper obtains higher FCFI values. This
result shows the superiority of our method in feature separation for gear-bearing composite
fault signals, and indicates its superior differentiation of gear and bearing signals.

Figure 7. Comparison of FCFI metrics for the three methods.
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5. Conclusions

The fault monitoring and diagnosis of gears and rolling bearings play an important
role in the health management of mechanical transmission equipment. However, the
simultaneous occurrence of gear and bearing faults usually results in a composite fault
signal, which makes diagnosis difficult. Therefore, we propose a variable-scale adaptive
feature separation method, based on VMD and MPA algorithms, to deal with gear-bearing
composite fault signals. In this method, we first use VMD to decompose the sensed
composite fault signal into multiple modes. Then, we group the modes and reconstruct
them into fault signals of gears and bearings. In addition, we introduce the intelligent
algorithm MPA to improve feature separation ability. MPA takes the minimum kurtosis of
the reconstructed signal as the optimization goal, and iteratively finds the optimal solution
of the VMD parameters. Our experiments verify the convergence of the MPA algorithm
and the feasibility of our decomposition and reconstruction scheme. Additionally, the
superiority of our method has been verified.
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