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Abstract: Optimal sizing of the power system can drastically reduce the total cost, which is chal-
lenging due to the fluctuation in output power of RE (primarily wind and solar) and pollution from
thermal generators. The main purpose of this study is to cope with this output power uncertainty
of renewables by considering ADLC, residential PV, and BESS at the lowest cost and with the least
amount of carbon emission, while putting less burden on consumers by minimizing the IL. This
paper optimizes the cost and carbon emission function of a hybrid energy system comprising PV,
WG, BESS, and DG at Aguni Island, Japan, using a multi-objective optimization model. To solve the
proposed problem in the presence of ADLC, the ε-constraint method and MILP are utilized. After
obtaining all possible solutions, the FSM selects the best possible solution among all solutions. The
result shows that while case 1 has a lower energy cost than the other cases, the quantity of IL is quite
significant, putting customers in a burden. In case 2 and case 3, the total energy cost is 11.23% and
10% higher than case 1, respectively, but the sum of the IL is 99% and 95.96% lower than case 1 as the
ADLC is applied only for the consumers who have residential PV and BESS, which can reflect the
importance of residential PV and BESS. The total cost of case 3 is 1.72% lower than case 2, but IL is
higher because sometimes home PV power will be used to charge the home BESS.

Keywords: advanced direct load control; clustering; hybrid energy system; multi-objective optimization;
residential PV and BESS

1. Introduction

Aguni Island is a remote island of Okinawa prefecture located 60 kilometres northwest
of the Naha district on Okinawa Island in the East China Sea. It covers 7.64 km2 and has a
population of roughly 800 people. There is one bar, one cop, and a few restaurants in the
area. Aside from the hotel, there are around ten guest homes that cater to scuba divers, and
guests [1]. There is no power supply from the main island, and there is less possibility of it
in the future. The power generation system of this island is the internal combustion of heavy
oil, and the total rated output power is 1600 kW [2]. The cost of energy production in this
way is very costly as Japan needs to import 99.7% oil from abroad [3]. On the other hand,
greenhouse gas emissions are rising significantly due to massive electricity production
from fossil fuels, such as oil, coal, and gas, which tend to change the climate, security, and
price of natural resources. In FY2016, total greenhouse gas (GHG) emissions (preliminary
figures) in Japan were 1322 Mt CO2 eq. (0.2%, 6.2%, and 4.6% decreased as compared to
FY2015, FY2013, and FY2005, respectively). The main reason for the lower emissions in
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FY2016 compared to FY2015 and FY2013 is the widespread adoption of renewable energy
(RE) and resumption of nuclear power plant operation, which reduces the energy-related
carbon emissions [4]. By introducing RE sources such as wind power and photovoltaic
(PV) into a country’s energy mix was in response to energy conservation issues to solve
the problem of energy security, especially since the Fukushima nuclear disaster and the
Great East Japan Earthquake in Japan [5]. Okinawa electric power company has introduced
various RE sources for remote Island and for Aguni island, Aguni wind power has also
been introduced for Aguni island [6]. However, in some cases, the individual use of solar
and wind energy sources can result in substantial sizing, making single RE sources is
very expensive to implement [7–9]. The output power from these renewable sources is
uncertain because of weather dependency. On the other hand, the operational scheduling
of RE in a power system converts the load curve into a duck curve. This duck curve
concept is widely used to describe the imbalance of time between peak demand and the
PV generation [10,11]. The battery energy storage system (BESS) is generally considered
to be effective equipment for dealing with these problems as it can store extra energy to
deliver electricity at lower power generation. Because of their low emissions and excellent
efficiency, batteries have gained popularity as storage devices. However, the development
of BESS is limited to high capital costs. BESS installation in random or non-optimal form
can increase installation costs, system damage, and greater BESS capacity. In a future
hybrid implementation, an optimal sizing strategy of installed equipment could help get
maximum power reliability in minimum system costs [12,13]. Off-grid power systems
typically suffer from low load factors, increasing the number of batteries needed to meet
the total demand, which increases total system costs. One of the options tested to solve
this problem is to apply appropriate demand response (DR) techniques [14,15]. These
strategies encourage electricity customers to reduce power consumption during peak
periods of the system in response to time-based rates or other types of financial incentives
to manage demand with the available energy without adding new generation. Electric
system planners and operators are using DR programs as resource options to balance
demand and supply. Such programs can reduce the cost of electricity in wholesale markets
and, consequently, reduce retail rates. These programs include the ability to reduce the
top demand of electricity suppliers and to delay the implementation of new power plants
and power distribution systems—in particular, to save money with the help of reserves
for peak use [16,17]. Residential PV and BESS have become popular these days and
can also be a good solution to respond to the output uncertainty of renewables. In the
context of modelling power systems, the share of solar and wind energy is increasing, and
accounting for these renewable sources’ temporal and local variability is an important issue.
A long-term power system model is needed, which is rarely feasible for the computational
burden. So numerous models include some representative days with similar load and
renewable generation to represent the whole time span. Several authors have used different
data selection methods to select the representative days. In [18], two representative days
selection methods are used to carry out the number of sample days for the optimal sizing of
microgrids with industrial load profile. In [19], an efficient time slice approach is presented
that can be applied to the input data of all types of the power system model to determine
the small number of representative days for the long-term model LIMES-EU. In [20], two
hierarchical clustering techniques are designed to capture the statistical features of load
data and renewable sources availability in selecting representative days.

The overall goal of this research is to propose a hybrid microgrid system to fulfil Aguni
Island’s load demand, considering the minimum energy cost and low carbon emissions.
The following tasks have been completed in order to attain this goal:

• A multi-objective optimization model is proposed to minimize the LCC and car-
bon emission of PV-wind generator (WG)-BESS-diesel generator (DG) based hybrid
power model;
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• K-means clustering is used to select the representative days to represent the whole
year data by representative days that can minimize the computational burden of
simulating one-year data;

• ε-constraint method with mixed-integer linear programming (MILP) is applied to solve
the proposed multi-objective optimization problem and obtain multiple possible solu-
tions. The fuzzy satisfying method (FSM) is then used to select the appropriate solution;

• DR program is implemented to flatten the load curve for solving the important duck
curve problem. Residential PV and BESS are introduced to minimize the amount of
interruptible load (IL), making the system more reliable.

The rest of the paper is organized as follows: The literature review is described
in Section 2. The proposed power system model and advanced direct load control are
described in Section 3. The data selection method is discussed in Section 4. The objective
function and constraints are explained in Section 5. The techniques of solving the multi-
objective optimization are described in Section 6. In Section 7, the results of 3 different case
studies (without home PV and BESS, with home PV and with home PV and battery) are
compared to show the effectiveness of the proposed method. Finally, the conclusion and
future modification of this paper are presented in Section 8.

2. Literature Review

Some other existing works on HRES are also reviewed for better understanding.
In [21], the greenhouse gas emissions from current fossil fuel power facilities of Bangladesh
is analyzed using hybrid optimization of multiple energy resources (HOMER). The results
demonstrate that coal, diesel, and natural gas power plants release 0.90 kg, 0.76 kg, and
0.566 kg of CO2 per kWh, respectively, responsible for climate change.

In [22], the aim was to discover the optimal size of a hybrid energy storage system,
consisting of a hydrogen fuel cell and a supercapacitor for a commercial load provided
by solar panels. To examine the influence of the hydrogen cost on the cost of the system
and the levelized cost of energy, a sensitivity analysis on the estimated costs of hydrogen
storage is performed using HOMER Pro under Cape Town weather conditions. Although
the cost of such a hybrid storage system is likely to fall in the coming years, it will still
be too expensive to deploy for a commercial load. In [23], HOMER software generates
three optimal configurations of hybrid renewable energy systems to meet the residential
and agricultural power demand requirements of an energy-deprived village in India, with
wind, PV, and battery-based HRES being the most cost-effective design for this specific
area. The load is forecasted for a remote district in India, and HOMER software is used
to optimize the design and conduct a techno-economic analysis of the proposed PV, WG,
and bio-generator based HRES system in [24], which is a more cost-effective system than
the conventional one. In [25], different combinations of the off-grid hybrid energy system
(HES) are optimized for a rural hilly area of Bangladesh, considering minimizing the cost of
energy, net present cost, and CO2 emissions using HOMER software where PV-Diesel-PHS
based system is more cost-effective. In [26], HOMER software is used to optimize hybrid
PV-DG-battery based systems for electrifying the rural area of Benin. According to the
findings, the suggested method is more successful than the current approach in terms of
lowering energy costs and carbon emissions.

In [27], intelligent flower pollination algorithm is used for the optimal design and
energy management of the hybrid systems based on hydrogen storage, including PV, WG,
and FC, to reduce the total net present cost of the northwest region of Iran that finds the
optimal decision variables at the minimum cost, and with better reliability values in various
reliability indices. In these papers, a demand response program was not considered, which
may increase the cost of energy.

In [28], genetic algorithm (GA) and HOMER Pro Software are used to minimize the
total system net present cost, cost of energy, unmet load, CO2 emissions of an off-grid
HRES for supplying electricity to a group of three villages in India. A genetic algorithm is
used in [29] to optimize the solar, wind, and storage based off-grid hybrid system for the
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remote island. In both papers, and the obtained results are compared with the HOMAR
software, and the optimal result of GA is more cost-effective than HOMAR. For minimizing
the total/net present cost of the HES encompassing solar PV, wind, diesel generator, and
battery for electrifying rural areas in stand-alone applications, a suitable improved GA
program has been developed in [30] utilizing the MATLAB toolbox. The size of grid-
connected solar and battery systems for residential houses is optimized using a genetic
algorithm in [31] to reduce the overall yearly cost of electricity. In this paper, 0% leakage
and complete charge/discharge capabilities of the battery are considered, which is not
realistic. In [32], GA is used to optimize the PV, wind, battery, and diesel-based hybrid
system to satisfy the electricity demands of a remote village of northern Nigeria at the
lowest possible cost and with the least amount of carbon emissions. The computational
cost of GA is expensive as it takes a long time for convergence. In [33], the NSGA-II method
is used for optimal sizing of a HES that includes PV, WG, BESS, combined cooling, heating,
and power generation system, heat storage tank, gas boiler, and electric chiller to decrease
economic and environmental consequences. A one year dataset is used for simulation,
which makes slow convergence of the optimal result.

An improved multi-objective grey wolf optimizer is applied in [34] to minimize the
annualized cost of the system and deficiency of power supply probability by determining
the optimal size of a hybrid microgrid consisting of PV, WG, tidal current, battery, and
diesel for an island. In this research, only the initial cost and running cost of installed
equipment is considered that cannot be able to reflect the appropriate cost of energy.

A multi-objective mathematical model is established in [35] for optimizing the capacity
of hybrid energy storage system for a grid-connected 99MW Caka wind farm in Qinghai
Province, China, to maximize target satisfaction rate and minimize net present value. The
only wind farm is considered with a storage system which is less efficient than multiple
energy sources.

In [36], the Grasshopper Optimization Algorithm (GOA) is used to determine the
optimal system configuration of an autonomous microgrid system that includes PV, WG,
BESS, and DG to fulfil energy demand reliably and cost of energy. This system can fulfil
the energy demand for only five residential houses.

A Firefly algorithm is applied in [37] to determine the optimal size of a solar, wind
and battery storage based hybrid energy system considering the minimum cost of energy
for electrifying remote villages in India. In this paper, only one day of summer and winter
data are used for simulation, which is not enough for the whole year’s representation.

In [38], a multi-objective crow search algorithm is proposed to reduce the total net
present cost and loss of power supply probability of an off-grid hybrid system consisting of
PV, FC, and DG to supply electric power in the south of Iran. According to the simulation
result, the total cost of the HES can be reduced by the integration of hydrogen energy
technology. A geographical information system module is used in [39], to choose the best
site based on different factors. A hybrid optimization technique is then used to estimate
the optimal capacity to satisfy the demand at the least cost, which is more accurate than
other algorithms. One year of data have been used for simulation, which increased the
computational burden.

RETScreen simulation software is deployed in [40] to estimate the cost and pollutant
emission parameters of a PV, biomass, and additional storage based off-grid hybrid system
in the remote areas of Ashuganj, Bangladesh, which is more reliable than the conventional
kerosene-based system. No optimization method is used in this paper.

In [41], MILP optimization algorithm has been designed for a case study of a mountain
hut in South Tyrol (Italy) with solar, wind, DG, and battery storage based HRES to design
a tool capable of determining the optimal sizing of an HRES that can assist engineers in
identifying the best trade-off between costs and energy deficiency during the planning
stage. The reduction in carbon emission is not considered here.

For the Gobi Desert in China, the ε-constraint technique and elephant herd optimiza-
tion algorithm are utilized in [42] to reduce the loss of load probability, CO2 emissions, and
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yearly cost of a solar, diesel, and battery-based hybrid system. According to the results, the
suggested system emits less carbon than the PSO and HOMER-based systems. A significant
portion of the energy generated by the PV throughout the day is lost for the limitation of
battery capacity.

For optimization and sensitivity analysis of an autonomous HES consisting of PV-
diesel-battery for a remote Saharan village in southern Algeria, particle swarm optimization
and the ε-constraint method were proposed in [43] to reduce total system cost, unmet load,
and CO2 emissions, which is more cost-effective compared to HOMER.

MILP and ε-constraint method were used to generate energy storage system day-
ahead scheduling in the context of wind farm uncertainty. According to the simulation
result, the use of an energy storage unit lowers daily costs and emissions. Only one day
of data have been used for simulation, which is insufficient for long term planning for
optimal scheduling of energy storage system [44].

A multi-objective optimal scheduling model for CCHP microgrids integrated with RE,
energy storage system, and incentive-based demand response is solved using MILP and
augmented-constraint methods by minimizing pollutant gas emissions and lowering costs.
By adjusting the peak of the exchange power curve, the IL and the battery may effectively
adapt to peak load fluctuations. Residential PV and BESS can reduce the IL, which is not
considered in this paper [45].

Among various optimization methods, the ε-constraint technique minimizes the
computational cost of the system and becomes effective when the limits of objective
functions are known. This approach is very good for finding convex and linear Pareto
optimal front as it has the ability to find accurate Pareto front, rather than approximated
solutions [46].

According to the limitation of above literature, the contributions of this study are
as follows:

• The advantages of minimizing cost-emissions function, as well as household PV and
BESS, are examined, consider carbon emission as a constraint;

• Advanced direct load control (ADLC) is used to flatten the load curve. This ADLC
is exclusively applied to customers who possess residential PV and BESS in order
to reduce the amount of IL on the system, making it more reliable by lowering the
impact of power outages.

3. System Description
3.1. Power System Model

A decentralized power system model is designed and shown in Figure 1 in this paper
for a remote island in Okinawa Prefecture named Aguni island with a peak load of 1 MW. It
is considered that the power system is disconnected from the Okinawa main power system.
As a hybrid power system, a small PV, WG, DG, and BESS are considered as the power
generation source and energy storage. PV and WG power is used to meet the demand, and
the battery is charged by the remaining power. If PV and WG power is not enough, BESS
will be discharged. If the demand is not compensated by the PV, WG with BESS, DG will
run, and DR will be applied.

3.2. Modeling of Installed Equipments

The load data used in this paper are collected from the Okinawa Electric Power
website. Solar irradiation and wind speed data of one year are used to calculate the output
power of PV and WG, respectively, which is taken from Japan Meteorological Agency.
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Figure 1. Proposed power system model.

The output power generated by PV is calculated by Equation (1).

EPV(t) = H(t)ηpv Apv (1)

where EPV is the power produced by PV (kW), H is the quantity of solar irradiation
(kW/m2), APV is the total solar panel area (m2), and ηPV is the solar panel yield or efficiency
of the PV system which is considered as 12.3% in this paper [47].

The output power generated by WG is represented by Equations (2) and (3).

EWG(t) = 0.5CpρAWGV3
hub(t) (2)

Vhub = Vre f
(Zhub

Zre f

)α (3)

where EWG is the generated power by WG (kW), Cp is the output power coefficient of
performance of WG, ρ is the air density (kg/m3), AWG is the swept area of blades of the
WG (m2). Vhub is the speed of wind (m/s) at the target height of the hub of the WG, Vre f is
the speed of wind (m/s) at the reference height of the WG. Zhub and Zre f is the target hub
height and reference hub height of the WG, respectively. The cost of installed equipment
and other parameters for calculating the generated power of PV, WG, BESS and DG is
listed in Table 1.

3.3. Modeling of Advanced Direct Load Control

DLC is a contract based DR signed by the consumers, which is provided by utilities.
According to this contract between consumers and utilities, consumers permit utilities
to control consumers’ air conditioners and water heaters remotely. Utilities can shut
down such appliances during peak-demand periods or power supply shortages or notify
consumers about peak periods to shut down appliances. The consumers who participate
in this contract obtain compensation by decreasing their electricity bill [48,49].

ADLC, an incentive-based DR, has been introduced in this paper to bridge the gap
between supply and demand curves. We estimate that this contract will be made by 0%–
50% of consumers. The consumers following the agreement accede to the power cut while
the shortage of power. Each contracted household will face a maximum of 2 h of power cut
per day, and for 1 kW of a power cut, they will receive JPY 10 as compensation.
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Table 1. Parameters of installed components.

Equipment Parameters Values

Rated power (kW) 500
Lifetime (Years) 30

Capital cost (Million of JPY) 0.299
PV Operation and maintenance 6000

cost (JPY/kW-year)
Replacement cost (Million of JPY) 0.294

Panel area (m2) 3400
Efficiency (%) 12.3

Rated power (kW) 250
Lifetime (Years) 20

Capital cost (Million of JPY) 0.342
Operation and maintenance 15,200

WG cost (JPY/kW-year)
Replacement cost (Million of JPY) 0.342

Hub height (m) 40
Cut in wind speed (m/s) 3

Cut out wind speed (m/s) 25

Rated power (kW) 200/1200 kWh
Max SoC 0.8
Min SoC 0.2

Charging efficiency 0.9
BESS Discharging efficiency 0.9

Lifetime (Years) 15
Capital cost (Million of JPY/kW) 0.302

Operation and maintenance 8000
cost (JPY/kW-year)

Replacement cost (Million of JPY/kW) 0.302

Heating value (kJ/kW) 9970
Cost of C fuel oil (Million of JPY/kL) 0.067

DG Heating value of C 41.9 × 106

fuel oil (kJ/kL)
Conversion factor of CO2 per 0.0715

calorific value (tCO2/GJ)

• IL function in ADLC: In this proposed method the content of IL is defined by
Equation (4)

0 ≤ IL(kWh) ≤ ILmax(kWh) (4)

where ILmax is the maximum amount of IL per hour.
• Compensation cost function in ADLC: In ADLC, the compensation cost is calculated

by Equation (5)

compcost =
n

∑
t=1

ILt(kW) ∗ PRcomp(Yen/kW) (5)

where compcost is the compensation cost, ILt is the IL in hour t and PRcomp is the
compensation price per kW which is considered as JPY 10 here.

The advantages of this contract are listed below:

• Electricity bill saving for consumers: For cutting of 1 kW of electricity from a house-
hold each time, it will receive a discount of JPY 10 from the electricity bill;

• Lower electricity bill for other consumers: For using less energy by the contracted con-
sumers, the wholesale market price of energy will not increase at the time of shortage;

• Minimize the duck curve problem: Duck curve occurs during peak load with low
generation. If the load is minimized by cutting off power, the duck curve will also
be minimized.
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4. Proposed Data Selection Method for Optimal Scheduling

In order to finalize the optimal power supply configuration with the best operation
plan of the annual data, a large number of calculations are required. These data should
be simplified to reduce the computational burden. The calculation cost can be minimized
by choosing some qualitative days as representative days. K-means clustering is used to
simplify the yearly data in this research, which is a simple unsupervised machine learning
algorithm that classifies similar data into a number (k) of clusters. For k-means clustering,
the optimal number of clusters is selected by the elbow method in this paper. K-means
clustering is run by the elbow method based on the dataset for a range of values for k, and
an average score is calculated for all clusters for each value of k. The distortion score is
calculated by default from the sum of square distances between each point and its assigned
center. After plotting these overall metrics, it is possible to visualize the best value for k.
If the line graph looks like an arm, then the elbow point is the best value of k that can be
either up or down [50]. In the power system model, all historical days which are classified
into the same cluster will be illustrated by the same representative day.

The simplified working procedure of the elbow method for determining representative
days for optimal operation in this paper is shown in Figure 2.

Start

Number of clusters

Selection of Elbow point

Calculate the distance

if the
distance is
minimum?

Keep
to same
cluster

Keep
to different

cluster

if
stable

Stop

Yes

No

Yes

No

Figure 2. Data selection method.
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The annual net demand dataset of clustering in this paper is shown in Figure 3,
which depends on load demand, solar radiation and wind speed. Figure 4 shows the
elbow diagram where number 18 is considered as the elbow point and the best value of k.
Figure 5 shows the net load demand of the obtained dataset of the number of clusters [51].
The obtained dataset, actual load data, power generated from WG and PV is shown in
Figure 6, ensuring that proper data selection has been accomplished here [52] which can
be able to represent the whole year.
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Figure 3. Data set of load demand.
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Figure 5. Representative days selected by clustering.
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Figure 6. Actual and Obtained dataset. Subfigure (a) represented the actual and obtained load profile
by clustering. Subfigure (b) represented the actual and obtained PV power generation by clustering.
Subfigure (c) represented the actual and obtained WG power generation by clustering.

5. Problem Formulation

In the assumed power system model of this paper, the number of installed WG, PV,
and BESS can vary. The output power is proportional to the rising number of installed
WG and PV. The minimization of the LCC of the system and carbon emission are the
objective functions of this paper. The number WG, PV, and BESS, schedule of charging or
discharging of BESS, and schedule of DG operation are determined by MILP so that the
objective functions can be minimized.



Energies 2021, 14, 7599 11 of 19

5.1. Objective Function

i Cost function: In this paper, multi-objective optimization is considered with two
objective function of minimization. The first objective function is to minimize the
LCC which is defined by Equation (6).

Min : LCC = CF +
Y

∑
y=1

CO&M(y) + CRP(y)
(1 + D)y − RV

(1 + D)y (6)

where CF is the initial/fixed investment cost (JPY), Y is the total lifetime (Year) of the
project which is considered 15 years in this paper. CO&M(y) operation and mainte-
nance cost and CRP(y) is the replacement cost in the year y (JPY), respectively. D is
the discount rate which is assumed to be 3% in this paper. RV is the residual value.
The initial investment cost CF is the sum of the initial investment cost of installed
equipment which is calculated by Equation (7)

CF = CFPV + CFWG + CFBESS (7)

where CFPV , CFWG and CFBESS are the fixed investment cost of PV, WG, and BESS, re-
spectively.
Similarly, the operation and maintenance cost CO&M(y) and replacement cost CRP(y)
is calculated by Equations (8) and (9), respectively.

CO&M(y) = CO&MPV (y) + CO&MWG (y) + CO&MBESS(y) (8)

where CO&MPV (y), CO&MWG (y), and CO&MBESS(y) are the the operation and mainte-
nance cost of PV, WG, and BESS in the year y, respectively.

CRP(y) = CRPPV (y) + CRPWG (y) + CRPBESS(y) (9)

where, CRPPV (y), CRPWG (y), and CRPBESS(y) are the the replacement cost of PV, WG,
and BESS in the year y, respectively.

ii Emission function: The second objective function is to minimize the carbon emission
which can be calculated by Equation (10).

Min : ECO2 =
H

∑
h=1

Hc × CF× Ccoil (10)

where Hc is the heating value of C fuel oil (GJ/kL), CF is the CO2 conversion factor
of CO2 per calorific value (tCO2/GJ) and Ccoil is the consumption of C heavy oil
that can be calculated by Equation (11).

Ccoil =
H
Hc
× EDG (11)

where, H is the heating value (kJ/kW) and EDG is the total power generated by DG.
The fuel cost of DG is shown by Equation (12).

CDGi (t) =
H × E(DGi)

× Pc

Hc × ηi
(12)

E(DGi)
is the power generated by DGi at each time t (kW), Pc is the rate of C fuel oil

(JPY), and ηi is the efficiency of DG.

5.2. Constraints

i. Constraints for charging and discharging of BESS are given below:

Bc(t) + Bd(t) ≤ 1 (13)
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where, Bc and Bd are the charging and discharging state of BESS, respectively.

SOCminnBCB ≤
T

∑
t=1

(
ηcBEc(t)−

1
ηdB

Ed(t)

)
+ SOCi (14)

T

∑
t=1

(
ηcBEc(t)−

1
ηdB

Ed(t)

)
+ SOCi ≤ SOCmaxnBCB (15)

ii. Maximum output power of BESS

Ec ≤ nBEmax
c (16)

Ed ≤ nBEmax
d (17)

iii. Start/stop constraint of DG

DGon(t) + DGo f f (t) ≤ 1 (18)

iv. Power balance limit

nPV EPV(t) + nWGEWG(t) + (Ed(t)− Ec(t))

+EDG(t)− Esr(t)− EIL(t) = EL(t)
(19)

where, nB is the number of BESS; CB is the per unit capacity of BESS; ηcB, ηdB are
charging and discharging efficiency which have taken by 80% in this paper; nPV
and nWG are the number of installed PV and WG. EPV and EWG, are the power
generated prom PV and WG, respectively. Ed and Ec are the discharging and
charging power of BESS. Emax

d , Emax
c are the maximum discharging and charging

power of BESS. EDG are generated power from DG; Esr is the surplus power; SOCi
is the initial state of the SOC of BESS; EIL is the amount of IL; EL is the load demand.

v. ε -constraint
Min: LCC subject to

ECO2 ≤ Emax
CO2
× εi (20)

where i = 1, 2, 3, . . . . . . , n

6. Problem Solving Method
6.1. ε–Constraint Method

The ε–constraint method is used to solve the proposed multi-objective optimization.
One objective function is considered for optimization, and the rest of the objective functions
are converted to inequality functions and considered as constraints. In this research, one
objective function, φ1, is optimized, and another objective function, φ2, is considered as a
constraint as follows.

OF = min(φ1) (21)

s.t :
{

φ2 ≤ ε (22)

Equations (21) and (22) describe the ε–constraint method where φ2 is restricted by ε
parameter. The minimum and maximum values of this parameter are set very carefully.
Gradually the parameter varies from the minimum value to maximum value, and the
solution of the modified single objective function is obtained for each ε parameter. The set
of all obtained solutions from the variations of εmin to εmax are the Pareto optimal front of
the multi-objective optimization problem.
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6.2. Fuzzy Satisfying Method

To find the best possible solution from the Pareto optimal front of the multi-objective
optimization problem, FSM is necessary. A fuzzy membership function with the interval (0,
1) is assigned to each solution in the Pareto front. The linear fuzzy membership functions
can be obtained nth solution of ith objective function is defined as Equation (23)

φn
i =


1, φn

i ≤ φmin
i

φmax
i −φn

i
φmax

i −φmin
i

, φmin
i ≤ φn

i ≤ φmax
i

0, φn
i ≥ φmin

i

(23)

where φn
i shows the optimality degree of the nth solution of ith objective function. φmax

i and
φmin

i are the maximum and minimum values of the solution of objective function i.
The best possible solution is determined by min–max method where the value of φn

1
and φn

2 are calculated by Equations (24) and (25).

φn
1 =

LCCmax − LCCn

LCCmax − LCCmin (24)

φn
2 =

εmax − εn

εmax − εmin (25)

The minimum value between φn
1 and φn

2 is determined. This value is called the
membership function of the nth solution which can be calculated by Equation (26).

φn = min(φn
1 , . . . , φn

N); ∀n = 1, . . . , NP (26)

The solution with maximum lowest membership function can be selected as the best
possible solution which is calculated by Equation (27).

φmax = max(φmax, . . . , φNP) (27)

The above solution method can be briefly explained by following steps

• Step-1: Minimize φ1 and φ2 subject to all equal and unequal constraints using MILP;
• Step-2: Calculate the maximum value of φ1 and φ2;
• Step-3: A number of iterations are considered where in the first iteration, φ2 is mini-

mum and φ1 is maximum. With increasing the number of iteration, φ2 will increase,
and in the last iteration, φ2 is the maximum, and φ1 is minimum;

• Step-4: To select the best possible solution FSM is used. The solutions of the objective
functions are converted to per unit values using Equations (24) and (25). Then the mem-
bership function and best possible solution can be calculated by Equations (26) and (27),
respectively.

7. Result Analysis

Using one-year data for simulation is time-consuming. Selecting random days for
simulation could not compute the optimal sizing of RE correctly because of the variation of
output power and load demand. The sizing of the HRES could not meet the needs of the
load demand if the proper representative days of the entire year were not selected. That
is why K-means clustering is used to simplify the yearly data to minimize the computa-
tional burden.

In this work, a comparison of 3 case studies is considered to reflect the usefulness of
the proposed method.

Case 1: Energy optimization with ADLC—In this case, if there is a shortage of power,
cutting off the power supply will occur for all consumers who have a contract with ADLC.

Case 2: Energy optimization with ADLC and residential PV—In case 2, residential
PV is considered for some houses. Since these PVs are not connected to the grid, reverse
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energy will not appear to the grid. Only the consumers who have the residential PV in
their home would have the contract of ADLC and face the cut off power supply.

Case 3: Energy optimization with ADLC, residential PV and BESS—In this case,
it is considered that some houses have residential PV and BESS. The consumer who
owns the residential PV and BESS would have the contract of ADLC and face the cut off
power supply.

The results of determining the optimal configuration of these cases are calculated
by the selected data based on Section 3. 11 different solutions for each case with the
combination of PV, WG, BESS, and DG are obtained in this paper with the variation of
epsilon. The LCC, the fuel cost of DG and the carbon emission of each case is listed
in, Table 2 shows that the LCC has decreased with the increase in carbon emission. The
obtained Pareto set of each case is shown in Figure 7.
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Figure 7. Pareto set of each case.

Here, the best possible solution of each case is selected by the FSM discussed in
Section 5 where the maximum value of ε constraint is set to 30% of the maximum value of ε.

From the Pareto set, the optimal configuration in case 1 can be achieved at the lowest
cost, and in case 2 the LCC is the highest among these three cases.

The result of each case is listed in Table 3 where the maximum value of ε-constraint is
set to 0% and 30% of the maximum value of ε.

Table 2. Cost of each iteration.

ε
LCC (Million of JPY)

CDG (Million of JPY) CO2 (tCO2)
Case 1 Case 2 Case 3

0 11.92 14.53 14.34 0 0
0.1 7.43 9.49 8.72 1.47 27.80
0.2 5.88 7.51 6.76 2.96 55.96
0.3 3.45 4.83 4.65 4.45 84.12
0.4 2.07 3.35 3.19 5.94 112.27
0.5 1.47 2.67 1.81 7.43 140.43
0.6 1.03 2.16 1.29 8.92 168.59
0.7 0.61 0.86 0.78 10.39 196.39
0.8 0.35 0.52 0.52 11.88 224.55
0.9 0 0.26 0 13.37 252.71
1 0 0 0 14.86 280.86
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Table 3. Simulation results of each case.

ε (CO2)
Case 1 Case 2 Case 3

At 0% At 30% At 0% At 30% At 0% At 30%

PV [500 kW/unit] 13 3 14 4 15 7
WG [250 kW/unit] 7 2 8 5 11 4

BESS [(200 kW/1200 kWh)/unit] 17 6 24 5 17 2
LCC (Million of Yen) 11.92 3.45 14.52 4.83 14.33 4.65

Fuel cost of DG (Million of Yen) 0 4.45 0 4.45 0 4.45
Compensation cost (Million of yen) 0.09 3.94 0.017 0.027 0.704 0.159

Total Cost (Million of Yen) 12.02 8.30 14.52 9.29 14.34 9.13
Interruptible loads (kWh) 9.34 39.4 0.165 0.27 0.704 1.59

Amount of carbon emission (tCO2) 0 84.12 0 84.12 0 84.12

Although the LCC, as well as total cost (TC), is low in case 1 in Table 3, the amount of
IL is higher than in other cases. Additionally, in this case, contracted consumers cannot
benefit from electricity during the cut off electricity because there is no source of electricity
generation in the houses. At some point, it will become a burden on consumers.

In case 2, the LCC and TC are higher than in other cases, but IL is 99% low here. As
only the houses that own residential PVs will face the cut off power during the shortage;
they can use the power generated from PVs while the power interruption. This case can
reduce the burden of consumers, but the duck curve phenomenon is occurred by PV
generation in the daytime could not be solved.

In case 3, the LCC and TC are higher than case 1 and lower than case 2, and the IL is
95.96% lower than case 1 and higher than case 2. In this case, only the houses that own
residential PVs and BESSs will face the cut off power during the shortage. They can use the
power generated from PVs and battery storage while the time of power cut off. As there
are residential BESS, sometimes the power generated from PVs is used for charging home
BESSs. That is why the amount of IL is higher than case 2 here. However, it can slightly
solve the duck curve problem. Figures 8–10 show the optimal operation of 2 days at 30%
carbon emission, respectively.
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Figure 8. Operation schedule of 2 days (Case 1).
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Figure 9. Operation schedule of 2 days (Case 2).
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8. Conclusions

In this paper, a multi-objective optimization model was proposed for optimal sizing
of PV, WG, BESS, and DG based HES considering minimum cost and carbon emission
utilizing ADLC, residential PV, and BESS program to electrify the remote Aguni Island in
Japan. For inspiring consumers to install the residential PV and BESS, ADLC is modeled
in a way that only the consumers with residential PV and BESS would have the contract
of ADLC, which can significantly reduce the amount of IL. The proposed multi-objective
model is solved by the ε-constraint method. MILP is applied to obtain all possible solutions
of this model, and FSM is responsible for selecting the best solution. Three different case
studies are considered here to validate the effectiveness of the DR program with residential
PV and BESS. With the variation of epsilon, 11 different results are obtained for each case.
FSM has selected the best solution where the value of epsilon is 30%. The best solution
illustrates that:

• In case 1, only ADLC is considered with no home PV and BESS. In this case, the energy
demand is fulfilled at the lowest cost, but the amount of IL is very high, which will be
a burden for consumers as they cannot be able to use electricity at that time;



Energies 2021, 14, 7599 17 of 19

• In case 2, ADLC and home PV is considered where the total energy cost is 11.23% higher
than case 1, but the amount of IL is almost 99% lower than case 1;

• In case 3, ADLC, home PV and home BESS is considered where the total cost is
10% higher than case 1 and the amount of IL is 95.96% lower than case 1.

This paper does not take into account real-time uncertainty in load demand. Specifi-
cally, the proposed method considers 18-day sample data from 1 year of historical data.
Calculating compensation for ADLC on historical data might have minor bugs due to
real-time load uncertainty.
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