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Abstract: Variable speed wind turbines are commonly used as wind power generation systems
because of their lower maintenance cost and flexible speed control. The optimum output power for a
wind turbine can be extracted using maximum power point tracking (MPPT) strategies. However,
unpredictable parameters, such as wind speed and air density could affect the accuracy of the
MPPT methods, especially during the wind speed small oscillations. In this paper, in a permanent
magnet synchronous generator (PMSG), the MPPT is implemented by determining the uncertainty
of the unpredictable parameters using the extended Kalman filter (EKF). Also, the generator speed is
controlled by employing a fuzzy logic control (FLC) system. This study aims at minimizing the effects
of unpredictable parameters on the MPPT of the PMSG system. The simulation results represent an
improvement in MPPT accuracy and output power efficiency.

Keywords: wind turbines; permanent magnet synchronous generator; fuzzy logic control; Extended
Kalman Filter

1. Introduction

To keep the earth safe and deal with potential environmental threats, sustainable and
pollution-free technologies have been introduced, known as renewable energy technologies
(RETs). Energy sources can be divided into three main categories: (i) fossil fuels, (ii) nuclear
energy, and (iii) renewable energies [1]. Renewable energy sources (RESs) refer to the types
of energy that, unlike non-renewable energies, can be re-created or renewed by nature
in a short period [2]. The leading types of renewable energies are solar [3,4], wind [5],
geothermal [6,7], marine energy [8], biomass [9], and biofuels [10,11]. RESs can provide
zero or almost zero percent pollution. RETs are reliable, cost-effective, and environmentally
friendly methods to meet the energy requirements of rural areas on a small scale.

The first wind turbine for electricity generation was developed at the end of the
19th century (1887–1888) when Brush built the first automatically operating wind turbine
with 12 kW [12]. Nowadays, the contribution of wind turbines in the production of
electrical energy has been significantly increased. Efficient control strategies are necessary
to improve the wind turbines’ performance and reduce operation and maintenance costs.
The maximum power point tracking (MPPT) method is crucial in extracting the optimum
wind output power. Designing MPPT strategies requires a model that includes mechanical
and electrical components based on the accurate examination of wind turbine conditions.
This model contains some unpredictable parameters which could affect the accuracy of

Energies 2021, 14, 7503. https://doi.org/10.3390/en14227503 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-6488-9919
https://orcid.org/0000-0001-8661-836X
https://orcid.org/0000-0002-5976-2697
https://orcid.org/0000-0003-3813-4947
https://orcid.org/0000-0002-3439-0348
https://doi.org/10.3390/en14227503
https://doi.org/10.3390/en14227503
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14227503
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14227503?type=check_update&version=2


Energies 2021, 14, 7503 2 of 16

MPPT methods. The uncertainty of these parameters brings more speed oscillations and
power fluctuations [13].

In the current literature, many studies have focused on wind turbine control and out-
put power optimization. Various strategies have been developed for pitch control schemes
which have used PID controllers [14], linear quadratic Gaussian (LQG) controller [15], reli-
able control [16], gain scheduling [17], periodic disturbance accommodating control [18],
fuzzy logic control (FLC) [19], and linear parameter-varying (LPV) control methods [20].

Richie Gao and Zhiwei Gao [14] proposed a novel PI-based pitch control technique em-
ploying direct search optimization, delay perturbation estimation, and signal compensation
to overcome the shortcomings caused by hydraulic driven units, such as unknown delays.
Although no prior delay is necessary for the proposed method, the introduced method
increases the complexity of the control system. Najafi-Shad et al. [21] introduced a novel
MPPT method for hybrid PV-wind turbine generation systems by reducing the number of
power system converters. This intelligent MPPT method can decrease the generated power
in over-rating conditions, decreasing the power and voltage fluctuations. Gliga et al. [22]
have proposed a novel fault diagnosis and identification method for eccentricity faults
in a PMSG-based wind turbine using EKF and Fast Fourier Transform (FFT). Although
employing the introduced method spectrum of the stator currents is invariant to changes
in the wind speed, it is sensitive to faults and affects the system output power. Using
the ensemble Kalman filter (EnKF), Afrasiabi et al. [23] introduces a nonlinear static state
estimation for the PMSG wind turbine. The results of this study are compared with the un-
scented Kalman filter (UKF) and EKF. Zhang [24] has introduced a novel control method for
power system converters in a grid-connected PMSG-based wind turbine structure by em-
ploying predictive controllers and state estimators. The introduced method has acceptable
performances at different wind speeds and load situations. However, it needs parameter
tuning efforts. In order to compensate for the effect of the incomplete dynamic equation
for the estimations of induction motor parameters, Zerdali [25] proposes designing an
adaptive fading EKF (AFEKF) observer. To show the superiority of AFEKF, its estimation
performance is compared to that of standard EKF methods, especially in transient states.
However, the introduced observer is sensitive to the variations caused by temperature and
frequency changes and should be updated continuously. Bagheri [26] introduces a new
independent approach of external factors for eccentricity fault detection and discrimination
in induction motors and estimates the exact severities of the faulty components using an
unscented Kalman–Bucy filter (UKBF), which shows efficient performance in different
types of eccentricity faults. Ortatepe and Karaarslan [27] have proposed the employment
of a reduced-order EKF instead of the full-order EKF in a DFIG-based wind turbine to
increase the system stability against variations of rotor and stator resistors. In this paper,
a model predictive control method is used to provide easy implementation of the matrix
converter, and in order to eliminate disadvantages of the model predictive control method,
a reduced-order EKF has been applied as an observer to the reducing of the execution time
of the algorithm.

The articles mentioned above have not taken a holistic approach in considering estimat-
ing the uncertainty of unpredictable parameters and improving the accuracy of the MPPT
method. Instead, they concentrate on the PMSG state estimation and control structure.

This paper intends to introduce a generator speed and MPPT control system for
wind turbines based on parameters’ estimation. In other words, in a PMSG-based wind
turbine, the MPPT reference estimation is developed employing the EKF, and generator
speed control is performed using the FLC. The simulation results verify the ability and
effectiveness of the proposed MPPT method in comparison with conventional ones. In
general, this study yields the following benefits:

• Improving the accuracy of the wind turbine MPPT implementation.
• Increasing the efficiency of the PMSG output power by estimating the generator speed.
• Estimating the unpredictable parameters by employing EKF in PMSG-based wind

turbines to the best knowledge of the authors.
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2. Proposed Method

In order to model the proposed MPPT fault reduction method, variable speed wind
power generation systems, generator speed determination, and MPPT control must be
identified to create a mathematical model. Compared to a fixed-speed wind turbine
(FSWT), a VSWT can operate at a broader range of wind speeds. Also, VSWTs can generate
10 to 15 percent more energy than installed FSWTs and have less stress on mechanical
components, especially blades and shafts, which results in less power fluctuation [28].
Since the wind velocity could change every moment, the MPPT method should track the
small oscillations of generator speed and maximum power points. PMSGs and doubly
fed induction generators (DFIGs) are typical VSWTs used for wind turbine configurations.
Although DFIGs are more broadly used because of their ability to work at a more extensive
speed range, the PMSG has such advantages as:

• The PMSG-based wind turbine is directly driven, which makes it easily controllable.
• This VSWT has a slow rotation speed.
• It has high torque density and very low inertia, which makes it highly efficient.
• This type of VSWTs can be used without the gearbox.

A typical PMSG configuration consists of blades, a generator, a control system, and
power electronic converters. The generated electricity has variable frequency and voltage
that cannot be directly injected into the grid. The generator is connected to a three-phase
rectifier called a stator side converter (SSC), which rectifies the generator current to charge
the DC-link capacitor and has primary duties consisting of MPPT, active and reactive
power control, and DC-link voltage control [18]. The DC-link voltage feeds a three-phase
inverter, called a grid side converter (GSC), connected to the grid through a transformer.
Figure 1 shows the general wind turbine PMSG system with its control scheme.

Energies 2021, 14, x FOR PEER REVIEW 3 of 18 
 

 

• Improving the accuracy of the wind turbine MPPT implementation. 
• Increasing the efficiency of the PMSG output power by estimating the generator 

speed. 
• Estimating the unpredictable parameters by employing EKF in PMSG-based wind 

turbines to the best knowledge of the authors. 

2. Proposed Method 
In order to model the proposed MPPT fault reduction method, variable speed wind 

power generation systems, generator speed determination, and MPPT control must be 
identified to create a mathematical model. Compared to a fixed-speed wind turbine 
(FSWT), a VSWT can operate at a broader range of wind speeds. Also, VSWTs can 
generate 10 to 15 percent more energy than installed FSWTs and have less stress on 
mechanical components, especially blades and shafts, which results in less power 
fluctuation [28]. Since the wind velocity could change every moment, the MPPT method 
should track the small oscillations of generator speed and maximum power points. 
PMSGs and doubly fed induction generators (DFIGs) are typical VSWTs used for wind 
turbine configurations. Although DFIGs are more broadly used because of their ability to 
work at a more extensive speed range, the PMSG has such advantages as: 
• The PMSG-based wind turbine is directly driven, which makes it easily controllable. 
• This VSWT has a slow rotation speed. 
• It has high torque density and very low inertia, which makes it highly efficient. 
• This type of VSWTs can be used without the gearbox. 

A typical PMSG configuration consists of blades, a generator, a control system, and 
power electronic converters. The generated electricity has variable frequency and voltage 
that cannot be directly injected into the grid. The generator is connected to a three-phase 
rectifier called a stator side converter (SSC), which rectifies the generator current to charge 
the DC-link capacitor and has primary duties consisting of MPPT, active and reactive 
power control, and DC-link voltage control [18]. The DC-link voltage feeds a three-phase 
inverter, called a grid side converter (GSC), connected to the grid through a transformer. 
Figure 1 shows the general wind turbine PMSG system with its control scheme. 

Control System

Filter

R
ot

or
 S

pe
ed

Wind Speed

AC

DC

DC

AC Grid

InverterRectifier
Transformer

Multipole 
Generator

Pitch

PMSG
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Figure 1. The general PMSG wind turbine system with its control schemes.

Numerous qualitative and quantitative studies have been proposed for estimating, diag-
nosing, and detecting faults. Also, geometric, observer-based, slip-state, robust, and adaptive
estimation methods have been presented in the previous studies [29,30]. A typical block
diagram of the wind turbine fault detection and diagnosis system is depicted in Figure 2.
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Figure 2. Fault diagnosis scheme block diagram.

One of the most common forms of wind turbine faults is the MPPT fault, which occurs
during the small oscillations of wind speed. In other words, the uncertainty of variable
parameters, such as wind speed and air density, could make the reference signal of the
generator speed inaccurate, leading to the tracking of a wrong signal by the MPPT. The
primary goal of this study is to minimize the MPPT fault of the PMSG-based wind turbine,
especially during the small oscillations of the wind speed.

2.1. System Description

In order to control the PMSG in the proposed configuration, the voltage-flux equations
in the d-q reference frame method are used, which provides independent control parame-
ters and a simple design compared to other methods [31]. In this model, the d-axis of the
frame is aligned with the rotor’s flux vector and rotates at synchronous speed. Figure 3
shows the proposed dp-coordinate frame of the PMSG.
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2.1.1. SSC Control

The SSC control consists of two independent control loops. The first one controls the
reference current ids at zero to achieve a unity power factor. The second one consists of two
cascade loops, in which an outer loop is used to maximize power by setting the reference
current iqs for the inner current loop [31].

The SSC controls the stator terminal voltage components uds and uqs. It performs this
task through the sinusoidal pulse with modulation (PWM). The PMSG is modeled using
Equations (1) and (2), based on stator current and voltages as follows [32]:

uds = Rsids + Ls
dids
dt

+ ωeLsiqs (1)

uqs = Rsiqs + Ls
diqs

dt
+ ωeLsids + ωeλm (2)

where the uds and uqs are components of the stator voltage, the iqs and iqs are the stator
current components. λm is core magnetic flux and, ωe illustrates the rotor angular speed.
Also, Rs and Ls show the stator resistance and inductance, respectively. The controller
output voltage signals are obtained through the new variables u′sd and u′sq [31]:

mds =
2

Udc

(
u′ds −ωeLsiqs

)
(3)

mqs =
2

Udc

(
u′qs −ωeLsids + ωeλm

)
(4)

where the mds and mqs are the SSC modulation indexes, and Udc shows the DC-link voltage.
Based on Equations (3) and (4), the following transfer function can be extracted for both ids
and iqs:

Gir(s) =
Iqs(s)

U′qs(s)
=

Ids(s)
U′ds(s)

=
1

Ls s + Rs
(5)

A PI controller (PI1) is designed based on the zero-pole cancellation method to control
the stator current components. Therefore, the plant transfer function pole should be at the
zero of the controller. Moreover, to achieve an adequate bandwidth, the time constant of
the closed-loop current control (TS) is selected to be one-tenth of the switching frequency
of the SSC [21]. So, the parameters of PI1 controller are:

Kps =
Ls

TS
(6)

Kis =
Rs

TS
(7)

2.1.2. GSC Control

Similar to the SSC control, the GSC control comprises two control loops. The first one
controls the DC-link voltage, and the second one controls the d-component of the grid
current idg. Also, the reactive power can be controlled at zero in order to achieve the unity
power factor. The grid voltage components are as in Equations (8) and (9) [31].

udg = −(Rgidg + Lg
didg

dt
)−ωgLgiqg+ud (8)

udg = −(Rgiqg + Lg
diqg

dt
)−ωgLgidg (9)

where Rg and Lg are the grid side filter resistance and inductance. ud and ωg are the
d-component of the PCC voltage and network angular frequency, respectively. ud,qg and
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id,qg are the GSC voltage and current components. The controller output voltage signals
can be controlled through the new variables u′dg and u′qg [31]:

mdg =
2

Udc

(
−u′dg −ωgLgiqg + ud

)
(10)

mqg =
2

Udc

(
−u′qg −ωgLgidg

)
(11)

where the mdg and mqg are the SSC modulation indexes. To design the grid side current
controllers (PI2), the same approach as the one used to design PI1 is employed. Therefore,
the PI2 parameters are:

Kpg =
Lg

TS
(12)

Kig =
Rg

TS
(13)

To design the outer loop controller (PI3), the power balance between the dc and ac
sides of the GSC can be illustrated as [31]:

dUdc
dt

=
1

CUdc
Ps −

1
CUdc

Pg (14)

where Ps and Pg are the stator output active power and active power delivered to the grid,
respectively. In order to keep the DC-link voltage constant, the first part of Equation (14)
should be zero. Thus, the stator output active power and the delivered power to the
grid are equal. The following relationships are used to design the parameters of the PI3
controller [33]:

Kpdc =
C

4Ts
(15)

Kidc = 8Ts (16)

2.2. Parameter Estimation

In this section, an estimation and control strategy for unpredictable parameters of
the PMSG is introduced. First, the reference signal of generator speed is determined by
estimating uncertain parameters through the EKF. Then, using the reference speed, the
FLC is employed to design the q-component reference current of the stator.

Equations (1) and (2) show that the stator current components are not only affected by
the usd and usq voltages, but also by the −ωeLsisq, ωeLsisd, and ωeλm voltages. These volt-
ages are rotor speed functions and will increase substantially as the generator is operating
at high speed. Under these conditions, the voltage components will affect the output torque
of the current, and the output torque will be inaccurate. Therefore ωe and usq determine
the EKF model. For wind turbines, wind power can be expressed as Equation (17) [34].

Pwind =
1
2

ρAV3
w (17)

where ρ is the air density, A is the rotor swept area, and Vw is the wind velocity. The
mechanical power of the wind turbine extracted from the wind power is given as Equa-
tion (18) [34].

Pm = PwindCP(θ, λ) =
1
2

ρACp(θ, λ)V3
w (18)

where Cp(θ, λ) is called the performance coefficient and is a function of the pitch angle (θ)
and tip speed ratio (λ). The tip speed ratio can be defined as Equation (19) [34].

λ =
rω

Vw
(19)
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where r is the rotor radius, and ω is the blades’ angular velocity. A typical wind turbine
performance coefficient example is specified as Equations (20) and (21) [34].

Cp = 0.22
(

116
λi
− 0.4θ − 5

)
e
−12.5

λi (20)

λi = 1/
(

1
λ + 0.08θ

− 0.035
θ3 + 1

)
(21)

By replacing Equation (20) in Equation (21), the following extensive model can be derived:

Cp = 0.22
(

116
λ + 0.08θ

− 4.06
θ3 + 1

− 0.4θ − 5
)

e−(
12.5

λ+0.08θ−
0.4375
θ3+1

) (22)

Generally, for small grid-connected wind turbines with a low capacity (less than
10 kW), θ will be constant. Therefore, the performance coefficient only depends on λ. The
Pm −ω curves at different wind speeds are depicted in Figure 4.
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Figure 4 shows that at maximum power points at different wind speeds, the Equa-
tion (23) exists.

dpm

dω
= 0 (23)

This relationship is shown in Figure 4 with the red curve. Also, to calculate the turbine
torque, Equations (24) and (25) can be presented as follows:

T =
pm

ω
(24)

dPm

dω
=

d(ω× T)
dω

= T + ω
dT
dω

(25)

By replacing Equations (18) and (22) in Equation (24), the wind turbine torque compo-
nents can be expressed as Equations (26) and (27).

T = (0.11)ρAV3
w

(
116

R
Vw

ω2 + 0.08θω
− 4.06

ω(θ3 + 1)
− 0.4θ + 5

ω

)
e
−( 12.5

Rω
Vw

+0.08θ
− 0.4375

θ3+1
)

(26)
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dT
dω = (0.11)ρAV3

we
−( 12.5

Rω
Vw

+0.08θ
− 0.4375

θ3+1
)

×
{[
−116×( 2Rω

Vw +0.08θ)

( R
Vw ω2+0.08θω)

2 + 4.06
ω2(θ3+1) +

0.4θ+5
ω2

]
+

[(
116

R
Vw ω2+0.08θω

− 4.06
ω(θ3+1) −

0.4θ+5
θ

)
12.5

( Rω
Vw +0.08θ)

2

(
R

Vw

)]} (27)

Also, the wind turbine torque can be expressed as Equation (28):

T = Kti (28)

where Kt is the torque constant, and i is the stator current. By replacing Equations (27) and (28) in
Equation (25), Equation (29) can be written as follows:

Kti− (0.11)ρAV3
we
−( 12.5

Rω
Vw

+0.08θ
− 0.4375

θ3+1
)
{[

116×( 2Rω
Vw +0.08θ)

ω( Rω
Vw +0.08θ)

2 − 4.06
ω(θ3+1) −

0.4θ+5
ω

]
−
[(

116
Rω
Vw
− 4.06

θ3+1 − 0.4θ − 5
)

12.5

( Rω
Vw +0.08θ)

2

(
R

Vw

)]}
= 0

(29)

By dividing both sides of the Equation (29) on Kti, the final equation can be presented
as Equation (30).

1− (0.11)
Kti

ρAV3
we
−( 12.5

Rω
Vw

+0.08θ
− 0.4375

θ3+1
)
{[

116×( 2Rω
Vw +0.08θ)

ω( Rω
Vw +0.08θ)

2 − 4.06
ω(θ3+1) −

0.4θ+5
ω

]
−
[(

116
Rω
Vw
− 4.06

θ3+1 − 0.4θ − 5
)

12.5

( Rω
Vw +0.08θ)

2

(
R

Vw

)]}
= 0

(30)

where the parameters Vw(wind speed), ρ(air density), and Kt(torque constant) are uncertain
parameters. These parameters affect the MPPT’s implementation of wind turbine and
generator output power. They could decrease the efficiency of the wind turbine, especially
during small oscillations of the wind speed. To estimate these parameters, it is assumed
that VW = VW0 + ∆VW , ρ = ρ0 + ∆ρ, and Kt = Kt0 + ∆Kt, where VW0, ρ0, and Kt0 represent
nominal values, while ∆VW , ∆ρ and, ∆Kt represent discrete terms for VW , ρ, and Kt,
respectively. Therefore, Equation (31) can be mentioned as:

1− (x0 + ∆x) = 0 (31)

where x0 and ∆x are defined as Equations (32) and (33) as follows:

x0 = (0.11)
Kt0i ρ0 AV3

w0
e
−( 12.5

Rω
Vw0

+0.08θ
− 0.4375

θ3+1
)


 116×

(
2Rω
Vw0

+0.08θ

)
ω

(
Rω

Vw0
+0.08θ

)2 − 4.06
ω(θ3+1) −

0.4θ+5
ω


−

( 116
Rω

Vw0

− 4.06
θ3+1 − 0.4θ − 5

)
12.5(

Rω
Vw0

+0.08θ

)2

(
R

Vw0

)


(32)

∆x = (0.11)
Kti

ρAV3
we
−( 12.5

Rω
Vw

+0.08θ
− 0.4375

θ3+1
)
{[

116×( 2Rω
Vw +0.08θ)

ω( Rω
Vw +0.08θ)

2 − 4.06
ω(θ3+1) −

0.4θ+5
ω

]
−
[(

116
Rω
Vw
− 4.06

θ3+1 − 0.4θ − 5
)

12.5

( Rω
Vw +0.08θ)

2

(
R

Vw

)]}
− x0

(33)

where x0 is considered as the nominal values of the parameters in the wind turbine system,
and ∆x represents the nonlinear values of VW , ρ, and Kt. Thus, the vector of parameters
(M) is defined as follows:

M = [VW ρ Kt] (34)

Since the MPPT of a wind turbine depends on the value of M, to track the maximum
power point, the exact values of this vector must be estimated. This task is performed
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through the EKF. For this proposal, the EKF estimation algorithm introduced in [35] is
used. The reference signal for ωe is determined by the estimating of M. Therefore, an error
should be defined as Equation (35).

e = 1− (x0 + ∆x̂) (35)

where ∆x̂ is an estimate of the uncertainty of ∆x. The EKF inputs are the generator output
current (iq) and the angular speed (ωe), while we adjust the weights in the EKF by the de-
fined fault (e). The fuzzy controller employment is aimed at resetting 1− (x0 + ∆x) to zero.

This study proposes a fuzzy controller to track the obtained generator speed. For this
purpose, the generator angular speed and wind turbine actuator sensors are considered
as the FLC inputs. Each input has a series of membership functions, fuzzy numbers, and
linguistic variables. Figure 5 illustrates the input of the generator speed sensor. Also,
Figure 6 shows the input of the wind turbine actuator sensor in the fuzzy controller. The
rule base of the FLC is usually obtained from expert knowledge or heuristics, and it contains
a set of 49 fuzzy rules expressed as a set of IF-THEN rules, as follows [30]:

R(i): If x1 is F1 and x2 is F2, THEN y is R(i);
i = 1, 2, 3, . . . , 49

where x1, x2, and y are input1 variable, input2 variable, and control variable, respectively.
F1 and F2 illustrate the fuzzy sets of input1 and input2, and R(i) shows the fuzzy set of the
control variable. The control rules are designed to assign a fuzzy set of the control input y
for each combination of fuzzy sets of x1 and x2. Table 1 shows the rules for the FLC.
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Table 1. Rule base for the FLC.

y
x1

NB NM NS Z PS PM PB

x2

NB NB NB NM NM NS NS Z
NM NB NM NM NS NS Z PS
NS NM NM NS NS Z PS PS
Z NM NS NS Z PS PS PM

PS NS NS Z PS PS PM PM
PM NS Z PS PS PM PM PB
PB Z PS PS PM PM PB PB

where NB, NM, NS, ZR, PS, PM, PB, B, and S are fuzzy set labels defined in Table 2.

Table 2. Definition of the fuzzy set labels.

Fuzzy Sets Labels Fuzzy Sets

NB Negative Big

NM Negative Medium

NS Negative Small

ZR Zero

PS Positive Small

PM Positive Medium

PB Positive Big

Figure 5 shows the input of the generator speed sensor of the wind turbine in the
fuzzy controller. Table 3 illustrates the membership functions, fuzzy set labels, and fuzzy
numbers of each variable.

Table 3. Membership function, fuzzy set labels, and fuzzy numbers representation for Figure 5.

Membership Function Type Fuzzy Sets Labels Fuzzy Numbers

zmf NB [−3k1, −k1]

trimf NM [−3k1, −2k1, 0]

trimf NS [−3k1, −k1, k1]

trimf Z [−2k1, 0, 2k1]

trimf PS [−k1, k1, 3k1]

trimf PM [0, 2k1, 3k1]

zmf PB [k1, 3k1]

Figure 6 shows the input of the wind turbine actuator sensor in the fuzzy controller,
and Table 4. represents membership functions, fuzzy set labels, and fuzzy numbers
of each variable.

Table 4. Membership function, fuzzy set labels, and fuzzy numbers representation for Figure 6.

Membership Function Type Linguistic Variables Fuzzy Numbers

zmf NB [−3k1, −k1]

trimf NM [−3k1, −2k1, 0]

trimf NS [−3k1, −k1, k1]

trimf Z [−2k1, 0, 2k1]

trimf PS [−k1, k1, 3k1]

trimf PM [0, 2k1, 3k1]

zmf PB [k1, 3k1]
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Figure 7 shows the FLC output membership functions, and Table 5. represents mem-
bership functions, fuzzy set labels, and fuzzy numbers for each variable.
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Table 5. Membership function, fuzzy set labels, and fuzzy numbers representation for Figure 7.

Membership Function Type Linguistic Variables Fuzzy Numbers

zmf NB [−3k3, −k3]

trimf NM [−3k3, −2k3, 0]

trimf NS [−3k3, −k3, k3]

trimf Z [−2k3, 0, 2k3]

trimf PS [−k3, k3, 3k3]

trimf PM [0, 2k3, 3k3]

zmf PB [k3, 3k3]

3. Results

In order to verify the proposed parameter estimation and MPPT implementation, the
simulation was performed in a Matlab/Simulink environment. Table 6 lists the param-
eters of the proposed system. The simulation time frame is supposed to be 20 s, which
involves the wind turbine FLC and generator speed determination with EKF. The simulated
PMSG-based wind turbine and its control systems for SSC and GSC are shown schemati-
cally as Figure 8.

Table 6. Parameters of the proposed system.

Parameters Value

Turbine Nominal Power 900 kW

Nominal Voltage 20 kV

Nominal Frequency 60 Hz

Number of Pole Pairs (P) 4

Stator Resistance (Rs) 25 mΩ

Stator Inductance (Ls) 5 mH

DC-link Capacitance (C) 2.5 mf

GSC Resistance (Rg) 15 m Ω

GSC Inductance (Lg) 0.2 mH

Switching Frequency 1590 Hz

Wind Speed 5 to 16 m/s

SSC Controller (PI1) 5 s+25
s

GSC Current Controller (PI2) 0.2 s+15
s

GSC Voltage Controller (PI3) 0.62 s+0.01
s
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Figure 8. Proposed PMSG structure and control method.

Figure 9 shows the FLC output error. A 10% oscillation in wind speed (from t = 6 s to
t = 14 s) is considered to illustrate the fuzzy logic controller’s ability to track the reference
speed. It can be seen that the FLC operates efficiently, even during the wind speed
oscillation period. The weights in the EKF are adjusted by the defined error (e). The use of
the fuzzy controller is aimed at resetting 1− (x0 + ∆x) to zero.
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Figure 10 shows a comparison between ∆x and, ∆x̂. It can be deduced from Figure 10
that the estimated vector of parameters is very close to its actual value. Also, the similarity
between the EKF estimation and actual values during the oscillation period does not
decrease significantly.

Figure 11 aims to illustrate the ability of the proposed method to track the maximum
output power of the PMSG through different wind speeds. In other words, Figure 11 shows
the impact of the accurate estimation of the uncertain parameters. The maximum available
error is 2.049, the mean is 0.54, and the system error after applying the proposed approach
is 0.708. This means a 1.341-unit accuracy improvement and efficiency of the proposed
method in tracking the acerate maximum power points.
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4. Discussion

To highlight the advantages of the proposed strategy, a conventional MPPT method
(using the perturb and observe method) was simulated, and the results will be compared.
For this purpose, a 20-s wind speed oscillation is designed, as shown in Figure 12.
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Figure 12. Wind speed scenario applied to the PMSG system.

Figure 13 illustrates the generator speed comparison between the proposed strategy
and the conventional model. As mentioned earlier, the accuracy of the proposed strategy
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during the wind speed oscillations is significantly greater than that of the conventional
model. This accuracy improvement leads to utilizing more output power than the conven-
tional strategy, as shown in Figure 14.
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5. Conclusions

This paper has introduced a strategy for improving the MPPT implementation accu-
racy of PMSG-based wind turbines using EKF and FLC. The presented method improves
the estimation of generator speed reference and can extract the optimum generator power,
especially during the small oscillations of the wind speed. None of the papers that have
tried to improve the estimation accuracy [22–24] and other papers presented so far have
addressed this idea on the PMSG wind turbine by estimating unpredictable parameters,
which can significantly improve the accuracy of MPPT implementation. For this purpose,
the unpredictable parameters were first identified, and then the generator speed was deter-
mined by the uncertainty estimation of these parameters. Finally, the FLC controlled the
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generator angular speed to extract the optimum output power of the generator through the
modulation indexes. The obtained results validate the proposed strategy’s effectiveness
compared to the traditional one (P&O), in which a 1.341-unit accuracy improvement has
been shown in estimating the optimum speed and tracking the maximum output power
over different wind speeds. Moreover, the superiority of the introduced method over the
conventional strategy at the same switching between different wind speeds was depicted.
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