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Abstract: The resilience of a system can be considered as a function of its reliability and recoverability.
Hence, for effective resilience management, the reliability and recoverability of all components
which build up the system need to be identified. After that, their importance should be identified
using an appropriate model for future resource allocation. The critical infrastructures are under
dynamic stress due to operational conditions. Such stress can significantly affect the recoverability
and reliability of a system’s components, the system configuration, and consequently, the importance
of components. Hence, their effect on the developed importance measure needs to be identified and
then quantified appropriately. The dynamic operational condition can be modeled using the risk
factors. However, in most of the available importance measures, the effect of risk factors has not
been addressed properly. In this paper, a reliability importance measure has been used to determine
the critical components considering the effect of risk factors. The application of the model has been
shown through a case study.

Keywords: reliability; importance measure; operational condition; frailty model; fleet of loading
system

1. Introduction

Critical infrastructures are complex systems whose high performance requires proper
interaction between hardware, software, and wetware (humans being involved in the
design and operation of these systems). External and internal working of infrastructures is
dynamic, which constantly can change the performance characteristics of these systems. For
example, dynamic operational conditions can affect equipment reliability and recoverability,
two characteristics of infrastructure resilience (see Figure 1). Changing the reliability
can cause an unexpected breakdown. For example, ambient temperature effects on the
reliability and recoverability of power distribution have a dynamic nature, and a sudden
low temperature will cause an unexpected power outage. Such unexpected stoppages need
to be considered in any contingency plan. Moreover, it is important to clearly understand
each component’s importance in building critical infrastructures and their sensitivity to
any change in operational conditions.

Recently, different resilience metrics have been developed to assess the resilience of
systems in different sectors. Figure 1 shows some of the concepts of resilience and some
key concepts, which have been used to represent the system statement pre-disruption,
during disruption, and post-disruption. Resilience is a technical system that can be defined
as the ability to withstand a major disruption within acceptable degradation parameters
and recover within an acceptable time and composite costs and risks [1,2].

In other words, resilience could be interpreted as the probability that system conditions
might exceed an irrevocable tipping point. But the probability in this subject covers
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the different areas that different approaches and indices can evaluate. The reliability
(uptime) and recoverability (downtime) performance have been used as the most dominant
probabilistic performance measurement tools. As Figure 1 shows, the reliability of the
system resilience in the original stable state before a disruption occurs starts from the time to
(normal or baseline state). Reliability is defined as the probability that a system can perform
a required function under given conditions at a given instant of time or over a given time
interval, assuming the required external resources are provided [3–10]. At the time of t1
the system will be hit by a disruptive event (overstress such as an earthquake). Based
on the inherent reliability and effectiveness of the operation and maintenance program,
the performance of the system will degrade until t2. Some authors highlighted that as a
vulnerability state, where higher vulnerability means more severe failure. At the time t2
the contingency plan (recovery actions) is in place, and the system’s recoverability will
decide when the system will get back to the normal performance level [11].

Figure 1. Resilience concept [11].

One important step in improving infrastructure resilience is identifying the critical
components that contribute to its resilience. The component importance can be identi-
fied from a reliability and recoverability point of view. Different reliability importance
measures have been developed, which may be used in the resilience assessment as well.
The importance measure denotes how each component will affect the infrastructure per-
formance. In general, the resilience importance results from its component’s resilience
through the cohesive configuration components interacting. Therefore, a two-dimensional
index that measured both resilience and each components’ behavior in interaction with
other components and the system needs to be developed to analyze the system. Such in-
dexes are known as importance measures obtained from the reliability of the recoverability
point of view. Different importance measures have been developed in the reliability of the
engineering discipline. For example, Birnbaum (1968) proposed a quantitative definition of
structural importance for systems with coherent structures, assuming that only the complex
system’s structure is known. Chang and Hwang used structural Birnbaum importance in
the component assignment problem to obtain the best system reliability [12–14]. Amrutkar
and Kamalja overviewed structural importance measures, reliability importance measures,
and lifetime importance measures of importance measures for coherent systems from
1960 to 2017 [15]. A resilience-focused performance measure was offered through gener-
ated interdependent power-water networks by Almoghathawi and Barker [16]. Chacko
introduced joint reliability importance measure for two or more multistate components,
joint performance achievement worth, joint performance reduction worth, and the joint
performance Fussell–Vesely measure, using expected performance, reliability, availability,
and risk as output performance measures of the multistate system [17]. Xu et al. used the
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values of component importance to investigate a time-dependent risk quantification model,
as well as the common cause failure treatment model in operation and maintenance man-
agement. The results showed that the absolute values and ranking order of time-dependent
importance reflected the effect of the cumulative state duration of component on risk and
comprehensively accounted for all possible situations of component unavailability [18].
Kamra and Pahuja analyzed the substation communication network architectures using
various reliability importance measures. The practice of these component importance
measures worked towards identifying the components that can be allocated for the im-
provement of system reliability [19]. Niu et al. extended the component importance to
generating capacity adequacy assessment. The measurement index is the centrepiece in
reliability importance based on traditional importance measures. It is demonstrated that a
central component, the one with higher structure importance, can actually have less risk
reduction worth than a branch, the one with lower structure importance [20]. Furthermore,
some authors proposed the availability importance measure (AIM), which determines the
importance of items regarding the availability of the mechanical system and smart grid
(regarded as the next-generation electrical power grid).

A review of available studies revealed that in most available studies, the reliability of
components depends on a single independent variable, time of operation, or time between
failures (TBF). Moreover, these studies mostly assume that the data are homogenous,
where the data are collected under identical operational conditions. Here, the equipment is
experiencing the same operational conditions with the same environmental, operational
and organizational stress. In reality, it is not a valid assumption. Studies show that
most of the resilience data have a degree of heterogeneity that needs to be identified and
quantified appropriately. In other words, operational conditions can significantly influence
the infrastructures’ reliability and recoverability characteristics in most real cases.

In general, risk factors could be categorized into two groups, observable and unobserv-
able risk factors leading to observable and unobservable heterogeneity. Unobservable risk
factors are such factors that they are unknown. Recent studies show that the unobservable
risk factors can significantly change the components’ reliability and recoverability and,
consequently, the resilience characterization of infrastructures. Hence, the effect of both
observable and unobservable risk factors should be considered while the component impor-
tance measure is analysing [21–27]. However, in most of the available importance measures,
the effect of risk factors has not been addressed properly. Recently, different approaches
have been used to analyze the effect of risk factors on system resilience, such as regression
methods, neural networks, classical statistics, etc. [28–30]. For example, Cox regression
and accelerator failure time (AFT) models are the two most applied regression models for
modelling the effect of risk factors on the resilience of infrastructures [11,21,22,31]. In these
models, reliability or recoverability can be explored as baseline hazard/repair rate and
covariate function, reflecting the effect of risk factors on the baseline hazard rate. Baseline
hazard represents the hazard when all of the risk factors (or predictors or independent
variables) effects (coefficient values) are equal to zero [25].

Hence, the main motivation of this paper is to develop risk factors-reliability impor-
tance measures to isolate the effect of observable and unobservable risk factors. The paper
is divided into three parts. Part 2 briefly presents the theoretical background for “risk
factor-based reliability importance measure (RF-RIM)”. Moreover, the methodology for
the implementation of the model is discussed. Part 3 presents a case study featuring the
reliability importance analysis part of the fleet loading system in Iran’s ore mine. Finally,
part 4 provides the conclusion of the paper.

2. Methodology and Framework: Risk Factor-Based Reliability Importance Measure
(RF-RIM)

Mathematically, the resilience measure can be defined as the sum of reliability and
recoverability (restoration) as follows [32]:

Re = R(reliability) + ρ(restoration) = R + ρ
(

R, Λp, ΛD, K
)

(1)
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where k, Λp and ΛD are the conditional probabilities of the mitigation/recovery action
success, correct prognosis, and diagnosis. Equation (1) turns technical infrastructure
resilience into a quantifiable property; provides essential information for managing them
efficiently. Reliability is defined as the probability that a system can perform a required
function under given conditions at a given instant of time, assuming the required external
resources are provided [12]. The reliability can be model using a statistical approach such
as classical distribution. The restoration is considered as a joint probability of having an
event, correct prognosis, diagnosis, and mitigation/recovery as follows [33]:

Re = R + (1 − R)PDiagonosisPPrognosisPRecovery (2)

where PDiagonosis is the probability of correct diagnosis, PPrognosis is the probability of correct
prognosis, and PRecovery is the probability of correct recovery [32].

As mentioned, the importance measure shows how to affect each component on the
system resilience. For example, in a series system, components to have the least reliability,
the most effective have on the system resilience. However, in a parallel system, components
that have the most reliability are the most effective on the system resilience. Figure 2 shows
a systematic guideline for RF-RIM.

Figure 2. The framework proposed for risk factor-based reliability importance measure (RF-RIM).

As this figure shows, the initial step involves collecting failure and repair data and
their associated risk factors. The most important challenge in the first step is the quality
and accuracy of the collected data set, which significantly affects the analysis results [28]. In
the second step, based on the nature of the collected data and risk factors, some statistical
models are nominating to model the reliability of components. For example, in the presence
of observable and unobservable risk factors, the frailty model can be used. Originally,
this was developed by Asha et al. [34] into load share systems and described the effect of
observable and unobservable covariates on the reliability analysis. In later years, authors
such as Xu and Li, Misra et al., and Giorgio et al. discussed the properties of the frailty
model [35–37]. Moreover, recently this model was used in spar part estimation, remaining
useful life (RUL), recoverability, failure data analysis, and resilience analysis [21–24,38,39].
According to this model, the reliability of each component (R(t; z; z(t)|α)) can be modelled
as follows [21–24]:

Ri(t; z; z(t)|α) = {Ri(t; z; z(t))}α (3)



Energies 2021, 14, 7575 5 of 16

where α is the frailty and has a probability density function g(α) with the mean to one
and variance θ, where Ri(t; z; z(t)) is the item’s reliability function and considering the
existence of p1 time-independent observable risk factors and p2 time-dependent observable
risk factors. It can be estimated by [21–24]:

Ri(t; z; z(t)) =

exp

− t∫
0

λ0(x)exp

[
p2

∑
j = 1

δsjzsj(t)

]
dx

exp [
p1
∑

i = 1
ηsizsi ]

(4)

where λ0 is baseline hazard rate. Also, δ and η are regression coefficients of the correspond-
ing time-independent and observable risk factors. Moreover, the unconditional reliability
function of component i’th (Rθi(t; z; z(t))) can be estimated as [21–24]:

Rθi(t; z; z(t)) =
∫ ∞

0
{Ri(t; z; z(t))}αg(α)dα = [1 − θiln{Ri(t; z; z(t))}]

−1
θi (5)

where Rθi(t; z; z(t)) is the item’s reliability function and considering the existence of ob-
servable and unobservable risk factors. If there is no effect from unobservable risk factors,
then α = 1, and Equation (6) will reduce to the Cox regression model as follows [22,31,39]:

Rθi(t; z; z(t)) =
∫ ∞

0
{Ri(t; z; z(t))}αg(α)dα = [1 − θiln{Ri(t; z; z(t))}]

−1
θi (6)

For a guideline in risk factor-based reliability model selection, see Figure 3.
In step 3, the system reliability should be estimated. In the presence of observable

and unobservable risk factors, for a series-parallel system with n series and m parallel
subsystems, system reliability can be calculated with Equation (7) [21,22,40]:

Rs(t; z; z(t)|α) =
n

∏
i = 1

[
1 −

[
m

∏
j = 1

1 − Rθij(t; z; z(t)|α)
]]

(7)

where, Rs(t; z; z(t)|α) is system reliability at time t, z is a row vector consisting of the
observable time-independent risk factors, z(t) is a row vector consisting of the observable
time-dependent risk factors and αj are a time-independent frailty function for item j and
represents the cumulative effect of one or more unobservable risk factors [21,22,41], Rij(t)
is component reliability at time t. having the reliability model of the system the reliability
importance measure of components that are working in a series-parallel system can be
estimated by:

Ii
R(t; z; z(t)|α) =

∂Rs(t; z; z(t)|α)
∂Ri(t; z; z(t)|α) (8)

where Ii
R and Ri are RF-RIM and reliability of component considering by observable and

unobservable risk factors.
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Figure 3. A framework for the reliability model [31].

3. Case Study

Mining is an important industry that provides raw materials, which are an essential
input for other industries. Gol-Gohar iron ore mine is located in southern Iran, in the
southwest of Kerman province. Gol-Gohar iron ore mine contains six sections. Each of
them works independently. Mining in surface mines starts by drilling the rock, blasting,
loading, and then transforming the rock to the production facility or a depot. Nowadays,
the mining industry uses huge equipment to increase performance. Extraction equipment
is very expensive; any unplanned stopped may cause tremendous costs.

Moreover, long stoppages may affect the ore processing facilities, which are down-
stream of the production chain. Recently, the resilience concept has instructed the mining
industries to avoid any disturbance in the chain of production. A previous study showed
that Gol-Gohar operational conditions could significantly affect the resilience characteris-
tics of mining equipment. To manage resilience effectively, we need to measure different
quality, net considering, and operational conditions. Hence, in this study, we used the RF-
RIM developed in Section 2 on the transience of the loading fleet, including four Caterpillar
(Caterpillar Inc. Construction machinery and equipment company, Deerfield, IL, USA)
excavators model 390DL in section No. 1.

3.1. Data Collection and Classification

According to the guideline developed in Figure 2, the first step is to collect the data.
The data required for reliability analysis can be divided into two categories: failure data
and risk factors. In this case, failure data (time to failures) and their possible associated
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risk factors were collected from January 2016 to December 2018. These data are collected
from various sources, including daily operation reports, mounted sensors on the machine,
meteorology reports, geological specifications, and interviews with experts, meetings,
archival documents (previous reports, machines catalogs). Collected risk factors include
qualitative (categorical) and quantitative (continuous) risk factors. Continuous risk factors
include: temperature (Z5), precipitation (Z4), and humidity (Z6). The categorical risk
factors include working shift (Z1), rock kind (Z2) and operation team (Z3). Table 1 shows
the formulation of the categorical risk factors. For example, this table shows shift has three
categories: morning, afternoon, and night, and 1, 2, 3 represent them, respectively.

Table 1. The classification and quantification of qualitative risk factors.

Risk Factors (z) Classification Quantification

Shift (Z1)

Morning 1

Afternoon 2

Night 3

Rock kind (Z2)
Waste 1

Ore 2

Operation team (Z3)

A 1

B 2

C 3

D 4

Precipitation (Z4) Continues

Temperature (Z5 ) Continues

Humidity (Z6 ) Continues

3.2. Risk Factor Test

Two tests have been carried out on 10 collected risk factors, correlation test, and PH
assumption in this part. Correlation tests are performing to find if the identified risk factors
are independent of each other. If there are some independent risk factors, they should be
replaced by new risk factors built up based on independent risk factors. Furthermore, time
dependency is checking to find the effect of some risk factor changing which time. Such
tests are named the PH-assumption test.

Here the Pearson test is used for checking the correlation between risk factors. The risk
factors correlation test for excavators showed there is no significant correlation between
an identified risk factor. As an example, Table 2 shows such results for excavator A. As
can be seen, there is no significant correlation between identified risk factors in a 95%
confidence level.
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Table 2. The checking correlation between risk factors for excavator A.

Correlation Z1 Z5 Z4 Z2 Z3

Z1
Pearson value. 1 −0.04 . 0.11 −0.01

p-value 0.45 . 0.04 0.83

Z5
Pearson value −0.04 1 . −0.11 0.02

p-value 0.45 . 0.04 0.68

Z4
Pearson value . . . . .

p-value . . . . .

Z2
Pearson value 0.11 −0.11 . 1 −0.08

p-value 0.04 0.04 . 0.15

Z3
Pearson value −0.01 0.023 . −0.08 1

p-value 0.83 0.68 . 0.15

According to Figure 3, the application of PHM in its original form is limited to model
the effect of time-independent risk factors. Hence, a stratified Cox regression model and
extended Cox regression model have been developed to enhance its application for the time-
dependent risk factor. To select the best model among these models, the time dependency
of risk factors should be checked as a proportional hazard assumption (PH assumption).
PH assumption means hazards ratio (HR) remains constant over time, or equivalently, the
hazard for one individual is proportional to the hazard for any other individual, where the
proportionality constant is independent of time. The formula of PH assumption for the HR
that compares two different specifications z∗ and z for the risk factors used as [42]:

HR =
λ(t, z∗)
λ(t, z)

= constant (9)

Different approaches such as theoretical and graphical, have been used to determine
whether PH assumption fits a given data set. The graphical procedure, a goodness-of-fit
testing procedure, and a procedure involving time-dependent variables have been used
most widely in PH assumption evaluations. For more information, see [32].

Here, the theoretical model is used to check the PH assumption of risk factors checks
using the Schoenfeld residual test [43,44]. The result of such analysis for Excavator A is
shown in Table 3. As the table shows, the p-value for all risk factors is bigger than 5%;
hence, the null hypotheses (the time-dependency of risk factors) can be rejected, including
the time-independent risk factor.

3.3. RF-RIM Molding

In step 2, based on the result of the risk factor test, some possible models for reliability
analysis of the excavator should be nominated, and the appropriate statistical test for the
best-fit test need to be considered. As found in step 1, all risk factors are time-independent;
hence based on the literature, the following model is nominated for the reliability molding:

• Weibull proportional hazard model (Weibull-PHM);
• Exponential proportional hazard model (Exponential-PHM);
• Weibull Mix-proportional hazard model (Weibull-MPHM);
• Exponential Mix-proportional hazard model (Exponential-MPHM).
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Table 3. The results of theoretical proportional hazard (PH) assumption for excavator A.

Risk Factors Regression Coefficient Chi-Square Degree of Free p-Value

shift . . . .

Z12 −0.02 0.11 1.00 0.75

Z13 0.01 0.02 1.00 0.89

Rock kind . . 1.00 .

Z2 −0.01 0.08 1.00 0.78

Operation team . . . .

Z32 −0.10 3.56 1.00 0.06

Z33 −0.02 0.17 1.00 0.68

Z34 0.00 0.00 1.00 0.98

Z5 −0.01 0.04 1.00 0.84

Z6 0.02 0.16 1.00 0.69

Z4 . . . .

Here, it should be highlighted that both Weibull-MPHM and Exponential-MPHM can
model the effect of unobservable risk factors (unobservable heterogeneity). The Akaike
information criterion (AIC) or Bayesian information criterion (BIC) are selected for the
goodness of fit test (GOF) best model is selected [45,46]. AIC and BIC criteria are based on
the information and are utilized by classically comparing the maximum likelihood value to
select the appropriate model. These two criteria are formulated as follows [45]:

AIC = −2 × ln(likelihood) + 2 × k (10)

BIC = −2 × ln(likelihood) + ln(N) × k (11)

where k indicates the number of estimated parameters, and N represents the number of
observations (failures). The model with the smallest AIC and BIC values will be selected as
the most appropriate choice in an appropriate model fitting.

Furthermore, the likelihood ratio (LR) test can be used for checking the unobservable
heterogeneity among the data [21,22,47], where null hypotheses will be no unobservable
heterogeneity.

Table 4 present the result of AIC, BIC, and LR. The two-last column shows the LR
calculation. For example, under the assumption of Weibull-MPHM for Excavator D as
highlighted in second row, the LR tests are performed as below:

LR = 2
((

ln L
(
λ̂, β̂, η̂, θ̂

)
− lnL

(
λ̂0, β̂0, η̂0, 0

)))
= 11.29 (12)

where in this equation, λ̂ and β̂ are the estimated parameters for Weibull distribution, η̂ is
the regression coefficient for observable risk factors, and θ̂ is the degree of heterogeneity
due to the effect of unobservable risk factors. The p-value for LR = 11.29 will be equal to
zero, which leads to the rejection of the null hypothesis. Hence it can be concluded that
there is no unobservable risk factors’ effect on the reliability of the excavator D.
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Table 4. The results of model selection for subsystems based on Akaike information criterion (AIC), Bayesian information
criterion (BIC), and likelihood ratio (LR) test.

Subsystem Model Observations
Goodness of Fit Test LR Test

AIC BIC Statistic p-Value
Weibull-PHM 323 1086.709 1124.485

Weibull-MPHM 323 1086.105 1127.659 2.6 0.053

Exponential-PHM 323 1090.162 1124.161A

Exponential-MPHM 323 1084.120 1121.896 8.04 0.002

Weibull-PHM 325 1025.301 1066.924
Weibull-MPHM 325 1027.301 1072.707 0 1

Exponential-PHM 325 1023.951 1061.789B

Exponential-MPHM 325 1025.951 1067.573 0 1

Weibull-PHM 387 1236.524 1279.808
Weibull-MPHM 387 1214.935 1262.153 23.59 0

Exponential-PHM 387 1239.260 1278.609C

Exponential-MPHM 387 1222.446 1265.730 18.81 0

Weibull-PHM 319 1051.128 1092.545
Weibull-MPHM 319 1041.839 1083.022 11.29 0

Exponential-PHM 319 1052.404 1090.056D

Exponential-MPHM 319 1043.364 1084.781 11.04 0

Table 4 shows the best model selection for each subsystem, which the STATA/MP
16 software (StataCorp LLC, Attn: Executive Director of Finance and Operations, 4905
Lakeway Drive, College Station, TX, USA.) uses to model parameters and test results.

Table 5 shows the regression coefficients for the excavator D, associate Z test, and
p-value. According to Table 5, only temperature and rock kind risk factors (as highlighted)
significantly affect excavator D reliability. Hence, its reliability can be expressed as:

RD(t, z) =

[
1 − 0.404ln

((
e−((

t
11.835 )

1.168
)

)(e0.61Z2 − 0.03Z5 )
)] −1

0.404

(13)

Table 5. The results (PHM) for regression coefficients excavator D.

Risk Factors Coefficient Standard Error Z p-Value (95% Conf. Interval)
shift
Z12 0.00 0.18 −0.01 0.99 −0.36 0.36
Z13 0.22 0.19 1.12 0.26 −0.16 0.59
Z2 0.61 0.17 3.61 0.00 0.28 0.94

Operation team
Z32 −0.26 0.19 −1.36 0.18 −0.63 0.12
Z33 −0.12 0.21 −0.60 0.55 −0.53 0.28
Z34 −0.16 0.33 −0.47 0.64 −0.80 0.49
Z5 −0.03 0.01 −2.57 0.01 −0.05 −0.01
Z6 −0.01 0.01 −0.97 0.33 −0.02 0.01
Z4 0.01 0.06 0.22 0.83 −0.10 0.12

Constant value −2.89 0.34 −8.52 0.00 −3.55 −2.22

Also, in Table 5, if the risk factor value exp(α) is greater or (smaller) than 1, the risk
factor will increase (decrease) hazard rate.

Table 6 shows the best-fit model and its related parameters for all identified subsystems
of the analysis system. As this table shows, for example, the best model for the reliability
of excavator A is Exponential-MPHM, where θ has represented the degree of heterogeneity
(variance of gamma distribution in Equation (5)). The reliability of the identified subsystem
is shown in Figure 4.
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Table 6. The results baseline function and regression coefficients estimation.

Subsystem
R0(t)

θ exp(
n
∑
i=1

δizi) Reliability
Best fit Parameters

A Ex.–MPHM β = 1,
η = 25.98 0.173 -

[
1− 0.173ln

(
e−((

t
25.979 ))

)] −1
0.173

B Ex.–PHM β = 1,
η = 19.88 - e−1.035z12

+0.128z2
(

e−((
t

9.883 ))
)(e−1.035z12

+0.128z2 )

C We.-MPHM β = 1.27,
η = 11.93 0.544 e0.355z12

+0.039z2−0.042z5

1− 0.544ln

(e−((
t

11.831 )
1.267

)

)(e
0.355z12

+0.039z2−0.042z5 )


−1
0.544

D We.-MPHM β = 1.17,
η = 11.83 0.404 e0.61z2−0.03z5

[
1− 0.404ln

((
e−((

t
11.835 )

1.168
)

)(e0.61z2−0.03z5 )
)] −1

0.404

Figure 4. Subsystem reliability for risk factors: temperature = 20, afternoon shift, ore and operation
team B.

Also, for comparing the classical model with the regression models, the best fit model
selection based on AIC and BIC and parameter estimations for each component’s classical
model are shown in Tables 7 and 8.

Table 7. The results of AIC and BIC goodness of fit tests for classical model selection.

Subsystem Model Observations AIC BIC

A
Weibull 323 1085.048 1092.603

Exponential 323 1092.531 1096.309

B
Weibull 325 1028.085 1035.652

Exponential 325 1026.086 1029.870

C
Weibull 387 1246.804 1254.674

Exponential 387 1254.551 1258.486

D
Weibull 319 1061.103 1068.634

Exponential 319 1067.325 1071.091
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Table 8. The parameter estimation of the classical model.

Subsystem Classical Model
Parameters

Reliability
β η

A Weibull 0.882 26.725 e−((
t

26.725 )
0.882

)

B Exponential 1.000 24.603 e−((
t

24.603 ))

C Weibull 0.891 23.800 e−((
t

23.80 )
0.891

)

D Weibull 0.890 22.220 e−((
t

22.220 )
0.890

)

3.4. System RF-RIM

In this stage, firstly, the relationship between the component (or subsystems) needs to
be understood, and then a suitable model should be selected to model this relationship.
Here all components are working in the parallels; hence, using Equation (7), the reliability
of the system can be modelled as:

Rs(t; z; z(t)|α) =
1

∏
i = 1

[
1 −

[
4

∏
j = 1

1 − Rij(t; z; z(t)|α)
]]

(14)

Using the developed equations in Table 6 for the reliability of types of equipment, the
reliability of the system can be written as:

Rs(t; z; z(t)|α) = (1 − RA)(1 − RB)(1 − RC)(1 − RD) (15)

In Figure 5, the reliability of the system is plotted under the assumption of three risk
factor combinations as follow:

• Classical model: only time data be analyzed.
• Winter: temperature = 10, night shift, west, and operation team C
• Summer: temperature = 20, afternoon shift, ore and operation team B

Figure 5. System reliability under three different risk factor settings.

Using Equation (8), the importance measure of the subsystem can be calculated. The
result of such analysis is shown in Figures 6–8. According to these figures, the importance
of the subsystems is dependent on the operational conditions. For example, in Figure 6, the
classical model shows that all components have about the same criticality. In the risk factor
setting for winter (Figure 7), excavator B has maximum importance measure (first ranking),
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so excavator B is a critical subsystem. In the risk factor setting for summer (Figure 8),
excavator D has the maximum importance measure (first ranking).

Excavator A has the highest reliability (see Figure 4), and its reliability importance is
ranked as the lowest importance. The result of the analysis provided that as the importance
of the component is changing over time, the resource allocation needs to have a dynamic
nature as well, and they need to be updated. For example, the maintenance program needs
to be updated as operational conditions are changing.

Table 9 shows how the reliability importance of the subsystem is changing by opera-
tional condition and operating time. For example, in the wintertime, excavator D is the
priority. However, after 20 h, excavator B will be the priority.

Figure 6. The results reliability importance measure in the classical model reliability.

Figure 7. The results reliability importance measure in the winter reliability.
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Figure 8. The results reliability importance measure in the summer reliability.

Table 9. The priority ranking of components in 200 h operation time.

Priority Condition
Time

0–20 20–40 40–60 60–80 80–100 100–200

First

Classical
Model D D D D D D

Winter D B B B B B

Summer D D D D D B

Second

Classical
Model B C C C C C

Winter B A A A A A

Summer B B B B B A

4. Conclusions

Society’s performance and well-being greatly rely on its infrastructures such as com-
munication, transportation, power distribution. These systems are complex, large, and
expensive, often working in dynamic environmental conditions. Resilience is an emerg-
ing concept that has been used to quantify the performance of infrastructures. Different
concepts have been used to model the resilience of a system, such as reliability and recov-
erability. To have an effective resilience estimation, the effect of the dynamic operational
condition needs to be modeled on the resilience concepts.

Moreover, it is important to know the importance of each component in such complex
systems that build up the system. Such a ranking will be based on further improvement
and resource allocation. However, in most of the available importance measures, the effect
of risk factors has not been addressed properly. For this aim, this paper has introduced a
risk factor-based importance measure. The developed model enables the analyst to isolate
the observable and unobservable risk factors on the reliability importance of components.
Moreover, it developed a step-by-step guideline to facilitate the application of the models.

In this case, the importance of loading fleet number 1 at Gol-Gohar iron ore mine,
including four excavators working in parallel, was analyzed in three risk factor sets. The
results showed that the system has various important measures in different operating
conditions. Moreover, it showed that unobservable risk factors significantly affect the
reliability importance of some components. Hence, ignoring these effects may lead to
unrealistic decisions.
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