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Abstract: Accurately identifying the types of insulation defects inside a gas-insulated switchgear (GIS)
is of great significance for guiding maintenance work as well as ensuring the safe and stable operation
of GIS. By building a set of 220 kV high-voltage direct current (HVDC) GIS experiment platforms
and manufacturing four different types of insulation defects (including multiple sizes and positions),
180,828 pulse current signals under multiple voltage levels are successfully measured. Then, the
apparent discharge quantity and the discharge time, two inherent physical quantities unaffected by
the experimental platform and measurement system, are obtained after the pulse current signal is
denoised, according to which 70 statistical features are extracted. In this paper, a pattern recognition
method based on generalized discriminant component analysis driven support vector machine (SVM)
is detailed and the corresponding selection criterion of involved parameters is established. The
results show that the newly proposed pattern recognition method greatly improves the recognition
accuracy of fault diagnosis in comparison with 36 kinds of state-of-the-art dimensionality reduction
algorithms and 44 kinds of state-of-the-art classifiers. This newly proposed method not only solves
the difficulty that phase-resolved partial discharge (PRPD) cannot be applied under DC condition
but also immensely facilitates the fault diagnosis of HVDC GIS.

Keywords: HVDC GIS; fault diagnosis; pulse current measurement; statistical feature extraction;
generalized discriminant component analysis; SVM

1. Introduction

At present, the power grid is developing towards the direction of high voltage, large
capacity and intensification, and the power supply reliability requirement is gradually
improved. In this context, the gas insulated switchgear (GIS), with fully enclosed structures,
is increasingly being used by power grids at different levels [1]. Meanwhile, due to the
increasing use of offshore wind energy and therefore increased demand for energy, trans-
mission to onshore is required. For this energy collection, offshore platforms are needed
where space is very expensive, and DC GIS offers a solution [2]. In order to improve the
transmission capacity and power supply reliability, the long-term fault evolution and aging
problem of HVDC GIS must be solved urgently, having important value in theoretical
research and engineering applications. The damage degree of insulation defect to GIS is
closely related to the type of insulation defect itself. Different types of insulation defects
have different fault evolution laws and different influences on the aging of GIS insulat-
ing materials, which will also result in different maintenance and treatment measures.
Therefore, accurately identifying the types of insulation defects inside GIS to perform fault
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diagnosis will be of great significance for guiding the maintenance work as well as ensuring
the safe and stable operation of the GIS.

Dimensionality reduction plays a vital role in the process of pattern recognition. On
the one hand, effective dimensionality reduction technology can reduce computational
complexity and save computational time of pattern recognition. On the other hand, too
high dimensionality of training samples’ recognition vectors, which consist of features
used to discriminate different classes, may reduce the generalization ability of the classifier
adopted in the process of pattern recognition [3]. Generally speaking, feature selection
and subspace projection technology are two main methods that are widely adopted for
dimensionality reduction in pattern recognition [4,5]. The frequently used feature selection
methods involve the filter approach, the wrapper approach, the embedded approach [6],
etc. The filtering methods utilize an independent measure to evaluate features without in-
volving any learning algorithms [7], such as similarity-based methods (i.e., Fisher Score [4],
ReliefF [8], etc.), statistics-based methods (i.e., t-test [5], etc.), correlation-based methods
(i.e., CFS [8], etc.) and information theory-based methods (i.e., fast correlation-based filter
(FCBF) [8], minimum-redundancy-maximum-relevancy (mRMR) [6], etc.), to name a few.
The wrapper methods make use of learning algorithms to evaluate which features are
optimal, for which metaheuristic-search-based algorithms can be used efficiently [9], such
as genetic algorithms (GA), simulated annealing (SA), differential evolution (DE), ant
colony optimization (ACO), particle swarm optimization (PSO), tabu search (TS), etc. The
embedded methods combine both of the previous methods, in which feature selection and
learning cannot be separated, such as random forests (RF) [5], Group LASSO (GLASSO) [10],
SVM-RFE [5], sparse logistic regression with Bayesian regularization (BLogReg) [11], sparse
multinomial logistic regression via Bayesian L1 regularization (SBMLR) [12], manifold
regularized discriminative feature selection (MDFS) [13], etc. Obviously, filter methods
ignore interactions with the learning algorithms. Meanwhile, the wrapper and embedded
methods are specified classifiers, suffering risks of overfitting and being computationally
intensive. Compared with feature selection, subspace projection technology uses all the
information contained in the recognition vector, which can be roughly divided into two
types: unsupervised subspace projection technology and supervised subspace projection
technology [14]. Commonly used unsupervised subspace projection techniques mainly
include principal component analysis (PCA), Kernelized PCA (KPCA) [15] and various vari-
ants of PCA, such as probabilistic PCA (PPCA) [16], multidimensional scaling (MDS) [17],
t-SNE [18], local linear embedding (LLE) [19], Isomap [20], Laplacian eigenmaps (LE) [21],
autoencoder (AE) [22], etc. Since the unsupervised subspace projection technology does
not involve any class information, for example, although PCA satisfies the minimum mean
square error criterion and the maximum entropy criterion when the recognition vector
satisfies the joint Gaussian distribution [4], the effect of PCA used in pattern recognition
is not good, and the supervised subspace projection technology is more conducive to pat-
tern recognition [23]. Commonly used supervised subspace projection techniques mainly
include NCA [24], supervised locality preserving projection (SLPP), locality sensitive dis-
criminant analysis (LSDA), S-Isomap [25], Fisher Linear Discriminant Analysis (FDA) [26],
Multi-dimensional FDA (MD-FDA) [23], successively orthogonal discriminant analysis
(SODA) [27], principal-component discriminant component analysis (PC-DCA), regular-
ized FDA (RFDA) [4] (RFDA is also referred to as BDCA for distinction), etc. In addition,
there are many derived versions of FDA, such as local FDA (LFDA) [28], rotational in-
variant linear discriminant analysis (RILDA) [29], sparse uncorrelated linear discriminant
analysis (SULDA) [30], robust linear discriminant analysis (RLDA) [31], L1-norm-based
global optimal locality preserving LDA (GLLDA-L1) [32], etc. It can be concluded from
the above investigation that the overwhelming majority of supervised subspace projection
technologies are variants of FDA. However, the problem with SODA is that the within-class
scatter matrix in each iteration may become ill-conditioned. Once the within-class scatter
matrix in a certain iteration is a singular matrix, the direction of the subsequent projection
vectors obtained by SODA after this iteration will become exactly the same, so that the
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projection vectors obtained by SODA may be of redundancy as the projection vectors in the
same direction cannot improve the recognition ability. PC-DCA still suffers the problem
of numerical instabilities of MD-FDA caused by the ill-conditioned within-class scatter
matrix. Furthermore, there exist some serious fundamental errors and unreasonable aspects
regarding BDCA in [4]. Firstly, the division method of signal-subspace and noise-subspace
by Professor S. Y. Kung is not universal. Secondly, the assumption that all the eigenvalues
of BDCA’s discriminant matrix corresponding to the noise-subspace approximate to 1 is
incorrect. Thirdly, there exist problems of numerical instabilities in the kernelization form
of BDCA given in [4]. Lastly, the theories of BDCA lack rigorously mathematical proofs.
All the problems mentioned above will be resolved by generalized discriminant component
analysis (GDCA) as well as its kernelization forms proposed in this paper.

In addition, alternating current (AC) partial discharge (PD) pattern recognition re-
search has accounted for the main proportion and is very mature [18,33], while DC PD
pattern recognition has gradually been involved but is still in its infancy and has not formed
a unified standard, due to lack of phase information, which mainly comprises the Centor
score method [34], chaotic analysis method [35], NoDi pattern method [36], compressed
sensing theory [37], support vector machine (SVM) [38,39], etc. The main deficiencies in
current DC PD pattern recognition are detailed as follows:

(a) There exist features extracted from the waveform of pulse current signal, which
are influenced by the specific experimental platform and measurement system.

(b) Most of the related research papers are based on ideal defect models under some
specific voltage level to perform PD tests, but the actual GIS operation site may have
partial discharges from insulation defects of different voltage levels, types, locations and
sizes. Even under the same defect type, the voltage level, defect size and defect location
all have greater impacts on the DC PD pulse. The problem of DC PD pattern recognition
for insulation defects with different sizes and locations under different voltage levels still
needs to be effectively solved urgently.

(c) Most of the existing literature verifies the recognition accuracy of the corresponding
PD pattern recognition method based on the assumption that sufficient experimental data
can be obtained from the designed defect models in a laboratory environment. When the
number of available discharges to be recognized is relatively small, whether the PD pattern
recognition method can also be applied or not has not been verified.

(d) Except ensuring the recognition accuracy, how to reduce recognition time as much
as possible so that reasonable measures will be taken as soon as possible to minimize the
damage of insulation defects to GIS should be researched.

In order to solve the above problems, we built a set of 220 kV HVDC GIS experiment
platform and manufactured four different types of insulation defects (including multiple
sizes and locations). For each insulation defect, multiple voltage levels were set, ranging
from the beginning of stable discharge to the final breakdown or the highest voltage that the
experimental platform can provide, and stepwise-boosting voltages were applied with each
voltage level lasting for 1 h. Finally, a total of 180,828 pulse current signals were successfully
measured. Then, the apparent discharge quantity and the discharge time, two inherent
physical quantities unaffected by the experimental platform and measurement system,
were obtained after the pulse current signal was denoised, according to which 70 statistical
features were extracted. In this paper, a pattern recognition method based on GDCA and
its kernelization forms driven SVM is detailed and the corresponding selection criterion of
involved parameters is established. Combining the Monte-Carlo experimental method with
the cross-validation test strategy, a wealth of estimation indicators for classification results
are calculated. The results show that the newly proposed pattern recognition method
greatly improves the recognition accuracy in comparison with 36 kinds of state-of-the-
art dimensionality reduction algorithms and 44 kinds of state-of-the-art classifiers. This
newly proposed method not only solves the difficulty that phase-resolved partial discharge
(PRPD) cannot be applied under DC conditions but also immensely facilitates the fault
diagnosis of HVDC GIS.
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The subsequent structure of this paper is arranged as follows: Section 2 introduces the
GIS experimental platform and insulation defect settings; Section 3 describes the 70 statisti-
cal features extracted from the inherent physical quantities of pulse current signal; Section 4
proposes the theories and algorithms of GDCA and its kernelization forms; Section 5 gives
the results and discussions of the newly proposed pattern recognition method based on
GDCA and its kernelization forms driven SVM; and the paper is concluded in Section 6.

2. Experimental Platform and Insulation Defects
2.1. Experimental Platform

The schematic diagram of the experimental platform is shown in Figure 1, consisting
of 220 V AC power supply (powered by WH38905 ultra-isolation transformer), ABB close
switch AS, voltage regulator VR, step-up transformer BT (turns ratio is 1:1000), silicon stack
D1 and D2 (rated rectifier current is 12 mA and rated inverse peak voltage value is 200 kV),
protection resistor R1 (1.6 MΩ), ZWF200-0.1 DC capacitor C1 (composed of two capacitors
0.1010 µF and 0.1015 µF in series, both of which have a rated voltage of 200 kV), resistor
divider (RD, divider ratio is 8000:1), multimeter, protection resistor R2 (2.13 MΩ), high
voltage bushing, test sleeve (mainly consisted of HV electrode, insulator, low-voltage (LV)
electrode, and insulation support), SF6/N2 gas filling device, signal detection impedance
Z1 and contrast detection impedance Z2 (Z1 and Z2 are both RLC type and identical),
coupling capacitor Ck (197.8 pF), pulse current amplifier (PCAP), ultrasonic probe (UAP),
ultrasonic amplifier (UAA), built-in UHF sensor (BUHFS), two DLM2054 oscilloscopes
(the highest sampling rate is 2.5 GSa/s, and the bandwidth is 500 MHz) and one Agilent
DSO-S 254 A oscilloscope (the highest sampling rate is 20 GSa/s, and the bandwidth is
2.6 GHz). Note that only pulse current signals are researched in this paper due to limited
space; the other two kinds of signals, UHF signal and ultrasonic signal, will be researched
in other papers.
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Figure 1. The schematic diagram of the experimental platform.

2.2. Insulation Defects

In this paper, four different types of insulation defects are manufactured, correspond-
ing to solid insulation air gap discharge, surface discharge, floating discharge and point
discharge, among which the solid insulation air gap defect adopts a self-made vacuum
casting block using bisphenol-A epoxy resin shown in Figure 2, and the remaining three
types of insulation defects are all set on the GIS post insulator shown in Figure 3. In order
to take into account the influences of the defect’s location and size on the pulse current
signal, different defect locations or defect sizes are set for the same type of defect. The
details are shown as Table 1.
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Figure 3. The dimensioning of insulator and the schematic diagrams of No. 4 surface defect, No. 2 floating defect and No. 3
point defect. (a) Dimensioning of insulator; (b) No. 4 surface defect; (c) No. 2 floating defect; (d) No. 3 point defect.

Table 1. Locations and sizes of four different insulation defects.

Solid Insulation
Air Gap Defect

Post Insulator
Defects Surface Defect Floating Defect Point Defect

label 1 2 3 label 1 2 3 4 1 2 3 1 2 3
Diameter/mm 2 1 0.5 Diameter/mm 1 0.5 0.5 0.5 0.6 2.5 0.6 0.6 2.5 0.6

Height/mm 2 1 0.5 Length/mm 60 60 30 60 20 20 20 30 30 30
Distance to HV
electrode/mm 10 10 10 1 1 0 0

Distance to LV
electrode/mm 10 1 0

3. Statistical Features Extraction from the Inherent Physical Quantities

As stated in Sections 1 and 2, for each insulation defect, multiple voltage levels were
set, ranging from the beginning of stable discharge to the final breakdown or the highest
voltage that the experimental platform can provide, and stepwise-boosting voltages were
applied with each voltage level lasting for 1 h. Finally, a total of 180,828 pulse current
signals were successfully measured, consisting of 540 sample points (one sample point
comprises the whole discharge data recorded during the 1 h experiment of the specific
insulation defect under the corresponding voltage level, containing at least 50 continuous
discharge signals). For each single pulse after being denoised, the corresponding apparent
discharge quantity and discharge time, two inherent physical quantities unaffected by
the experimental platform and measurement system as well as reflecting the inherent
properties of the discharge sources, can be obtained accurately. All the statistical features
extracted in this section are based on the above-mentioned two inherent physical quantities.
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In general, the extraction of statistical feature quantities is commonly based on the
distribution function (continuous case) or probability distribution (discrete case) of one-
dimensional or multi-dimensional random variables, which we extend to PD data modes
in this paper. PD data modes refer to the statistical relationship diagrams involved with
the discharge time, the apparent discharge quantity or their corresponding differences, not
necessarily representing probability distributions. The following discussion is focused on a
certain discharge sample point.

Assume that the apparent discharge quantity sequence of the current discharge sam-
ple point is denoted as Q = {qr | r = 1, 2, · · · , SN}, where qr denotes the apparent dis-
charge quantity of the rth single pulse belonging to the sample point and SN denotes the
number of pulses in the current discharge sample point; the discharge time sequence is
denoted as PDT = {PDTr | r = 1, 2, · · · , SN}, where PDTr denotes the discharge time of
the rth discharge. With regard to the rth discharge, the forward discharge time interval is
∆tpre = PDTr−PDTr−1 and the backward discharge time interval is ∆tsuc = PDTr+1 − PDTr;
the first-order difference of apparent discharge quantity is ∆q = qr − qr−1 and the first-order
difference of discharge time interval is ∆(∆t) = PDTr − 2PDTr−1 + PDTr−2. In addition, T
denotes the duration of the sample point; n(qr) and fPD(qr) denote the discharge number
and discharge repetition rate corresponding to the pluses with apparent discharge quantity
equal to qr; U denotes the DC voltage applied across the insulation defect when obtaining
the sample point and Us denotes the corresponding initial voltage of partial discharge;
WPr (r = 1, 2, · · · , SN) denotes the energy of the rth discharge and CP denotes the partial
discharge cumulative product [34].

As stated above, a PD data mode does not always represent a kind of probability
distribution. For a two-dimensional PD data mode, uniformly expressed as yi = f (xi),
it needs to be first analogized to be the probability distribution of a discrete random
variable X. Let all possible values of X be denoted as x1, x2, · · · , xn (x1 < x2 < · · ·< xn), the
corresponding probabilities are p1, p2, . . . , pn. The transformation formula is shown as
Equation (1).

pi =
yi

n
∑

i=1
yi

(1)

By Equation (1), we can calculate the statistical features of any two-dimensional
PD data mode (when the PD data mode is a histogram of a certain random variable) or
analogical statistical features (when the PD data mode is not a histogram of a certain
random variable). The involved features of two-dimensional PD data modes comprise
expectation (denoted as m1), standard deviation (denoted as m2), skewness (denoted as
Skewness), kurtosis (denoted as Kurtosis) and the number of peaks (denoted as Peaks).

When the two-dimensional PD data mode represents a variable histogram, namely
the probability distribution (it should be called the frequency distribution to be more
precise, an estimate of the actual probability distribution using experimental data), we can
use Weibull distribution (when the random variable is non-negative) or one-dimensional
kernel density estimation [23] to fit the corresponding probability distribution. Using the
maximum likelihood estimation method to fit the Weibull distribution, the corresponding
scale parameter α and shape parameter β can be obtained. The kernel density estimation
is a non-parametric method of estimating the probability density function. Assuming
that the unary probability density function to be estimated is denoted as g, its kernel
density estimation function is denoted as ĝ in Equation (2), where K is a non-negative
kernel function and h is a smoothing parameter or referred to as bandwidth. We adopt the
adaptive kernel density estimator based on the linear diffusion process proposed by [40] to
estimate the optimal smoothing parameter hbest.

ĝ(x|h) = 1
nh

n
∑

i=1
K
(

x−xi
h

)
hbest = argmin

h

{
E f

[∫
(ĝ(x|h)− g(x))2dx

]} (2)
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Similarly, when the three-dimensional PD data mode represents a binary histogram,
namely a two-dimensional probability distribution, two-dimensional kernel density es-
timation can be used to fit the corresponding probability distribution, and finally, two
optimal smoothing parameters can be calculated [40], denoted as Hx and Hy. The energy
entropy of the binary histogram can also be calculated by Equation (3), denoted as Entropy,
where Fi denotes the probability (frequency to be more precise) corresponding to the (i, j)th
binary grid.

Entropy = −∑
i

∑
j

Fi ln Fi (3)

We first introduce each PD data mode used in this paper labelled from A to L, and
then detail the extracted statistical features based on the corresponding PD data mode.

A. Hn(q)

Hn(q) is the frequency density histogram of q. The extracted statistical features consist
of m1, m2, Skewness, Kurtosis, Peaks, Weibull distribution fitting parameters α and β, as well
as the optimal smoothing parameter hbest.

B. Hn(WP)

Hn(WP) is the frequency density histogram of WP. The extracted statistical features
consist of m1 and m2.

C. Hn(∆q)

Hn(∆q) is the frequency density histogram of ∆q. The extracted statistical features
consist of m1, m2, Skewness, Kurtosis, Peaks, and the optimal smoothing parameter hbest.

D. Hn(ln(∆t))

Hn(ln(∆t)) is the frequency density histogram of ln(∆t). The extracted statistical
features consist of m1, m2, Skewness, Kurtosis, Peaks, and the optimal smoothing parameter
hbest. In addition, the Weibull distribution can be used to fit the probability distribution
function of ∆t, which must always be non-negative, to obtain the fitting parameters α
and β.

E. Hq(CP)

Hq(CP) is the two-dimensional relationship diagram of PD cumulative product CP [34]
calculated by Equation (4) and apparent discharge quantity q. The extracted statistical
features consist of m1, m2, Skewness, and Kurtosis. CP(q) = q • ∑

qr≥q
fPD(qr) =

q• ∑
qr≥q

n(qr)

T

q ∈ [min(Q), max(Q)]

(4)

Since the discharge time interval ∆t generally does not keep the same, it is necessary
to sort all ∆t first, and then set an appropriate interval range to divide ln(∆t) at equal
intervals in order to make a PD data mode of q and ∆t. Let the total number of intervals be
NI, qn (n = 1, 2, · · · , NI) denote the average of all the apparent discharge quantities in the
nth interval and qmax denote the corresponding maximum of all the apparent discharge
quantities in the nth interval. Then, we can derive the following four PD data modes, of
which the extracted statistical features consist of m1, m2, Skewness, Kurtosis and Peaks.

F. Hqn(ln(∆tsuc))

Hqn(ln(∆tsuc)) is the two-dimensional relationship diagram between qn and ln(∆tsuc).

G. Hqmax(∆tsuc)

Hqmax(∆tsuc) is the two-dimensional relationship diagram between qmax and ln(∆tsuc).

H. Hqn(ln(∆tpre))
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Hqn(∆tpre) is the two-dimensional relationship diagram between qn and ln(∆tpre).

I. Hqmax(ln(∆tpre))

Hqmax(∆tpre) is the two-dimensional relationship diagram between qmax and ln(∆tpre).
Analogous to the AC PD phase distribution pattern, describing the difference in the

distribution shapes of the two-dimensional relationship diagrams corresponding to the
positive and negative half cycle of power frequency period, the above four PD data modes
can be used to construct two combination diagrams, one of which combines Hqn(ln(∆tsuc))
with Hqn(ln(∆tpre)) and the other of which combines Hqmax(ln(∆tsuc)) with Hqmax(ln(∆tpre)).
From the combination diagrams, the extracted statistical features consist of cross-correlation
factor and degree of asymmetry, denoted as CC and Asymmetry, respectively. Let y1i (i = 1,2,
· · · , n) represent the ordinate values of Hqn(∆tsuc) or Hqmax(∆tsuc) and y2i (i = 1,2, · · · , n)
represent the ordinate values of Hqn(∆tpre) or Hqmax(∆tpre); CC and Asymmetry can be
calculated as Equation (5).

CC =

n
∑

i=1
y1iy2i − 1

n

n
∑

i=1
y1i •

n
∑

i=1
y2i√√√√[ n

∑
i=1

y1i
2 − 1

n

(
n
∑

i=1
y1i

)2
]
•

√√√√[ n
∑

i=1
y2i

2 − 1
n

(
n
∑

i=1
y2i

)2
] , Asymmetry =

n
∑

i=1
y2i

n
∑

i=1
y1i

(5)

In this paper, binary joint distributions are also used as three-dimensional PD data modes la-
belled from J to L, which take the apparent discharge quantity q, the discharge time interval
∆t or their corresponding differences as the joint variables, of which the extracted statistical
features consist of Hx and Hy, two optimal smoothing parameters of two-dimensional
kernel density estimation, as well as energy entropy Entropy.

J. Hn(q, ln(∆t))

Hn(q, ln(∆t)) is a binary histogram of the apparent discharge quantity q and the
natural logarithm of discharge time interval ln(∆t), with two cases Hn(q, ln(∆tsuc)) and
Hn(q, ln(∆tpre)), illustrated as Figures 4 and 5, respectively, in which the fitting results of
two-dimensional kernel density estimation are also given.
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Figure 4. The illustration of Hn(q, ln(∆tsuc)) and the corresponding result of two−dimensional kernel
density estimation.
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Figure 5. The illustration of Hn(q, ln(∆tpre)) and the corresponding result of two−dimensional kernel
density estimation.

K. Hn(∆q,ln(∆t))

Hn(∆q, ln(∆t)) is a binary histogram of the first-order difference of apparent discharge
quantity ∆q and the natural logarithm of discharge time interval ln(∆t), with two cases
Hn(∆q, ln(∆tsuc)) and Hn(∆q, ln(∆tpre)), illustrated as Figures 6 and 7, respectively, in which
the fitting results of two-dimensional kernel density estimation are also given.
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kernel density estimation.
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Figure 7. The illustration of Hn(∆q, ln(∆tpre)) and the corresponding result of two−dimensional
kernel density estimation.

L. Hn(∆q, ln|∆(∆t)|)

Hn(∆q, ln|∆(∆t)|) is a binary histogram of the first-order difference of apparent
discharge quantity ∆q and the natural logarithm of the absolute value of the first-order
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difference of discharge time interval ln|∆(∆t)|. Considering that ∆(∆t) is not always a
positive number, the two cases of ∆(∆t) > 0 and ∆(∆t) < 0 are taken into account separately,
illustrated as Figures 8 and 9, respectively, in which the fitting results of two-dimensional
kernel density estimation are also given.
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ducing kernel Hilbert space (i.e., intrinsic vector space) and N denotes the number of sam-
ples. According to Section 3, M = 70 and N = 540. 

Feature Sample Matrix: denoted as X∈ℝM×N, consists of all available recognition vec-
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Class Number: denoted as CN, the total number of all classes. According to Section 
2, CN = 4. 

Within-class Scatter Matrix: denoted as SW∈ℝM×M. 
Between-class Scatter Matrix: denoted as SB∈ℝM×M. 
Center-adjusted Scatter Matrix: denoted as SC∈ℝM×M. 

Figure 8. The illustration of Hn(∆q, ln|∆(∆t)|) and the corresponding result of two−dimensional kernel density estimation
when ∆(∆t) > 0.
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4. GDCA and Its Kernelization Forms

This section promotes the supervised subspace projection technology from BDCA to
GDCA and its kernelization forms. Some indispensable terminologies and symbols should
first be introduced [4,23]:

Recognition Vector: denoted as xi∈RM×1 (i = 1, 2, · · · , N), consists of all statistical
features of the ith discharge sample point. The corresponding ones in the intrinsic vector

space and the empirical vector space are denoted as
→
φ(x) ∈ RJ×1 and

→
k (x) ∈ RN×1,

respectively, where M denotes the number of features, J denotes the dimensionality of the
reproducing kernel Hilbert space (i.e., intrinsic vector space) and N denotes the number of
samples. According to Section 3, M = 70 and N = 540.

Feature Sample Matrix: denoted as X∈RM×N, consists of all available recognition vectors.
Class Number: denoted as CN, the total number of all classes. According to Section 2,

CN = 4.
Within-class Scatter Matrix: denoted as SW∈RM×M.
Between-class Scatter Matrix: denoted as SB∈RM×M.
Center-adjusted Scatter Matrix: denoted as SC∈RM×M.
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Different from the derivation of BDCA [4], the newly proposed GDCA in this paper
starts directly from PC-DCA shown in Equation (6) and improves the corresponding
constraint condition, which can be more robust and flexible than BDCA. Then, BDCA can
be regarded as a special case of the proposed GDCA under a specific parameter value.

WP = argmax
W∈RM×m

{
trace

[
WT(SC + ρI)W

]∣∣∣WTSWW = I
}

(6)

At first, the projection matrix of PC-DCA in Equation (6) is divided into two parts:
signal-subspace projection matrix WPS and noise-subspace projection matrix WPN. Without
loss of generality, suppose that the projected dimensionality m is larger than rank(SB), and
then Equation (6) can be transformed into Equation (7) according to the signal-subspace
and the noise-subspace.

WPS = argmax
W∈RM×rank(SB)

{
trace

[
WT(SC + ρI)W

]∣∣∣WTSWW = I
}

WPN = argmax
W∈RM×[m−rank(SB)]

{
trace

[
WT(SC + ρI)W

]∣∣∣WTSWW = I, WTSBW = 0
}

= argmax
W∈RM×[m−rank(SB)]

{
trace

(
WTW

)∣∣∣WTSWW = I, WTSBW = 0
} (7)

PC-DCA can be promoted to GDCA by improving the constraint WTSWW = I of
Equation (7) to WT(SW + δI)W = I (δ > ρ, δ→ 0+ and ρ→ 0). Note that signal-subspace
projection matrix is also denoted as WPS and noise-subspace projection matrix is also
denoted as WPN in GDCA, shown as Equation (8):

WPS = argmax
W∈RM×rank(SB)

{
trace

[
WT(SC + ρI)W

]∣∣∣WT(SW + δI)W = I
}

WPN = argmax
W∈RM×[m−rank(SB)]

{
trace

(
WTW

)∣∣∣WT(SW + δI)W = I, WTSBW = 0
}

= argmax
W∈RM×[m−rank(SB)]

{
trace

(
I−WTSCW

δ

)∣∣∣WT(SW + δI)W = I, WTSBW = 0
}

= argmin
W∈RM×[m−rank(SB)]

{
trace

[
WT(SC + ρI)W

]∣∣∣WT(SW + δI)W = I, WTSBW = 0
}

(8)

It can be seen from Equation (8) that GDCA degenerates into BDCA when ρ = 0. If we
temporarily ignore the constraint that WTSBW = 0, it can be derived that the discriminant
matrix of GDCA is (SW + δI)−1(SC + ρI) and the signal-subspace projection matrix WPS
consists of the eigenvectors of (SW + δI)−1(SC + ρI) corresponding to the rank(SB) larger
eigenvalues while the noise-subspace projection matrix WPN consists of the eigenvectors of
(SW + δI)−1(SC + ρI) corresponding to the m-rank(SB) smaller eigenvalues. It is only neces-
sary to further prove that WPN has automatically approximately satisfied the constraint
that WT

PNSBWPN = 0 as follows:
Let the m-rank(SB) smaller eigenvalues of (SW + δI)−1(SC + ρI) be arranged in ascend-

ing order to form a diagonal matrix ΣPN, so Equation (9) can be deduced.

(SW + δI)−1(SC + ρI)WPN = WPNΣPN

⇔ (SW + δI)−1[SB + (ρ− δ)I]WPN = WPN(ΣPN − I)
⇔WT

PN[SB + (ρ− δ)I]WPN = WT
PN(SW + δI)WPN(ΣPN − I)

(9)

Combining the constraint condition WT
PN(SW + δI)WPN = I in Equations (8) and (9) can

be equivalently converted to Equation (10), from which Equation (11) can be further obtained.

WT
PNSBWPN = ΣPN − I[m−rank(SB)]×[m−rank(SB)] + (δ− ρ)WT

PNWPN (10)
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wT

i SBwi

‖wi‖2 = λi−1
‖wi‖2 + δ− ρ

wT
i SBwj

‖wi‖·‖wj‖
≤ wT

i SBwj

〈wi ,wj〉 = δ− ρ

j 6= i and i, j= rank(SB) + 1, rank(SB) + 2, · · · , m

(11)

Combining Equation (11) with Equation (A11) in the Appendix A and the conclusion
that λi < 1 (i = rank(SB) + 1, rank(SB) + 2, · · · , m) in the Appendix, Equation (12) can be
further derived. 

wT
i SBwi

‖wi‖2 = λi−1
M
∑

j=1

1
µj

u2
ji

+ δ− ρ ≤ δλi − ρ < δ− ρ

i= rank(SB) + 1, rank(SB) + 2, · · · , m

(12)

Based on the fact that δ > ρ, δ → 0+ and ρ → 0, it can be concluded from
Equations (11) and (12) that WPN has indeed automatically approximately satisfied the
constraint that WT

PNSBWPN = 0.
The GDCA algorithm can be given as follows:
GDCA algorithm

(0) Prepare Essential Parameters

(0.1) Choose the projected dimensionality m;
(0.2) Choose regularization parameters δ and ρ, which must satisfy the condition

that δ > ρ, δ→ 0+ and ρ→ 0 (for simplicity, let ρ = αδ, δ→ 0+ and α < 1).

(1) Calculate the between-class scatter matrix SB, within-class scatter matrix SW, and
center-adjusted scatter matrix SC

(1.1) Use data preprocessing methods, such as standard normal density (SND)
or min-max normalization (MMN), to preprocess the original recognition
vectors [41];

(1.2) Denote recognition vectors after preprocessing as xi∈RM×1 (i = 1, 2, · · · , N),
then calculate SB, SW and SC.

(2) Calculate the projection matrix WGDCA

(2.1) If m is not more than rank(SB), WGDCA is consisted of the eigenvectors of
(SW + δI)−1(SC + ρI) corresponding to the rank(SB) larger eigenvalues ar-
ranged in descending order.

(2.2) If m is larger than rank(SB), the signal-subspace projection matrix WPS is con-
sisted of the eigenvectors of (SW + δI)−1(SC + ρI) corresponding to the rank(SB)
larger eigenvalues arranged in descending order while the noise-subspace
projection matrix WPN is consisted of the eigenvectors of (SW + δI)−1(SC + ρI)
corresponding to the m-rank(SB) smaller eigenvalues arranged in ascending
order. Finally, WGDCA = [WPS, WPN].

(3) Normalize projection vectors

Let each column vector of WGDCA divide its own 2-norm. For any column vector of
WGDCA, multiply itself by −1 if the element with the largest absolute value is negative.

(4) Calculate the feature sample matrix after projection YGDCA = WT
GDCAX

(5) Whether to change the values of δ and ρ ? Return to 0.2 if yes and go to next step if no.
(6) Whether to change m? Return to 0.1 if yes and output WGDCA and YGDCA if no.

We have proved that GDCA algorithm does meet the SNR criterion in the signal-
subspace and the noise-power criterion in the noise-subspace, which means SNRs of
projected components in the signal-subspace are arranged in descending order while the
noise powers of projected components in the noise-subspace are arranged in ascending
order; the details of the proof are shown in the Appendix A. Then, we can extend GDCA to
the nonlinear case, KGDCA-Intrinsic-Space and KGDCA-Empirical-Space, by means of
Gaussian radial basis kernel function (RBF) K(xi,xj) = exp(−γ||xi−xj||2), γ > 0. Recog-
nition vectors in the original vector space xi∈RM×1 are first mapped to the intrinsic or
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empirical vector space, and then GDCA is used with regard to intrinsic vectors
→
φ(x) ∈ RJ×1

or empirical vectors
→
k (x) ∈ RN×1, respectively.

5. Results and Discussions

In order to demonstrate the advantages of the newly proposed pattern recognition
method based on GDCA and its kernelization forms driven SVM, the test strategy of
recognition effect based on the combination of Monte-Carlo experimental method and
cross-validation is put forward firstly in this section, by which a wealth of estimation
indicators for classification results can be calculated. Then, the criterion aimed at finding
the optimal (α, δ) value-pair for GDCA and the optimal (γ, α, δ) value-pair for GDCA’s
kernelization forms is given, through which it is possible to optimally select the parameters
involved in GDCA and its kernelization forms in advance without using the estimation
indicators for classification results, greatly shortening the time of pattern recognition and
ensuring the optimal recognition effect. Finally, results and discussions are detailed.

5.1. Test Strategy

First, random sampling is performed on the uniform distribution, so that the recogni-
tion vectors of all the discharge sample points are equally divided into five disjoint folds,
and then 5-fold cross-validation is performed. Furthermore, the estimation indicators of
each fold are calculated separately and the results of 5 folds are averaged. The above
process can be regarded as one Monte-Carlo experiment. In order to reduce the impact
of the randomness of the data set division on the estimation indicators of the final clas-
sification result, the above process is repeated 10 times, which means 10 Monte-Carlo
experiments are performed. Finally, the results of the 10 Monte-Carlo experiments are
averaged. The whole test strategy is shown in Figure 10. The Binary-SVM presented in
Figure 10 adopts two-class support vector classification machine based on soft constraints,
also referred to as Binary C-SVC [4]. Let xi (i = 1, 2, · · · , N) denote the PD recognition
vector corresponding to the ith sample point input to Binary-SVM; yi (i = 1, 2, · · · , N),
only equal to 1 or −1, denotes the class label of the ith sample point. It is worth noting
that xi (i = 1, 2, · · · , N) can be recognition vectors in the original vector space or after being
projected by means of GDCA or its kernelization forms. After solving the corresponding
quadratic programming problem, we can obtain the decision function f (x) with regard to
any PD recognition vector x.

Since the kernel matrix is a dense matrix in general and may be too large to store,
Professor Chih-Jen Lin et al. [42] developed the LIBSVM toolbox, which is widely used
for solving classification and regression problems due to its convenience of adjusting
parameters, adopting an SMO-type decomposition method [43,44] to solve the quadratic
programming problem.

The above-mentioned Binary-SVM is only specified for a two-class situation, and
there mainly exist two kinds of methods to extend Binary SVM to Multiclass-SVM, namely
one-versus-one scheme and one-versus-all scheme. The one-versus-one scheme needs to
train one Binary-SVM for each possible pair of CN classes, which results in CN(CN − 1)/2
Binary-SVMs. The one-versus-all scheme consisted of CN Binary-SVMs, each of which is
trained for one class and all the other classes. This paper adopts the one-versus-one scheme.
However, basic Binary-SVM can only obtain the decision value of the test sample. In order
to obtain posterior class probabilities, we firstly adopt Equation (13) to convert the decision
values output by Binary-SVM into the estimated pairwise class probabilities rij (i 6= j and i,
j = 1, 2, · · · , CN), where parameters A and B can be obtained by solving the regularized
maximum likelihood problem of maximizing the log-likelihood function in Equation (14), a
kind of relative entropy or Kullback–Leibler divergence [45]. In Equation (14), ti denotes the
maximum a posteriori (MAP) estimation for the target probability shown as Equation (15),
consisted of two values, namely t+ and t−, corresponding to positive and negative samples,
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respectively. Compared with t+ = 1 and t− = 0, Equation (15) can effectively avoid the
overfitting of Equation (13).

rij =
1

1 + eA f+B , i 6= j and i, j = 1, 2, · · · , CN (13)

max
A,B

{
∑

i

[
ti ln rij + (1− ti) ln(1− rij)

]}
(14)

ti =

{
t+ = N++1

N++2 , yi = 1
t− = 1

N−+2 , yi = −1
(15)Energies 2021, 14, x FOR PEER REVIEW 14 of 27 
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Figure 10. Test strategy of the newly proposed pattern recognition by combining Monte-Carlo experiment with cross-validation.

In addition, in order to ensure the unbiasedness of the decision values used to estimate
the parameters A and B, all the decision values in Equation (13) are obtained through 5-fold
cross-validation of the training data set, which means the decision function is firstly
obtained with 4-fold samples, then the decision values of the remaining 1-fold samples
are calculated, and we repeat the above process until each training sample has a decision
value. For the sample xt to be classified, we should firstly obtain its estimated pairwise
class probabilities rij (i 6= j and i, j = 1, 2, · · · , CN), then the optimization problem based
on the pairwise coupling method in Equation (16) [46] is solved to obtain the final class
probabilities pk

t = P(yt = k
∣∣∣xt) (k = 1, 2, · · · , CN) of Multiclass-SVM. Finally, according to

the maximum posterior probability criterion, the class that maximizes pk
t is used as the
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predicted class of the test sample. The above pattern recognition can achieve the Bayes
optimal decision under the condition of equal cost.

min
pt

CN
∑

i=1

CN
∑

j=1,j 6=i

(
rji pi

t − rij p
j
t

)2

subject to the constraints :
CN
∑

k=1
pk

t = 1 and ∀k, pk
t ≥ 0

(16)

It can be seen from Figure 10 that there exist ten estimation indicators to evaluate
the recognition results [41,47]. By extending two-class estimation indicators of pattern
recognition to the multi-class situation using class ratio as weight, we can obtain each 1-fold
estimation indicator. Then, each 5-fold estimation indicator can be obtained by averaging
the corresponding results of all folds.

5.2. Criterion for Selecting Optimal Parameters of GDCA and Its Kernelization Forms

In the actual application of GDCA or its kernelization forms, the optimal (α, δ)
or (γ, α, δ) value pair should be determined according to a certain criterion in order to
establish the final pattern recognition algorithm, which also shown in Figure 10. In this
section, we establish a criterion criterionfm as shown in Equation (17), which integrates the
three technical indicators, namely SNRi (i = 1, 2, · · · , rank(SB)), OSNRm and WOSNRm 4.
In Equation (17), hi (i = 1, 2, 3) denote the weights, and Na, Nb and Nc denote the number of
calculated values of γ, α and δ, respectively.

(γopt, αopt, δopt) = arg max
(γa , αb , δc)

{
criterion fm(γa, αb, δc) =

3
∑

i=1
hi • TINi

}

TIN1 =
Na Nb Nc

rank(SB)

∑
i=1

SNRi(γa , αb , δc)−∑
a

∑
b

∑
c

rank(SB)

∑
i=1

SNRi(γa , αb , δc)√√√√Na Nb Nc∑
a

∑
b

∑
c

[
rank(SB)

∑
i=1

SNRi(γa , αb , δc)

]2

−
[

∑
a

∑
b

∑
c

rank(SB)

∑
i=1

SNRi(γa , αb , δc)

]2

TIN2 =
Na Nb Nc ·OSNRm(γa , αb , δc)−∑

a
∑
b

∑
c

OSNRm(γa , αb , δc)√
Na Nb Nc∑

a
∑
b

∑
c
[OSNRm(γa , αb , δc)]

2−
[

∑
a

∑
b

∑
c

OSNRm(γa , αb , δc)

]2

TIN3 =
Na Nb Nc ·WOSNRm(γa , αb , δc)−∑

a
∑
b

∑
c

WOSNRm(γa , αb , δc)√
Na Nb Nc∑

a
∑
b

∑
c
[WOSNRm(γa , αb , δc)]

2−
[

∑
a

∑
b

∑
c

WOSNRm(γa , αb , δc)

]2

(17)

5.3. Recognition Effects of GDCA and Its Kernelization Forms Driven SVM

This section gives the recognition effects of GDCA and its kernelization forms driven
SVM. Many comparisons are performed, together with the effects of different values of
regularization coefficient α on GDCA and its kernelization forms driven SVM researched.

5.3.1. Recognition Effect of GDCA Driven SVM

According to the flowchart shown in Figure 10, the estimation indicators of all the
Monte-Carlo experiments of GDCA driven SVM and original SVM are calculated, and then
we obtain the mean of each estimation indicator by averaging 10 Monte-Carlo experiments,
which are denoted as MACA, MASensitivity, MASpecificity, MAPPV, MANPV, MAFmea-
sure, MAMSE, MAMLL, MAOMCC and MAWMCC. The mean and standard deviation
of each estimation indicator of all the Monte-Carlo experiments as well as the sign of the
difference between GDCA driven SVM (with MMN preprocessing) and original SVM for
the mean of each estimation indicator are shown in Figure 11 (only the results of MACA
and MAMLL are displayed due to limited space). Results show that there exist values of δ,
with which GDCA driven SVM outperforms original SVM with regard to all the estimation
indicators except MASpecificity under all the values of α. All the standard deviations of
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10 Monte-Carlo experiments for each estimation indicator by GDCA driven SVM are less
than those by original SVM, which means GDCA driven SVM is more robust than original
SVM. In addition, by maximizing criterionf 10 established in Section 5.2, it is derived that
αopt = 0.9, δopt = 10−4, under which MACA can arrive at the maximum of 92.41%. The
consuming time of executing all the Monte-Carlo experiments by GDCA driven SVM has
the mean of 403.9399 s and the standard deviation of 53.3158 s, while the time consumed
by original SVM is 1697.9388 s. The above time is counted using MATLAB on a personal
computer with 2.50 GHz CPU and 16.0 GB RAM.
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The increased percentage and the sign of estimation indicators comparing GDCA
driven SVM with BDCA driven SVM under different values of α are shown in Figure 12
(only display the case of α = 0.5 due to limited space). Results show that the range of δ, in
which GDCA outperforms BDCA with regard to all the estimation indicators, generally
expands as α expands. Especially, GDCA (0 < α < 1) is superior to BDCA in the majority
span of δ.

5.3.2. Recognition Effect of GDCA’s Kernelization Forms Driven SVM

According to the flowchart shown in Figure 10, the estimation indicators of all
the Monte-Carlo experiments by KGDCA-Intrinsic-Space- and KGDCA-Empirical-Space
driven SVM under different values of γ, α and δ are calculated. The consuming time of
executing all the Monte-Carlo experiments by KGDCA-Intrinsic-Space/KGDCA-Empirical-
Space driven SVM has means of 515.5661 s/468.8253 s and standard deviations of 241.1514 s/
276.1790 s, respectively.
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• Comparisons between KGDCA-Intrinsic-Space/KGDCA-Empirical-Space driven
SVM and original SVM

Comparisons of the mean of each estimation indicator by averaging all the 10 Monte-
Carlo experiments between KGDCA-Intrinsic-Space/KGDCA-Empirical-Space driven
SVM and original SVM under different values of α are shown in Figure 13 (only the
cases under α = 0.9 are displayed due to limited space). The results show that there exist
large numbers of combinations of (γ, α, δ), by which KGDCA-Intrinsic-Space/KGDCA-
Empirical-Space driven SVM is superior to original SVM. In addition, the range of γ,
in which KGDCA-Intrinsic-Space/KGDCA-Empirical-Space outperforms original SVM,
generally expands as δ decreases. In addition, by maximizing criterionf 10 established in
Section 5.2, it is derived that γopt = 2−3, αopt = 0.9, δopt = 10−5 for KGDCA-Intrinsic-Space
driven SVM, under which MACA can arrive at the maximum of 100%, meaning the results
that all the test samples of all the Monte-Carlo experiments have been classified successfully
and γopt = 2−1, αopt = 0.9, δopt = 10−6 for KGDCA-Empirical-Space driven SVM, under
which MACA can arrive at 99.83%.
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• Comparisons between KGDCA-Intrinsic-Space/KGDCA-Empirical-Space driven
SVM and GDCA driven SVM

The increased percentages of all the estimation indicators comparing KGDCA-Intrinsic-
Space/KGDCA-Empirical-Space driven SVM with GDCA driven SVM under different
values of γ, α and δ are shown in Figure 14 (only the case under α = 0.9 for MACA is
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displayed due to limited space). The results show that in the overwhelmingly major combi-
nations of γ and δ under all the values of α, KGDCA-Intrinsic-Space/KGDCA-Empirical-
Space driven SVM outperforms GDCA driven SVM. The maximum increased ratios with
regard to MACA, MASensitivity, MASpecificity, MAPPV, MANPV, MAFmeasure, MAMSE,
MAMLL, MAOMCC and MAWMCC for KGDCA-Intrinsic-Space driven SVM are 15.53%,
15.53%, 5.48%, 15.19%, 4.86%, 15.82%, 99.79%, 94.95%, 21.84% and 22.40%, respectively,
while the corresponding ones for KGDCA-Empirical-Space driven SVM are 15.53%, 15.53%,
5.48%, 15.19%, 4.86%, 15.82%, 99.78%, 95.24%, 21.84% and 22.40%, respectively.
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Figure 14. The increased percentages of MACA comparing GDCA’s kernelization forms driven SVM with GDCA driven
SVM when α = 0.9. (a) KGDCA−Intrinsic−Space driven SVM; (b) KGDCA−Empirical−Space driven SVM.

• Effect of α on KGDCA-Intrinsic-Space/KGDCA-Empirical-Space driven SVM

The relationships describing the sign of the difference of all the estimation indica-
tors between KGDCA-Intrinsic-Space/KGDCA-Empirical-Space (0 < α < 1) and KGDCA-
Intrinsic-Space/KGDCA-Empirical-Space (α = 0) driven SVM varying with the values of γ
and δ are shown as Figure 15 (only the case under α = 0.9 for MACA is displayed due to
limited space). The results show that KGDCA-Intrinsic-Space/KGDCA-Empirical-Space
(0 < α < 1) driven SVM outperforms KGDCA-Intrinsic-Space/KGDCA-Empirical-Space
(α = 0) driven SVM in the overwhelmingly major combinations of γ and δ except the range
in which they are tied.
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5.4. Comparisons with Other Dimensionality Reduction Algorithms

In this section, we use the test strategy in Section 5.1 to compare the newly proposed
method with 36 kinds of state-of-the-art dimensionality reduction algorithms. Although
we calculate 10 estimation indicators to evaluate the recognition results, only results of
MACA are shown in Figure 16 due to limited space. It can be seen from the results that
the proposed method outperforms all the compared feature selection ones, comprising
filter type, wrapper type and embedded type, since the proposed method uses all the
information contained in the recognition vectors but feature selection methods inevitably
discard some useful information. In the meantime, the wrapper type and embedded type
are always classifier-dependent and not only computationally intensive but also at risk of
overfitting. In addition, the proposed method also outperforms all the compared unsuper-
vised subspace projection ones, which can be attributed to the fact that the unsupervised
subspace projection technology does not involve any class information. Even compared
with supervised subspace projection technologies, our proposed method still demonstrates
competitive performances with significant advantages.
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5.5. Comparisons with Other Classifiers

In this section, we use the test strategy in Section 5.1 to compare the newly proposed
method with other state-of-the-art classifiers adopted in mainstream pattern recognition
methods, composed of ten kinds of neural networks [48], classical rough set (CRS) [49],
neighborhood classifier (NEC) [50], K nearest neighbor classifier (KNN), classification and
regression tree (CART), C4.5, Naive Bayes classifier (NBC), linear discriminant analysis
(LDA), quadratic discriminant analysis (QDA), kernelized discriminant analysis (KDA) [4]
and ensemble algorithms (including bootstrap aggregating and random subspace ensem-
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bles) [51], as well as their combinations with feature selection (also referred to as attribute
reduction) using neighborhood rough set (NRS) [50]. All the involved parameters in the
above methods are chosen according to 5-fold cross validation.

5.5.1. Comparisons with Ten Kinds of Neural Networks

Ten representative kinds of neural networks, comprising convolutional neural network
(CNN), adaptive neuro-fuzzy inference system (ANFIS), back-propagation neural network
(BPNN), Hopfield neural network (HNN), radial basis function neural network (RBFNN),
generalized regression neural network (GRNN), wavelet neural network (including two
cases of Morlet wavelet and Mexican hat wavelet, referred to as WNNMo and WNNMe,
respectively), learning vector quantization neural network (LVQNN), counter propagation
neural network (CPNN) and probabilistic neural network (PNN), were chosen to make
comparisons with the newly proposed pattern method. The results of the mean and
standard deviation of all the Monte-Carlo experiments for ACA are shown in Figure 17a,
from which it can be seen that both GDCA driven SVM and GDCA’s kernelization forms
driven SVM are superior to the chosen neural networks.
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with ten kinds of neural networks. (b) Comparisons with classical rough set. (c) Comparisons with the remaining recognition
methods without attribute reduction of NRS. (d) Comparisons with the remaining recognition methods with attribute
reduction of NRS.
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5.5.2. Comparisons with CRS

CRS is specified for discrete features, so it is indispensable to carry out proper dis-
cretization of continuous features before using CRS. Eight discretization methods were
chosen, comprising four unsupervised algorithms based on hierarchical clustering (HRC),
K-means, Gaussian mixing model (GMM) [48], fuzzy C-means clustering (FCM) [52], to-
gether with four supervised algorithms based on ChiMerge, information entropy (IFE),
class-attribute contingency coefficient (CACC) and class-attribute interdependence maxi-
mization (CAIM) [53], the corresponding results of which are shown in Figure 17b, from
which it can be seen that both GDCA driven SVM and GDCA’s kernelization forms driven
SVM are superior to CRS with all the eight discretization methods.

5.5.3. Comparisons with the Remaining Classifiers

• Without attribute reduction of NRS

The results of the remaining recognition methods, namely NEC, CART, KNN, C4.5,
NBC (considering two cases of normal probability density estimation and kernel density
estimation, referred to as NBCN and NBCK, respectively), LDA, QDA, KDA, bootstrap
aggregating of CART (BACART) and random subspace ensembles of KNN, LDA and QDA
(referred to as RSKNN, RSLDA and RSQDA, respectively), without attribute reduction of
NRS, are shown in Figure 17c.

• with attribute reduction of NRS

The results of the remaining recognition methods, namely NEC, CART, KNN, C4.5,
NBCN, NBCK, LDA, QDA, KDA, BACART, RSKNN, RSLDA and RSQDA, with attribute
reduction of NRS, are shown in Figure 17d.

6. Conclusions

By building a set of 220 kV HVDC GIS experiment platform and manufacturing
four different types of insulation defects (including multiple sizes and positions), we
successfully measured 180,828 pulse current signals under multiple voltage levels. After
being denoised, the apparent discharge quantity and the discharge time, two inherent
physical quantities unaffected by the experimental platform and measurement system,
were obtained, according to which 70 statistical features were extracted. We detailed a
pattern recognition method based on generalized discriminant component analysis and
its kernelized forms driven SVM, and established the corresponding selection criterion of
involved parameters. Combining the Monte-Carlo experimental method with the cross-
validation test strategy, 10 evaluation indicators for classification results were calculated.
Then, recognition effects of GDCA and its kernelization forms driven SVM including
comparisons between each other were analyzed in detail. Finally, comparisons between the
newly proposed pattern recognition method and 36 kinds of state-of-the-art dimensionality
reduction algorithms together with 44 kinds of state-of-the-art classifiers were performed.
The following conclusions can be drawn:

(1) All the problems of BDCA mentioned in Section 1 can be resolved by GDCA as well
as its kernelization forms proposed in this paper. The range of δ, in which GDCA
outperforms BDCA with regard to all the estimation indicators, generally expands as
α expands. Especially, GDCA (0 < α < 1) is superior to BDCA in the majority span
of δ. In the overwhelmingly major combinations of γ and δ under all the values of α,
KGDCA-Intrinsic-Space/KGDCA-Empirical-Space outperformed GDCA.

(2) By establishing an effective criterion to optimally select the parameters involved in
GDCA and its kernelization forms in advance without using the evaluation indicators
of classification results, the time of pattern recognition can be shortened considerably
to ensure the optimal recognition effect simultaneously.

(3) The newly proposed pattern recognition method greatly improved the recognition
accuracy in comparison with 36 kinds of state-of-the-art dimensionality reduction
algorithms and 44 kinds of state-of-the-art classifiers.
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Due to the fact that only the apparent discharge quantity and the discharge time,
two inherent physical quantities unaffected by the experimental platform and measure-
ment system, are needed, this newly proposed method not only solves the difficulty that
phase-resolved partial discharge (PRPD) cannot be applied under DC conditions, but also
immensely facilitates the fault diagnosis of HVDC GIS.
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Appendix A

The following gives the rigorous mathematical proof of the proposition that GDCA
algorithm does meet the SNR criterion in the signal-subspace and the noise-power criterion
in the noise-subspace. The whole proof is consisted of Proposition 1, Proposition 2 and
Proposition 3 as follows.

Proposition A1: The rank(SB) larger eigenvalues of GDCA’s discriminant matrix (SW + δI)−1(SC
+ ρI) are larger than 1, the other M-rank(SB) eigenvalues are smaller than 1, and all the eigenvalues
are at least equal to ρ/δ.

� Proof of Proposition A1

Firstly, we provide the evidence that the rank(SB) larger eigenvalues of GDCA’s
discriminant matrix (SW + δI)−1(SC + ρI) are larger than 1, and the other M-rank(SB)
eigenvalues are smaller than 1.

Since SW is a real-symmetric positive semi-definite matrix and δ→ 0+, SW + δI must
be a real-symmetric positive definite matrix. According to the Cholesky decomposition
theorem, SW + δI can be expressed as the product of a lower triangular matrix LWI whose
diagonal elements are all positive and its transpose, shown as Equation (A1):

SW + δI = LWI • LT
WI (A1)

Let ΣGDCA be a diagonal matrix whose diagonal elements are consisted of the rank(SB)
larger eigenvalues of (SW + δI)−1(SC + ρI) arranged in descending order and the M-rank(SB)
smaller eigenvalues arranged in ascending order. Then, Equation (A2) can be derived
(m = M here).

(SW + δI)−1(SC + ρI) ·WGDCA = WGDCA · ΣGDCA

⇔ (SW + δI)−1[SB + (ρ− δ)I] ·WGDCA = WGDCA · (ΣGDCA − I)
⇔
(
LWI·LT

WI
)−1

[SB + (ρ− δ)I] ·WGDCA = WGDCA · (ΣGDCA − I)
⇔ L−1

WI[SB + (ρ− δ)I] ·WGDCA = LT
WIWGDCA · (ΣGDCA − I)

(A2)

We further define a matrix HI as Equation (A3):

HI = LT
WIWGDCA (A3)
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Substituting Equation (A3) into Equation (A2) can obtain Equation (A4):

L−1
WI[SB + (ρ− δ)I] ·WGDCA = LT

WIWGDCA · (ΣGDCA − I)

⇔ L−1
WI[SB + (ρ− δ)I]

(
L−1

WI

)T
·HI = HI · (ΣGDCA − I)

(A4)

It can be easily seen from Equations (A2) and (A4) that the eigenvalues of (SW +

δI)−1[SB + (ρ − δ)I] and L−1
WI[SB + (ρ− δ)I]

(
L−1

WI

)T
are totally identical. Due to the fact

that rank(SB)≤ CN− 1 and in general CN− 1 < M, SB is rank-deficient. Because SB is a real-
symmetric positive semi-definite matrix, SB has rank(SB) eigenvalues greater than 0 and
M-rank(SB) repeated eigenvalues 0. Furthermore, based on the condition that δ > ρ, δ→ 0+

and ρ→ 0, it can be deduced that SB + (ρ − δ)I has rank(SB) eigenvalues larger than 0 and
M-rank(SB) repeated negative eigenvalues ρ − δ (only requiring that δ − ρ should be less

than the smallest positive eigenvalue of SB). Additionally, L−1
WI[SB + (ρ− δ)I]

(
L−1

WI

)T
and

SB + (ρ − δ)I are congruent, which means L−1
WI[SB + (ρ− δ)I]

(
L−1

WI

)T
and SB + (ρ − δ)I

have the same positive and negative inertia indices. Thus, L−1
WI[SB + (ρ− δ)I]

(
L−1

WI

)T
also

has rank(SB) eigenvalues larger than 0 and M-rank(SB) eigenvalues smaller than 0. It can
be seen from Equation (A4) that the diagonal elements of ΣGDCA − IM×M are just the

eigenvalues of L−1
WI[SB + (ρ− δ)I]

(
L−1

WI

)T
, so the rank(SB) larger eigenvalues of GDCA’s

discriminant matrix (SW + δI)−1(SC + ρI) are larger than 1, and the other M-rank(SB)
eigenvalues are smaller than 1.

Secondly, we prove all the eigenvalues of (SW + δI)−1[SB + (ρ − δ)I] are not less than
ρ/δ. The proof can be performed by contradiction, and the details are as follows:

Assume that there exists a real λ smaller than ρ/δ and λ is an eigenvalue of (SW +
δI)−1[SB + (ρ − δ)I], which corresponds to the eigenvector ν. Then, Equation (A5) can be
derived. It can be deduced from ρ < δ and λ < ρ/δ that 1−λ > 0 and ρ-λδ > 0. Because of
the fact that both SB and SW are real-symmetric positive semi-definite matrices as well
as the fact that (ρ − λδ)I is a real-symmetric positive definite matrix, SB + (1 − λ)SW +
(ρ − λδ)I is actually a real-symmetric positive definite matrix, which is contradictory to
Equation (A5). Therefore, all the eigenvalues of (SW + δI)−1[SB + (ρ − δ)I] are not less than
ρ/δ. Particularly, when SB + (1 − ρ/δ)SW is a singular matrix, the smallest eigenvalue of
(SW + δI)−1[SB + (ρ − δ)I] is exactly equal to ρ/δ. �

(SW + δI)−1(SC + ρI)ν = λν
⇒ |SC + ρI− λ(SW + δI)| = 0
⇒ |SB + (1− λ)SW + (ρ− λδ)I| = 0

(A5)

Proposition A2: SNRs of projected components obtained by the signal-subspace projection matrix
WPS are arranged in descending order.

� Proof of Proposition A2

Let ΣPS be a diagonal matrix whose diagonal elements are consisted of the rank(SB)
larger eigenvalues λi (i = 1, 2, · · · , rank(SB)) of (SW + δI)−1[SB + (ρ − δ)I] arranged in the
descending order. Denote the ith projection vector of WPS as wi (i = 1, 2, · · · , rank(SB)). It
can be deduced from Proposition 1 that λ1 ≥ λ2 ≥ · · · ≥ λrank(SB) > 1. Firstly, Equation
(A6) can be derived.

(SW + δI)−1(SC + ρI)WPS = WPSΣPS

⇔ (SW + δI)−1[SB + (ρ− δ)I]WPS = WPS(ΣPS − I)
⇔WT

PS[SB + (ρ− δ)I]WPS = WT
PS(SW + δI)WPS(ΣPS − I)

(A6)
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Moreover, Equation (A7) can be obtained.{
wT

i [SB + (ρ− δ)I]wi = (λi − 1)wT
i (SW + δI)wi

for i = 1, 2, · · · , rank(SB)
(A7)

It can be seen from Equation (8) that WGDCA = [WPS, WPN] satisfies the constraint
shown as Equation (A8), so WGDCA can be decomposed as Equation (A9), where
VGDCAΛGDCAVT

GDCA is the spectral decomposition of SW + δI.

WT
GDCA(SW + δI)WGDCA = I (A8)

WGDCA = VGDCAΛ
− 1

2
GDCAUGDCA

UT
GDCAUGDCA = Im×m

UGDCA = [u1, u2, · · · , um]

(A9)

Moreover,
WT

GDCAWGDCA = UT
GDCAΛ−1

GDCAUGDCA (A10)

Let ΛGDCA be a diagonal matrix whose diagonal elements are consisted of all the
eigenvalues µi (i = 1, 2, · · · , M) of SW + δI arranged in the descending order. Due to the
fact that SW is a real-symmetric positive semi-definite matrix and in general must have at
least one positive eigenvalue, µ1 ≥ µ2 ≥ · · · ≥ µM ≥ δ > 0 and ∃i∈[1, M] so as to make µi
larger than δ. Therefore, Equation (A11) can be derived from Equation (A10).

1
µ1
≤ ‖wi‖2 =

M
∑

j=1

1
µj

u2
ji <

1
δ

i = 1, 2, · · · , m
(A11)

Combining Equations (A7) and (A8), Equation (A12) can be obtained.

SNRi(δ, ρ) =
wT

i SBwi
wT

i SWwi

=
(λi−1)wT

i (SW+δI)wi−(ρ−δ)‖wi‖2

wT
i SWwi

= λi − 1 + (δλi−ρ)‖wi‖2

1−δ‖wi‖2

= λi

(
1 + δ−ρ/λi

‖wi‖−2−δ

)
− 1, i = 1, 2, · · · , rank(SB)

(A12)

Based on the fact that δ > ρ, δ→ 0+ and ρ→ 0, Equation (A13) can be deduced from
Equations (A11) and (A12).

SNRi ≈ lim
δ→0+ ,ρ→0

SNRi(δ, ρ)

= lim
δ→0+ ,ρ→0

[
λi

(
1 + δ−ρ/λi

‖wi‖−2−δ

)
− 1
]

= λi − 1, i = 1, 2, · · · , rank(SB)

(A13)

Because λ1 ≥ λ2 ≥ · · · ≥ λrank(SB) > 1, it can be seen from Equations (A12) and (A13)
that SNRs of projected components obtained by the signal-subspace projection matrix WPS
are all larger than zero and arranged in descending order. �

Proposition A3: The noise powers of projected components obtained by the noise-subspace projec-
tion matrix WPN are arranged in ascending order.

� Proof of Proposition A3

Let ΣPN be a diagonal matrix whose diagonal elements are consisted of the m-rank(SB)
smaller eigenvalues λi (i = M, M− 1, · · · , M−m + rank(SB) + 1) of (SW + δI)−1[SB + (ρ − δ)I]
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arranged in the ascending order. Correspondingly, WPN =
[
wrank(SB)+1, wrank(SB)+2, · · · , wm

]
.

It can be deduced from Proposition 1 that λM ≤ λM−1 ≤ · · · ≤ λM−m+rank(SB)+1 < 1.
It can be seen from Equation (8) that WPN satisfies the constraint shown as Equation (A14).

Furthermore, Equation (A15) can be obtained.

WT
PNSBWPN = 0 (A14)

WT
PNSWWPN = WT

PN(SW + SB)WPN
= WT

PN(SC + ρI− ρI)WPN
= WT

PN(SC + ρI)WPN − ρWT
PNWPN

(A15)

Combined with Equation (9), Equation (A15) can be further transformed into
Equation (A16).

WT
PNSWWPN = WT

PN(SW + δI)WPNΣPN − ρWT
PNWPN (A16)

Moreover, Equation (A16) can be transformed into Equation (A17).

WT
PNSWWPN · (I− ΣPN) = WT

PNWPN(δΣPN − ρI) (A17)

Thus, Equation (A18) can be easily derived from Equation (A17).{
(1− λM−i+1)wT

rank(SB)+iSWwrank(SB)+i = (δλM−i+1 − ρ)‖wrank(SB)+i‖
2

for i = 1, 2, · · · , m− rank(SB)
(A18)

Finally, Equation (A19) can be derived.

NoisePoweri =
wT

i SWwi

‖wi‖2

=
δλM+rank(SB)+1−i−ρ

1−λM+rank(SB)+1−i

= −δ + δ−ρ
1−λM+rank(SB)+1−i

for i= rank(SB) + 1, rank(SB) + 2, · · · , m

(A19)

It is noted from Equation (A19) that projection vectors should be normalized by their
own 2-norm in order to avoid the influence of projection vectors’ norm on the noise power.
On account of the fact that δ > ρ and ρ/δ ≤ λM ≤ λM−1 ≤ · · · ≤ λM−m+rank(SB)+1 < 1,
it can be seen from Equation (A19) that the noise powers of projected components ob-
tained by the noise-subspace projection matrix WPN are arranged in ascending order
and non-negative. �
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