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Abstract: Accurately predicting surface vibration signals of diesel engines is the key to evaluating
the operation quality of diesel engines. Based on an improved empirical mode decomposition and
extreme learning machine algorithm, the characteristics of diesel engine surface vibration signal were
detected, predicted, and analyzed. First, the surface vibration signal was decomposed into a series of
signal components by an improved empirical mode decomposition algorithm. Then, the extreme
learning machine algorithm was applied to each signal component to obtain the predicted value
of the corresponding signal component and determine the characteristics of the ground vibration
signal. Compared with the empirical mode decomposition–extremum learning machine algorithm
and the extremum learning machine algorithm, the results show that the improved empirical mode
decomposition–extremum learning machine algorithm is feasible and effective.

Keywords: surface vibration signal; improved empirical mode decomposition; extreme learning machine

1. Introduction

With the progress of science and technology, as the power source of large rotating
machinery, diesel engines need continuous innovation. Because it is a large workload to
evaluate the performance of a diesel engine directly through the structural parameters
of the engine, researchers have always analyzed the performance of diesel engines by
studying vibration signals [1,2]. Owing to the non-stationary and nonlinear characteristics
of the vibration signal of a diesel engine in rotating machinery [3,4], it is difficult to predict it
effectively. Therefore, methods to predict the vibration signal of the diesel engine effectively
have received extensive attention.

Traditional vibration analysis methods mainly include time–domain analysis, such
as extracting the mean amplitude, kurtosis, and other indicators of the signal, but it
is difficult to reveal the frequency composition of the signal, the size of each frequency
component, and other internal information [5]. Forms of frequency domain analysis include
Fourier transform (FT) [6,7]; time–frequency analysis, such as short-time Fourier transform
(STFT) [8], wavelet transform (WT) [9,10], etc. Compared with other methods, empirical
mode decomposition (EMD) [11,12] does not need signal preprocessing in advance; it can
decompose signals adaptively layer by layer. The results of this decomposition are finite
intrinsic mode functions (IMFs), and it is unnecessary to obtain the prior knowledge of
signals during this decomposition process. However, the EMD method is an empirical
method, which lacks strong and strict theoretical support and still has many mathematical
problems to be solved [13]. The EMD method itself is still not perfect; there are still
some problems, such as mode mixing [14,15], endpoint effect [16,17], determination of
termination criteria [18,19], and EMD can only be used for the analysis of one-dimensional
real signals. Tang et al. [20] proposed a method to eliminate mode aliasing in EMD based
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on improved blind source separation technology. V. G. Kurbatskii et al. [21] proposed a
two-stage adaptive approach for time series forecasting. The efficiency of the developed
approach was displayed in a real-time series in the electric power problem of forecasting
the sharply variable implementations of active power flows. Hu et al. [22] proposed a
back-projection method to deal with mode aliasing in EMD based on the assumption
that every inherent mode function should be locally orthogonal. Hu N Q et al. [23] used
EMD and a deep convolutional neural network for fault diagnosis in a planetary gearbox.
V. G. Kurbatskii et al. [24] proposed a modification of the adaptive approach to time
series forecasting. A hybrid genetic algorithm training for an artificial neural network
and a regression model based on a support-vector machine were established to verify the
effectiveness of the method. Xu K et al. [25] proposed a rolling bearing fault diagnosis
method based on EMD and a support-vector machine. Tim Leung et al. [26] proposed the
method of complementary ensemble empirical mode decomposition (CEEMD) and the
Hilbert–Huang transform (HHT) for analyzing nonstationary financial time series. Using a
series of examples of empirical financial data, they verified how HHT features enhanced
machine learning models in terms of predictive performance. Manohar Mishra et al. [27]
studied the detection of power system voltage sag causes (VSCs), and the interference-
balanced voltage signals extracted from relay points were extracted by the signal processing
algorithm. Then, VSCs were identified using the input to an extreme learning machine
(ELM). To verify the accuracy of the proposed method, ELM performance was compared
with manual neural network (ANN), K-nearest Neighbor (KNN), and support-vector
machine (SVM) classifiers to verify its validity.

In this paper, a combined algorithm based on improved EMD and ELM [28,29] was
proposed to predict surface vibration signals for the first time, taking advantage of EMD’s
good processing of densely distributed signals and ELM’s ability to accurately describe
transient parameter characteristics of non-stationary signals. The original signal is pro-
cessed by the EMD algorithm to reduce the complexity of the time series. The improved
EMD algorithm performs midpoint fitting for the interval to better solve the error caused
by interpolation. Therefore, the improved EMD algorithm overcomes the phenomenon
of EMD mode aliasing and is robust to noise. Finally, compared with the EMD-ELM
combined algorithm, the effectiveness of the IEMD-ELM combined algorithm is verified.
All experiments were performed in a diesel engine laboratory.

2. Definition of Surface Vibration Signal

In this section, the compositions of surface vibration signals are defined and analyzed.
The surface vibration signal includes two main parts and can be defined as follows:

V(t) = ∑n
i=1 Xi(t) + N(t) (1)

where ∑n
i=1 Xi(t) is the main surface vibration signal component, N(t) represents the noise

interference, and n is the number of the main component.
The main component of the surface vibration signal can be further defined as follows:

∑n
i=1 Xi(t) = X1 cos(ω1t + φ1) + X2 cos(ω2t + φ2) + · · ·+ Xn cos(ωnt + φn) (2)

where φi represents the initial phase angle of the ith major component.

3. The Proposed Prediction Algorithms of Surface Vibration Signal Based on EMD-ELM

In this section, a decomposition prediction algorithm of surface vibration signal based
on EMD and ELM is proposed. First, the principle of the EMD algorithm is analyzed in
detail, then the undershoot interval of EMD is observed and determined. An improved
EMD algorithm is used to decompose the complex surface vibration signals into K-order
modes, that is, IMFs. Finally, the predicted values of each mode are obtained by the
ELM algorithm.
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3.1. Empirical Mode Decomposition

In general, the EMD algorithm is an adaptive, quasi-orthogonal method. The EMD
algorithm takes all local extreme points of the original signal V(t) as interpolation points;
using a cubic spline method to construct the enveloping line, the upper and lower envelop-
ing lines are obtained, and then the average enveloping line m(t) is obtained.

m(t) =
fmax(t) + fmin(t)

2
(3)

where fmax(t) represents the upper enveloping line and fmin(t) represents the lower en-
veloping line.

Considering h1(t) as the result of = V(t) minus m(t) means that:

h1(t) = V(t)−m(t) (4)

If h1(t) satisfies the IMF condition, then the decomposition stops. When h1(t) does
not satisfy the IMF condition, consider h1(t) as the new original signal as follows, and
repeat the above steps until h1(t) satisfies the IMF condition.

A termination criterion needs to be set. In general, the termination criterion is set to
the standard deviation SD values of h1k(t) and h1(k−1)(t), i.e.,

SD =
T

∑
t=0

(
h1k(t)− h1(k−1)(t)

)2

h2
1k(t)

(5)

The orthogonal index (IO) is used to determine the degree of decomposition, which is
defined as:

IO = ∑
t

K
∑

i=1

K
∑

j=1
hi(t)hj(t)

V2(t)
, i 6= j (6)

IO denotes the degree of orthogonality between all modes.
The flow chart for the EMD algorithm is shown in Figure 1.

3.2. Improved Empirical Mode Decomposition

This paper presents an improved envelope fitting method to solve the problems of the
EMD algorithm. First, find out the local extreme point of the signal, and then find out the
midpoint of every two adjacent extreme points:

(timaxm, yimaxm) =
(

timax+ti+1max
2 , yimax+yi+1max

2

)
, i = 1, 2, , , nmax − 1

(timinm, yiminm) =
(

timin+ti+1min
2 , yimin+yi+1min

2

)
, i = 1, 2, , , nmin − 1

(7)

where nmax and nmin are the number of local maximum and local minimum points of
signals, respectively, the midpoint of the extreme point and the original extreme point are
taken together as the interpolation nodes, and the second derivative u′′ (t) at these nodes is
first obtained. If the second derivative is not known, it is directly regarded as the natural
boundary condition; that is, the value of the second derivative at the two endpoints is zero,
and then the initial envelope u0(t) after fitting is obtained using the cubic spline method.

Determine the area where the undershoot and the data value in the signal are greater
than the fitting value of the corresponding point of the envelope. There must be u0(t) ≥ V(t)
covering over the entire interval V(t). Therefore, if there is a region with undershoot and
the data value in the signal is greater than the function value of the corresponding point of
the envelope, the set of that region can be expressed as:{

(tai ,tbi
)
∣∣V1(tai ) = V1(tbi

) = 0, x1(t) > 0, t ∈ (tai , tbi
), i ∈ N

}
(8)
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where V1(t) = V(t)− u0(t) and N is the number of intervals in which undershoot exists.
Consider the non-negative local maximum of x1(t) and divide it into two groups:

O = {oi(too , x1(to)), x1(to) = 0, i = 1, 2, . . .}
N =

{
Nj(tnj , x1(tnj)), x1(tnj), x1(tnj) > 0, j = 1, 2, . . .

} (9)

Under ideal conditions, O is still the maximum of V(t) and u0(t) intersects at O.
A new envelope, u1(t) of V(t), is obtained by fitting the horizontal axis of the coor-

dinate axis with points in O and N by cubic spline interpolation. The improved EMD
algorithm step is as follows.

Considering u1(t) as the result of V(t) minus u0(t) means that:

u1(t) = V(t)− u0(t) (10)

If u1(t) satisfies the IMF condition, then the decomposition stops. When u1(t) does
not satisfy the IMF condition, consider u1(t) as the new original signal as follows, and
repeat the above steps until u1(t) satisfies the IMF condition.

The termination criterion is still set by the standard deviation (SD) values, as in
Equation (5).

The flow chart for the improved EMD algorithm is shown in Figure 2.
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3.3. Extreme Learning Machine

An extreme learning machine (ELM) is a single hidden layer feedforward neural
network learning algorithm. Compared with the traditional neural network, the parameters
of its hidden layer neurons are randomly generated. During the training, no recursive
adjustment is made and a unique optimal solution is obtained.

The network structure is shown in Figure 3.
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This method has the advantages of fast learning speed, high accuracy, simple parame-
ter adjustment, and good generalization ability, and it has been widely used in power load
forecasting, power grid reliability assessment, and other fields [30–32].

For any N different sample (xi, yi), where xi = [xi1, xi2, · · · , xin]
T ∈ Rn,

yi = [yi1, yi2, · · · , yin]
T ∈ Rk, the output expression of a feedforward neural network

with l hidden layer nodes and excitation region G(x) is as follows:

yi = f (xi) =
l

∑
j=1

βiG(wj•xi + bj), wj ∈ Rn, β j ∈ Rk (11)

where i = 1, 2, · · · , N, j = 1, 2, · · · , l,wj = [wi1, wi2, · · · , win]
T is the input weight con-

necting the input layer to the jth hidden layer node; β j = [β j1, β j2, · · · , β jk]
T is the output

weight connecting the jth hidden layer node to the output node to the deviation value
of the jth hidden layer node; wj · xi is the inner product of wj and xi; and the excitation
function G(x) can be selected as “Sigmoid”, “Tansig”, “Sine”, or “RBF”, etc.

By converting Equation (9) into matrix form, it can be obtained that:

Y = Hβ (12)

where H is the output matrix of the hidden layer of the network.
In the ELM algorithm, the input weight and the hidden layer can be given randomly

and there is no need for adjustment during the training process. The hidden layer matrix
H is a definite matrix before the training. The training of the feedforward neural network
is actually transformed into a problem of solving the least square solution β̂ of the output
weight matrix. The output weight matrix β can be expressed as:

β̂ = H+Y (13)

where H+ is the generalized inverse matrix of the matrix H.

4. The Simulation Results

In this section, some cases are implemented to elaborate the proposed prediction
algorithm based on IEMD-ELM, where both the noise-free and noisy conditions are consid-
ered. The sampling frequency is 1 KHz. Additionally, the simulation comparison between
IEMD-ELM and EMD-ELM algorithms is conducted in this section.

4.1. Surface Vibration Signal without Noise

Supposing the surface vibration signal as follows:

x(t) = 20 sin(2π · 2t) + 17 cos(2π · 40t2) (14)

the amplitude of signal is illustrated in Figure 4.
Figure 4 shows the amplitude distribution of the simulation signal without noise.
IEMD and EMD algorithms are used to decompose the input signal. Figures 5 and 6

show the corresponding decomposition patterns.
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As shown in Figures 5 and 6, the signal is decomposed by two different modes and
six modal components are obtained.

Presented in Tables 1 and 2 are the correlation coefficients between IMFs and input
signals decomposed by the EMD algorithm and the IEMD algorithm. As defined by the
correlation coefficients, the IEMD algorithm has a better decomposition effect than the
EMD algorithm.

Table 1. Coefficients under EMD decomposition.

Mode IMF1 IMF2 IMF3 IMF4 IMF5

Coefficient 0.70 0.68 0.14 0.13 0.09
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Table 2. Coefficients under IEMD decomposition.

Mode IMF1 IMF2 IMF3 IMF4 IMF5

Coefficient 0.73 0.69 0.16 0.13 0.11

Generally, the empirical threshold is set to 0.4. As seen in Table 1, the correlation
coefficients of IMF1 and IMF2 obtained after EMD are greater than the empirical threshold.
Thus, the next step is predicting IMF1 and IMF2. The prediction of IMF1 and IMF2 is
shown in Figure 7.
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Figure 7 shows the prediction results of IMF1 and IMF2, and the reconstruction and
reduction method based on the prediction results used to obtain the figure is shown in
Figure 8.
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As seen in Table 2, the correlation coefficients of IMF1 and IMF2 obtained after IEMD
are greater than the empirical threshold. The prediction of IMF1 and IMF2 is shown in
Figure 9.
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Figure 9 shows the prediction results of IMF1 and IMF2, and the reconstruction and
reduction method based on the prediction results used to obtain the figure is shown in
Figure 10.
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Figure 10 shows the reconstruction result after the IEMD and ELM algorithms. The
graph trend of the true value and prediction value is consistent, but the offset between the
predicted result and the true value in the low frequency band is smaller than for EMD-ELM.

4.2. Surface Vibration Signal with Noise

To verify the noise robustness of the IEMD algorithm, the simulation signal with noise
is given as (13), and the amplitude of signal is illustrated in Figure 11.

x(t) = 20 sin(2π · 2t) + 17 cos(2π · 40t2) + randn (15)

where “randn” represents the noise interference.
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The IEMD and EMD algorithms are used to decompose the input signal. Figures 12 and 13
show the corresponding decomposition patterns.
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Figure 13. IEMD decomposition.

Presented in Tables 3 and 4 are the correlation coefficients between IMFs and input
signals decomposed by the EMD algorithm and the IEMD algorithm. As defined by the
correlation coefficient, the IEMD algorithm has a better decomposition effect than the
EMD algorithm.

Table 3. Coefficients under EMD decomposition.

Mode IMF1 IMF2 IMF3 IMF4 IMF5

Coefficient 0.70 0.69 0.14 0.13 0.09
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Table 4. Coefficients under IEMD decomposition.

Mode IMF1 IMF2 IMF3 IMF4 IMF5

Coefficient 0.73 0.69 0.16 0.14 0.11

As seen in Table 3, the correlation coefficients of IMF1 and IMF2 obtained after EMD
are greater than the empirical threshold. The prediction of IMF1 and IMF2 is shown in
Figure 14.
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Figure 14 shows the prediction results of IMF1 and IMF2, and the reconstruction and
reduction method based on the prediction results used to obtain the figure is shown in
Figure 15.
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Figure 15. Reconstruction result after EMD decomposition.

Figure 15 shows the reconstruction result after the EMD and ELM algorithms. The
graph trend of the true value and prediction value is consistent, but there is a certain
deviation between the prediction result and the true value in the low frequency band.

As seen in Table 4, the correlation coefficient of IMF1 and IMF2 obtained after IEMD
is greater than the empirical threshold. The prediction of IMF1 and IMF2 is shown in
Figure 16.
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Figure 16 shows the prediction results of IMF1 and IMF2, and the reconstruction and
reduction method based on the prediction results used to obtain the figure is shown in
Figure 17.
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Figure 17. Reconstruction result after IEMD decomposition.

Figure 17 shows the reconstruction result after the IEMD and ELM algorithms. The
graph trend of the true value and prediction value is consistent, but the offset between the
predicted result and the true value in the low frequency band is smaller than EMD-ELM.

5. Experimental Results

In this section, the experimental results with the IEMD-ELM and EMD-ELM algo-
rithms are presented. All the experiments were conducted on the test stand. The experimen-
tal data were sampled from the digital collection with a sampling frequency of 51.2 kHz
and an analysis frequency of 20 kHz. The data acquisition equipment was the 3660C
data acquisition instrument of B&K Company in Denmark. The main data acquisition
parameters included vibration acceleration signal, noise signal, etc.

To verify the effectiveness of the proposed algorithm, the experiment data were
sampled when a nonlinear load was applied in the system. The methods, including
the IEMD-ELM algorithm and EMD-ELM algorithm, are compared in this section. The
waveform of the input signal is shown in Figure 18.



Energies 2021, 14, 7519 13 of 16
Energies 2021, 14, x FOR PEER REVIEW 14 of 17 

Figure 18. The waveform of input signal. 

The vibration characteristics of 1000 points were analyzed, and the waveform of the 
intercept signal is shown in Figure 19. 

Figure 19. The waveform of intercept signal. 

The decomposition efficiency of EMD and IEMD was compared by the orthogonality 
index, as shown in Table 5. 

Table 5. Coefficients under different decomposition. 

Method Orthogonality Index
EMD 0.2437
IEMD 0.0660

As seen in Table 5, the orthogonality index of the EMD algorithm was 0.2437 and the 
orthogonality index of IEMD was 0.0660. Therefore, the IEMD algorithm is more complete 
than EMD decomposition. The effectiveness of the IEMD algorithm is verified. 

IEMD and EMD algorithms were used to decompose the input signal. Figures 20 and 
21 show the corresponding decomposition patterns. 

Figure 18. The waveform of input signal.

The vibration characteristics of 1000 points were analyzed, and the waveform of the
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Figure 19. The waveform of intercept signal.

The decomposition efficiency of EMD and IEMD was compared by the orthogonality
index, as shown in Table 5.

Table 5. Coefficients under different decomposition.

Method Orthogonality Index

EMD 0.2437

IEMD 0.0660

As seen in Table 5, the orthogonality index of the EMD algorithm was 0.2437 and the
orthogonality index of IEMD was 0.0660. Therefore, the IEMD algorithm is more complete
than EMD decomposition. The effectiveness of the IEMD algorithm is verified.

IEMD and EMD algorithms were used to decompose the input signal. Figures 20 and 21
show the corresponding decomposition patterns.
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Figure 21. The IEMD waveform of intercept signal.

Presented in Table 6 are the correlation coefficients between IMFs and input signals
decomposed by the EMD algorithm and the IEMD algorithm. As defined by the correlation
coefficient, the IEMD algorithm has a better decomposition effect than EMD algorithm.

Table 6. Coefficients under different decomposition.

Method IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7

EMD 0.90 0.10 0.20 0.19 0.04 −0.01 −0.02

IEMD 0.91 0.21 0.26 0.18 0.08 0.04 0.06

As shown in Table 6, the correlation coefficients of IMF1 and IMF2 were greater than
the empirical threshold. However, the proportion of the effective signal component in the
IEMD was larger than that in the EMD, so the effectiveness of the IEMD was verified. The
reconstructed signal obtained using the decomposed effective IMF is shown in Figure 22.
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The predicted signal is shown in Figure 22. The waveform predicted by the IEMD-
ELM algorithm was in good agreement with the waveform trend of the original signal.
The predicted value of the EMD-ELM algorithm was consistent with the waveform of the
original signal, but the amplitude was offset. The comparison diagram can verify that
the IEMD method has more decomposition and a higher reduction degree than the EMD
method, which provides a new idea for hierarchical signal analysis.

6. Conclusions

In this paper, a combined algorithm based on IEMD and ELM is proposed to analyze
and predict a diesel engine surface vibration signal. IEMD-ELM is used to decompose
the surface vibration signal into a series of signal components, obtain the predicted value
of corresponding signal components, and determine the characteristics of the surface
vibration signal. Compared with EMD-ELM, IEMD-ELM predicts more accurately. In
addition, in future work, our research will mainly focus on the following two points: (1) the
adaptive decomposition part of the input surface vibration signal; and (2) fault study of
input surface vibration signal.
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