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Abstract: Adsorption cooling technologies driven by low-grade thermal or solar power are used as
an energy-efficient alternative to conventional refrigeration and air conditioning systems. Explicit
understanding of the adsorption cycles requires precise determination of the performance parameters,
replication of the experimental data, and the rigorous study of the adsorption heat transformation
method. Hence, the optimum adsorption isotherms model must be identified. Scientists often face
difficulties in selecting the suitable isotherm model as there are many models for a particular form of
adsorption isotherm. The present study introduces a novel approach for choosing the optimal models
for each type of International Union of Pure and Applied Chemistry (IUPAC) classified adsorption
isotherm using robust statistical methods. First, the box-and-whisker plots of error identification are
employed. Tóth for Type-I(a) and Type-I(b), modified BET for Type-II, GAB for Type-III, Universal
for Type-IV(a), and Type-IV(b), Sun Chakrabarty for Type-V, and Yahia et al. for Type-VI were found
lower than the other candidate models in box-and-whisker plot. The optimality of our selected models
was further verified using analysis of variance (ANOVA), pairwise Tukey honest significant difference
(HSD) test, Kruskal–Wallis rank-sum test, and pairwise Wilcoxon rank-sum test. In short, rigorous
statistical analysis was performed to identify the best model for each type of isotherm by minimizing
error. Moreover, specific cooling effect (SCE) of Maxsorb III/ethanol and silica gel/water pairs were
determined. Results showed that Tóth is the optimal isotherm model for the studied pairs, and the
SCE values obtained from the model agree well with experimental data. The optimum isotherm
model is indispensable for the precise designing of the next generation adsorption cooling cycles.

Keywords: ANOVA; IUPAC; optimum isotherm; statistical analysis; Tukey HSD

1. Introduction

Thermally driven cooling technologies are receiving a lot of interest from scientists as
a way to minimize world electricity demand. Adsorption-based cooling systems, which can
be powered by low-grade thermal energy, have been shown to be particularly successful
in this regard. Waste heat [1–3] or heat from cost-effective no-concentrating solar thermal
collectors [4–7] can be used for this reason. An adsorbent bed, a heat exchanger in which
the adsorbent materials are kept, is one of the most important components of an adsorption
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refrigeration system. The beds go through adsorption and desorption activities in the
adsorption cycles to produce thermal compression of the refrigerant vapor [8].

Adsorption/desorption isotherms are obtained at various adsorption temperatures
by varying the pressure of the adsorbate. The highest amount of adsorbate which can be
absorbed by the adsorbent at a given pressure is determined by these isotherms. Moreover,
different adsorbent/adsorbate pairs show different isotherm shapes, and often a hysteresis
is also observed. It is essential to relate experimental data from various adsorption pairs
with different isotherm models in order to reproduce them. The International Union of
Pure and Applied Chemistry (IUPAC) [9] defines adsorption isotherms into eight cate-
gories depending on their nature, as shown in Figure 1. In general, isotherm data are
correlated using a variety of isotherm models, with the best-fitted model being used to
examine adsorption characteristics. Rocky et al. [10] recently developed a zeolite-graphene
composite for next-generation adsorption heat pump systems. They examined water ad-
sorption onto these composites and used three isotherms to correlate the experimental
data: modified Langmuir, Sun and Chakrabarty, and Universal model. Jahan et al. [11]
used an energy-efficient, environmentally friendly, fast, and ultrasonication-assisted room
temperature technique to synthesize MOF-801. For water adsorption onto MOF-801, the
Sun and Chakrabarty, D-A, and Universal models were utilized. According to the literature,
various pairs exhibit different adsorption isotherms, and multiple scholars have attempted
to discover the best model for these types [12].
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The optimum models for IUPAC classified isotherms were identified using a statistical
approach [12]. The parameters of the models were determined by applying the generalized
reduced gradient (GRG) technique. The GRG approach fits the candidate models by visu-
alizing the fitted graph, which minimizes the root mean square error deviation (RMSD).
However, the procedure relies on graphical tuning for optimum solutions. Thus, the results
are subjective and often vary from one experimenter to another. Moreover, during optimiza-
tion, if the estimate of a parameter deviates substantially, it may affect the results for the
remaining parameters. Thus, the sensitivity or deviation in the parameter estimates should
be considered while selecting the best model. The previous study [12] further applied the
information-based criteria to identify the best model. The commonly used information
criteria often select the complex model, i.e., the model which contains a relatively large
number of parameters. Thus, the subjective choice of the parameter estimates in the GRG
approach may affect the candidate models differently. This paper addresses these issues
by considering simulation-based sensitivity analysis of the candidate models. Therefore,
this study improves the previous work by examining the effect of random variation in the
choice of estimates for the models.

A data set of adsorbent–adsorbate pairs is analyzed for each type of IUPAC classified
isotherms in this study. Assuming that the estimated parameters [12] are close proximities
to the actual values, the simulated estimates are obtained from the multivariate normal
distribution for each candidate model. The current work aims to find the best isotherm
models for all types of IUPAC classified isotherms, which was achieved by:

(i) Examining the isotherm models and statistical methodologies.
(ii) The model parameters have been optimized employing the generalized reduced

gradient (GRG) non-linear optimization technique.
(iii) The optimized parameters are varied deliberately within a small range of a large

number (N = 10,000) of times to generate the empirical distributions of the RMSD.
(iv) Box-and-whisker plots have been constructed of all candidate models for all types of

IUPAC isotherms.
(v) The parametric method ANOVA and Tukey HSD tests, as well as non-parametric

method Kruskal–Wallis and Wilcoxon rank-sum tests, have been applied to find the
significantly optimum models by minimizing RMSD.

(vi) The robustness has been confirmed by determining the specific cooling effect (SCE) of
Maxsorb III/ethanol and silica gel/water pairs.

2. Adsorption Isotherm Models

The adsorption isotherm model can explain the equilibrium uptake at a specific
temperature for a certain adsorbent–adsorbate pair [13]. The researchers suggested various
isotherm models to replicate the experimental data of different adsorption pairs. Table 1
presents the models considered in this study.

Table 1. Non-linear adsorption isotherms models, parameters, and references.

Isotherm Nonlinear Form Parameters Reference

Freundlich W
W0

=
(

P
Ps

) 1
n W0, n [14–16]

Langmuir W
W0

= b0e
Q
RT P

1+b0e
Q
RT P

W0, Q, b0 [17–20]

D-A W
W0

= exp
[
−
{

RT
E ln

(
Ps
P

)}n]
W0, E, n [21,22]

Mod. (D-A)
q∗abs =

W0
Vm

exp
[
−
{

RT
E ln

(
Ps
P

)}n]
where,

Vm = Vt exp[α(T − Tt)] and Ps =
(

T
Tc

)k
Pc

W0, E, n, K [23,24]
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Table 1. Cont.

Isotherm Nonlinear Form Parameters Reference

Tóth W
W0

= b0e
Q
RT P

1+b0e
Q
RT P

W0, b0, Q, t [25–27]

Hill W
W0

=
( P

Ps )
nH

KD+( P
Ps )

nH W0, nH, KD [16,28,29]

Mahle

W
Ws

= 1
C

[
tan−1

(
x−A

B

)
− tan−1

(
−A

B

)]
; where,

C = tan−1
(

1−A
B

)
− tan−1

(
−A

B

)
and

A = exp
(

A0 +
A1
T

) Ws, A0, A1, B [30]

BET V
Vm

= Cx
(1−x)(1−x+Cx) ; and x = P

P0
Vm, C [17,31]

Modified BET V
Vm

= CKx
(1−Kx){(1+(C−1)Kx)} Vm, C, K [12,17]

GAB

V
Vm

= CKx
(1−Kx){1+(C−1)Kx} ; where,

C = C0 exp
(

∆H1
RT

)
; K = K0 exp

(
∆H2
RT

)
;

∆H1 = Hm − Hn and ∆H2 = H1 − Hn

Vm, C0, K0, ∆H1 and
∆H2

[32,33]

Mod. Langmuir

W
W0

=
β
(

P
ϕ∗
)

[
1+(βm−α)

(
P

ϕ∗
)m] 1

m
; Where,

P
ϕ∗ =

(
P
Ps

)
exp

{
φm
RT

{
1−

(
P
Ps

)n}
+ z
} W0, z, β, α, n1,

φm, m [34,35]

Sun and Chakraborty

W
W0

=
K( P

Ps )
m

1+(K−1)( P
Ps )

m ; Where,

K = α exp
[

m(Q∗st−h f g)
RT

] W0, Qst *, m, α [11,34,36]

Ben Yahia

W =
n1 NM1

(
P

P1

)n1

1+
(

P
P1

)n1 +
n2 NM2

(
P
P2

)n2

1+
(

P
P2

)n2 +
n3 NM3

(
P
P3

)n3

1+
(

P
P3

)n3 +

n4 NM4

(
P
P4

)n4

1+
(

P
P4

)n4 ; and Pi = Ps exp
(

Eai
RT

) n1, n2, n3, n4, NM1, NM2,
NM3, NM4, P1, P2, P3, P4

[37,38]

Universal
q

q∗ = ∑n
i=1 αi

 (
p

ps
exp( εoi

RT )
) RT

mi

1+
(

p
ps

exp( εoi
RT )

) RT
mi


i

; Where,

α1 + α2 + α3 + α4 = 1

q*, αi, εoi, mi [13,39]

3. Error Evaluation Function

In this study, root mean square error deviation (RMSD) functions are adopted to
optimize model parameters. Researchers often use this RMSD [21,40] error function, which
can be expressed as:

RMSD =

√
∑n

i=1
(
Wexp −Wcal

)2
i

n
(1)

Here Wexp and Wcal represent experimental uptake and model uptake, respectively
and n is the number of observations. RMSD error function can be used to determine model
parameters that consider a large irregular error.

4. Simulation Approach

The parameters of the candidate models are estimated graphically using the GRG
non-linear optimization technique in Excel. Thus, the best choice for the estimates is often
subjective and may deviate with a measurement error in case different researchers analyze
the same data or slightly different data are obtained even though the experiment is repeated
under the same condition.
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Since conducting experiments are time-consuming and highly expensive, it is not
feasible to replicate the experiments many times and capture the variation in the estimates
of model parameters. As a result, we cannot examine directly how the subjective choice
or measurement error results in biased estimates of parameters. In other words, the
effect of experimental variability on the variation of parameter estimates from the GRG
approach cannot be assessed. Thus, the prediction of experimental outcomes by the
different candidate models may be affected by the bias due to measurement error. This
study examines the effect empirically, i.e., by adopting a simulation-based comparison of
RSMD of the candidate models. The simulation approach randomly changes the estimates
of model parameters proposed in [12] and is assumed to be reliable. For a given model,
the deviation from the estimates θ̂ of [12] takes place deliberately by (i) generating random
samples from a multivariate normal distribution with mean vector equals the vector of
estimates θ̂ or (ii) adding to the estimates a randomly selected sample from N (0,1) as the
measurement error terms for the GRG method.

Thus, the above procedure results from a set of RSMD for the candidate models
attributed to the measurement error or bias due to subjective choice of parameter estimates
from the graphs. We perform the simulation approach a large number of times and compare
the prediction performance of the models based on the empirical distribution of RSMD.

Given a set of parameters θ =
(
θ1, θ2, · · · , θp

)
with the proposed estimates θ̂ =(

θ̂1, θ̂2, · · · , θ̂p
)
, which are assumed to have minimum prediction error, the procedure (i)

can be stated as follows.

(a) Randomly select a vector from x =
(

x1, x2, · · · , xp
)

from a multivariate normal
distribution with mean vector θ̂ and variance–covariance matrix Σ. We assume that
the variances are small (0.01, 0.001, etc.), i.e., the variability in the choice of estimates
from the GRG graph is not substantial.

(b) Obtain the predicted values of the experimental outcomes by using the selected
estimates and compute the corresponding RMSD’s.

(c) Repeat (a) and (b) a large number (10,000) of times and compare the prediction
performance of the models based on the empirical distributions of the RSMD’s.

Unlike (i), (ii) assumes that the random (measurement) errors or bias terms follow a
normal distribution. Thus, the procedure is different from (i) in that the simulated estimates
in (a) are obtained by randomly generating a sample from N (0,1) and adding to θ̂.

We adopt the simulation-based approaches and compare the results for each model
in Table 1. Thus, the sensitivity of the models is examined under the condition where the
parameter estimates are slightly biased due to the subjective judgment of the experimenters
using the graphical GRG technique.

5. Statistical Tools
5.1. The Box-and-Whisker Plot

The box-and-whisker plot [41] is a chart comprising five concise statistics, which are
the smallest (min), 1st quartile (Q1), 2nd quartile (Me), 3rd quartile (Q3), and the maximum
(max) value of a data set. In this plot, a box is drawn from the first quartile (Q1) to the
third quartile (Q3). Median (Me) is a perpendicular line that goes between Q1 and Q3. The
whiskers are a line from Q1 to minimum and Q3 to the maximum. This plot divides the
total number of observations into four groups, as shown in Figure 2.

5.2. Analysis of Variance (ANOVA)

The statistician Ronald Fisher developed ANOVA [41,42]. In ANOVA, the total
variation in a data set is divided into different influential factors known as sources of
variation. ANOVA provides a test for equality of several means (F-test), a generalization of
t-test for more than two means. The null hypothesis is given by-

Hypothesis H0: µ1 = µ2 = µ3 ... = µk vs.
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Hypothesis H1: At least two means are unequal.

Where k indicates the number of independent groups for comparison.
The test statistic is given by, F = MSBet

MSWith
; where, MSBet =

SSBet
K−1 and MSWith = SSWith

N−k .
MSBet indicates between the mean sum of squares and MSWith measures within the mean
sum of squares of the candidate models. N indicates the number of observations, and K
defines the number of candidate models in each type.
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5.3. Pairwise Test (Tukey’s HSD Test)

Tukey’s test (HSD test) [43] can be used to determine whether two means are signifi-
cantly different or not. Dunnett’s and Scheffe’s tests are two further multiple comparison
tests. We might compare the two group means using a t-test with only two different groups
of observations. Because of the issue of multiple comparisons, it is incorrect to compare
each pair using a t-test when there are more than two groups. The proper way to carry out
the study is to employ a one-way ANOVA to see if there is any evidence that the population
means differ. If the ANOVA reveals that the group means differ, we may want to look into
which of the means is different. The Tukey HSD test is applied in this case. Tukey’s test is a
multiple comparison test that can be used when comparing more than two means. Tukey’s
HSD test is usually used after the ANOVA F-test to determine which pairs of means are
substantially different. The HSD can be calculated using the following formula-

HSD = q

√
MS
n

(2)

MS stands for mean square value, n for the number of observations in each group, and
the Studentized range distribution table provides the value for q. The information can be
found in D.G. Altman’s book named “Practical Statistics for Medical Research” (1995) [44].

5.4. Non-Parametric Method

The population distribution or sample size are not specified in a non-parametric
technique [45]. Most parametric approaches, on the other hand, assume quantitative data,
a normal population, and a suitably high sample size. Non-parametric inferences are less
powerful than parametric findings in general. However, non-parametric approaches are
robust, flexible, and suitable to non-quantitative data since they make fewer assumptions.
In this study, the non-parametric methods are considered to validate the results from
parametric methods.

5.5. Kruskal–Wallis Rank-Sum Test

The generalization of a rank-sum test when the number of groups l≥ 2 is known as the
Kruskal–Wallis test [46]. It is also known as the Kruskal–Wallis H-test. Here, the normality
assumption of the population like ANOVA is not considered. The null hypothesis of this
test is-

Hypothesis H0: All sample/groups come from the same population, vs.



Energies 2021, 14, 7478 7 of 20

Hypothesis H1: They come from different populations.

The test statistic is- h = 12
n(n+1) ∑l

i=1
r2

i
ni
− 3(n + 1), here, ri is the sum of ranks of

ith group, n = n1 + n2 + n3 + . . . . . . + nl is the total number of observations, and h is
distributed as chi-square distribution with (l-1) degrees of freedom.

5.6. Wilcoxon Rank-Sum Test with Continuity Correction

Wilcoxon rank-sum [47] test is appropriate for two samples t-test where the population
distribution is not normal. The null hypothesis is H0 : µ1 = µ2 against H1 : µ1 6= µ2 or
H1 : µ1 ≥ µ2 or H1 : µ1 ≤ µ2. The test statistic (normal approximation) is given by-
N = n1 + n2 z = W−n1(N+1)/2√

n1n2(N+1)/12
is normally distributed with mean zero and variance one.

Where N = n1 + n2 and W indicates the sum of ranks of the first sample.

6. Specific Cooling Effect

A significant performance parameter that can be measured using the equation below
is the specific cooling effect (SCE) [24,48].

SCE = (Wmax −Wmin)

∆heva −
Tc∫

Te

Cpre f dt

 (3)

Wmax indicates the maximum uptake, and Wmin means the minimum uptake. The
enthalpy of vaporization is represented by ∆heva, and Cpref is the refrigerant specific heat.
Wmax and Wmin can be determined in the following equations: (Considering D-A equation
(say)).

Wmax = W0 exp

[
−
{

RTadsorption

E
ln

(
Padsorption

Pevaporating

)}n]
(4)

where W0 indicates the highest uptake (kg kg−1), R universal gas constant (J mol−1 k−1),
E is the adsorption characteristic parameter (J mol−1). Tadsorption, Padsorption, and Pevaporating
measure adsorption temperature, adsorption pressure, and measures evaporating pressure,
respectively.

Wmin = W0 exp
[
−
{RTdesorption

E
ln
( Pdesorption

Pcondensation

)}n]
(5)

Here, Tdesorption, Pdesorption, and Pcondensation denote desorption temperature, desorption
pressure, and condensation pressure, respectively.

7. Results and Discussion

One relevant adsorption pair data is considered for each of the IUPAC types. A
GRG non-linear optimization method has been used to optimize the model’s parameters
using the RMSD error evaluation function. The adsorption isotherm pairs of K4-700/N2,
Maxsorb III/ethanol, Alumina/Water, dried raisins/moisture, PVDC/water, IRMOF-74-V-
hex/Argon, FAM-Z01/water, MgO/methane have been considered for Type-I(a), Type-I(b),
Type-II, Type-III, Type-IV(a), Type-IV(b), Type-V and Type-VI, respectively. GRG nonlinear
optimization approach was used to estimate the parameters. Table 2 shows the estimated
parameters of the probable isotherm models for each type. Descriptive statistics, box-
and-whisker plot for each type of isotherm, were constructed using N = 10,000 simulated
sample. The optimum models are confirmed by using robust statistical tests, ANOVA,
Tukey HSD, and non-parametric Kruskal–Wallis rank-sum test, and Wilcoxon rank-sum
test with continuity correction.

In the present study, n = 10,000 samples have been taken by varying parameters using
the multivariate normal distribution, and for each case, errors have been calculated. The
box-and-whisker plot was constructed using this error distribution and presented in Figure 3.
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Table 2. Fitting parameters of the candidate models for Type-I(b) adsorption isotherm.

Type-I(a) (Carbon K4-700/N2 pair at 77 K)

Model Parameters

Mahle W0 = 0.62, A0 = 0.045, A1 = −720, B = 0.01

Universal W0 = 0.709, ε01 = 4120, ε02 = 0.0345, m1 = 320, m2 = 1000, α1 = 0.71, α2 = 0.29

D-A W0 = 0.607, E = 320, n = 3.31

Tóth W0 = 0.61, b0 = 9.79 × 10−5, Q = 6013.84, t = 1.3

Mod BET Vm = 0.594, C = 5334.78, k = 0.0446

Type-I(b) (Maxsorb III/ethanol)

Freundlich W0 = 1.482082, n = 2.214175

Langmuir W0 = 1.38, b0 = 3.10 × 10−9, Q = 48,600

D-A W0 = 1.17, E = 143.00, n = 1.9

Tóth W0 = 1.2, b0 = 3.10 × 10−9, Q = 47,635, t = 1.69

Hill W0 = 1.266, nh = 1.321, KD = 0.080297

Type-II (Alumina/water)

Mod BET Vm = 0.21, C = 25.5, k = 0.8186

Universal W0 = 1.22, ε01 = 217.88, ε02 = 0.1762.69, m1 = 262.59, m2 = 3231.58, α1 = 0.42, α2 = 0.57

D-A W0 = 1.068, E = 73.72, n = 0.504

Tóth W0 = 1.23, b0 = 2.32 × 10−3, Q = 16,932.30, t = 0.4165

Langmuir W0 = 0.891, b0 = 3.69 × 10−5, Q = 24,041.91

Type-III (Dried raisins/moisture)

GAB Vm = 10.517, C0 = 0.0011, K0 = 1.767, ∆H1 = 18.25, ∆H2 = −1.47

Mod BET Vm = 10.421, C = 1.47, k = 0.980

Universal W0 = 120, ε01 = 547.67, ε02 = 120.12, m1 = 199.95, m2 = 1846.68, α1 = 0.65, α2 = 0.35

Mod Langmuir W0 = 90.24, z = 0.1416, β = 0.0859, α = 0.958, n1 = 0.95, φm = 3.22, m = 0.7632

Sun and Chakrabarty W0 = 93.3581, Qst* = 3166.83, m = 2.449, α = 1.81 × 10−6

Type-IV(a) (PVDC/water)

Universal W0 = 0.36, ε01 = 2096.47, ε02 = 5613.18, m1 = 478.42, m2 = 4025.91, α1 = 0.67, α2 = 0.33

Ben Yahia n1 = 1.30, n2 = 0.13, n3 = 0.032, n4 = 1.3, NM1 = 0.123, NM2 = 0.150, NM3 = 0.495, NM4 = 0.399

Mod BET Vm = 1.0533, C = 453.92, k = 0.00112

Sun and Chakrabarty W0 = 0.341, Qst* = 3497.21, m = 2.099, α = 9.00 × 10−7

Mahle W0 = 0.35, A0 = 0.89, A1 = −575, B = 0.2

Type-IV(b) (IRMOF-74-V-hex/nitrogen)

Universal W0 = 2.85, ε01 = 852.32, ε02 = 2364.60, m1 = 138.23, m2 = 608.42, α1 = 0.54, α2 = 0.46

Mod BET Vm = 0.21, C = 28, k = 0.8186

Mahle W0 = 0.21, A0 = 0.6, A1 = −650, B = 0.075

Mod Langmuir W0 = 80, z = 0.119, β = 0.03622, α = 0.9941, n1 = 0.98, φm = 3.22, m = 0.478

Tóth W0 = 2.9, b0 = 0.0001041, Q = 4302.19, t = 1.3183

Type-V (FAM-Z01/water)

Sun and Chakrabarty W0 = 0.2042, Qst* = 3027.841, m = 4.893, α = 9 × 10−7

Mod Langmuir W0 = 0.210, z = 2.955, β = 0.60086, α = 0, n1 = −1.5, φm = 510.79, m = 1.82
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Table 2. Cont.

Mahle W0 = 0.21, A0 = 0.60, A1 = −650, B = 0.075

DA W0 = 0.212, E = 3985.785, n = 3.7075

Universal W0 = 0.25, ε01 = 3841.16, ε02 = 0.01, m1 = 530.08, m2 = 2583.121, α1 = 0.67, α2 = 0.33

Type-VI (MgO/methane)

Universal W0 = 12, ε01 = 3450, ε02 = 1015.22, ε03 = 235, ε04 = 45, m1 = 342, m2 = 24.96, m3 = 135.21,
m4 = 93.44, α1 = 0.062, α2 = 0.05, α3 = 0.55, α4 = 0.40

Ben Yahia n1 = 2.95, n2 = 19.52, n3 = 77.27, n4 = 23.26, NM1 = 0.252, NM2 = 0.036, NM3 = 0.007, NM4 = 0.071,
P1 = 0.70, P2 = 20.82, P3 = 36.06, P4 = 47.10

Mod. Langmuir W0 = 4, z = 4.38, β = 0.044, α = 0.033, n1 = −1.5, φm = 44.77, m = 0.683

Mahle W0 = 4.457, A0 = 2.013 × 10−5, A1 = 62.92, B = 0.0927

D-A W0 = 4.012, E = 1219.71, n = 0.9

7.1. Box-and-Whisker Plot

Figure 3 shows the box-and-whisker plots using the observed RSMD of isotherm
models for different types of isotherms. Each box plot demonstrates the distribution of
RSMD estimates and their minimum, first quartile, median, third quartile, and maximum
values. It is observed that in general, the distributions of RSMD estimations were positively
skewed. However, the five-number summary of RSMD for the Tóth model was lower than
other models for Type-I(a) and I(b) isotherms. Thus, the distribution of RSMD for the Tóth
model was centered lower and less spread out compared to the candidate models. For type
II isotherm the modified BET model is centered lower but spread out higher than other
candidates. The results are similar in the case of Type-III isotherm where the GAB model
also shows relatively lower values of median RSMD. The universal model is centered lower
and less spread out than other models in the case of Type-IV(a) and IV(b) isotherms. In the
case of Type-V isotherm, all models achieved a lower value of median and spread out less
than the RSMD of the modified Langmuir model. The box plots for the Type-VI isotherm
further show that the RSMD for Ben Yahia model was less spread out and centered lower
than D-A and Universal models.

Based on Figure 3, it is therefore revealed that on average, the residuals of the Tóth
model were relatively smaller and varied less compared to other models for Type-I(a).
The finding was similar in the case of comparing the minimum, 1st quartile, 3rd quartile,
maximum of Tóth model, and the other four candidates. Moreover, the Tóth model for
Type-I(b), Mod BET model for Type-II, GAB model for Type-III, universal model for Type-
IV(a) and Type-IV(b), Sun and Chakrabarty model for Type-V, and Ben Yahia model for
Type-VI had the lower values of the five-number summary and dispersion compared to
other models. Using the RSMD as a comparison criterion, these models were found better
than other candidates in the respective isotherm cases. Table 3 presents the results of
analysis of variance.

7.2. Non-Parametric Test: Kruskal–Wallis Rank-Sum Test

The non-parametric Kruskal–Wallis rank-sum test results containing degrees of free-
dom, chi-square statistic, and p-value are presented in Table 4.

In the ANOVA tests, the null hypothesis states that the average RMSD of five candidate
isotherm models is equal for each type. Because the p-value is less than the significance level
of 0.01, we can reject the null hypothesis for each type and conclude that some RMSD means
of the models are different. So, in a particular type, all probable models are not equally
likely, i.e., significantly differ. The null hypothesis of the non-parametric Kruskal–Wallis
rank-sum test is similar to ANOVA, i.e., all candidate models for each type are equally
fitted. The p-value is less than the significance level of 0.01, so the hypothesis is rejected at
1% level of significance, which implies all probable candidate models have different errors
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meaning that they are significantly different. To identify the best-fitted isotherm model,
pairwise Tukey HSD test and Wilcoxon rank-sum test have been performed, and the results
are shown in Table 5.

Energies 2021, 14, x FOR PEER REVIEW 9 of 20 
 

 

Mahle W0 = 4.457, A0 = 2.013 × 10–5, A1 = 62.92, B = 0.0927 
D-A W0 = 4.012, E = 1219.71, n = 0.9 

In the present study, n = 10,000 samples have been taken by varying parameters using 
the multivariate normal distribution, and for each case, errors have been calculated. The 
box-and-whisker plot was constructed using this error distribution and presented in Fig-
ure 3. 

 

 
Figure 3. Cont.



Energies 2021, 14, 7478 11 of 20Energies 2021, 14, x FOR PEER REVIEW 10 of 20 
 

 

 

 
Figure 3. Cont.



Energies 2021, 14, 7478 12 of 20Energies 2021, 14, x FOR PEER REVIEW 11 of 20 
 

 

 

 
Figure 3. Cont.



Energies 2021, 14, 7478 13 of 20
Energies 2021, 14, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 3. Box-and-whisker plots of the RMSD error (N = 10,000 simulated samples) were presented 
for all eight IUPAC classified isotherms. 

  

Figure 3. Box-and-whisker plots of the RMSD error (N = 10,000 simulated samples) were presented
for all eight IUPAC classified isotherms.



Energies 2021, 14, 7478 14 of 20

Table 3. Parametric Test: Analysis of Variance (ANOVA).

DF SS Mean SS F-Value p-Value

Type-I(a) 4 261.72 65.43 2,532,683 <2 × 10−16 ***

Type-I(b) 4 25.23 6.308 8452 <2 × 10−16 ***

aType-II 3 82.69 27.56 306,633 <2 × 10−16 ***

Type-III 4 24.35 6.0875 2534 <2 × 10−16 ***

Type-IV(a) 4 4896 1224 52,346 <2 × 10−16 ***

Type-IV(b) 4 112.95 28.23 49,863 <2 × 10−16 ***

Type-V 4 4184 1046 318,711 <2 × 10−16 ***

Type-VI 4 3524.18 881.04 214,241 <2 × 10−16 ***

*** denote 1% level of significance.

Table 4. Chi-square (χ2) and p-value of Kruskal–Wallis rank-sum test results.

Type df Chi-Square (χ2) p-Value

Type-I(a) 4 25,356 2.16 × 10−13

Type-I(b) 4 43,636 2.21 × 10−14

Type-II 3 28,296 2.22 × 10−16

Type-III 4 54,263 1.48 × 10−11

Type-IV(a) 4 35,421 2.25 × 10−13

Type-IV(b) 4 29,653 3.25 × 10−15

Type-V 4 24,806 2.20 × 10−16

Type-VI 4 35,412 2.22 × 10−16

Table 5. p-value of pairwise test results. Without parenthesis Tukey HSD and within parenthesis Wilcoxon rank-sum test.

Type-I(a)

Model Tóth D-A Mod BET Universal

D-A 1.7 × 10−7 (2.61 × 10−8) - - -

Mod BET 1.6 × 10−9 (1.96 × 10−16) 1.8 × 10−15 (2.21 × 10−16) - -

Universal 1.8 × 10−7 (1.35 × 10−16) 0.00360 (2.31 × 10−16) 2.2 × 10−11 (2.36 × 10−16)

Mahle 3.1 × 10−4 (2.34 × 10−16) 2.1 × 10−12 (1.74 × 10−16) 1.2 × 10−5 (2.23 × 10−16) 2.9 × 10−7 (5.3 × 10−16)

Type-I(b)

Tóth Langmuir Freundlich Hill

Langmuir 1.3 × 10−11 (2 × 10−16) - - -

Freundlich 2.3 × 10−13 (2 × 10−16) 2.5 × 10−8 (2 × 10−16) - -

Hill 0.00021 (2 × 10−16) 4.2 × 10−5 (2 × 10−16) 1.8 × 10−16 (2 × 10−16)

D-A 0.00032 (2 × 10−16) 2.3 × 10−6 (2 × 10−16) 3.2 × 10−16 (2 × 10−16) 2.6 × 10−8 (2 × 10−16)

Type-II

Mod BET Universal D-A

Universal 2.1 × 10−15 (2 × 10−16) - -

D-A 0.00898 (2 × 10−16) 1.6 × 10−14 (2 × 10−16) -

Tóth 3.5 × 10−12 (2 × 10−16) 3.5 × 10−15 (2 × 10−16) 2.6 × 10−11 (2 × 10−16)
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Table 5. Cont.

Type-III

GAB Mod BET Universal D-A

Mod BET 1.9 × 10−16 (2.10 × 10−16) - - -

Universal 2.3 × 10−14 (1.96 × 10−16) 6.5 × 10−14 (2.21 × 10−16) - -

D-A 5.9 × 10−14 (1.35 × 10−16) 2.3 × 10−13 (2.31 × 10−16) 3.1 × 10−12 (2.36 × 10−16)

Sun and Chk 2.6 × 10−15 (2.34 × 10−16) 3.5 × 10−14 (1.74 × 10−16) 2.8 × 10−15 (2.23 × 10−16) 2.4 × 10−14 (5.3 × 10−16)

Type-IV(a)

Mod BET Universal Sun and Chk Ben Yahia

Universal 2.3 × 10−8 (2.10 × 10−16) - - -

Sun and Chk 1.8 × 10−9 (1.96 × 10−16) 3.4 × 10−10 (2.21 × 10−16) - -

Ben Yahia 3.6 × 10−11 (1.35 × 10−16) 2.4 × 10−13 (2.31 × 10−16) 2.7 × 10−15 (2.36 × 10−16)

Mahle 2.8 × 10−8 (2.34 × 10−16) 3.1 × 10−10 (1.74 × 10−16) 2.5 × 10−10 (2.23 × 10−16) 3.2 × 10−16 (5.3 × 10−16)

Type-IV(b)

Mod Langmuir Universal Mahle Mod BET

Universal 2.4 × 10−15 (2.10 × 10−16) - - -

Mahle 2.3 × 10−14 (1.96 × 10−16) 1.4 × 10−15 (2.21 × 10−16) - -

Mod BET 2.1 × 10−12 (1.35 × 10−16) 1.9 × 10−13 (2.31 × 10−16) 2.2 × 10−12 (2.36 × 10−16)

Tóth 2.5 × 10−14 (2.34 × 10−16) 3.4 × 10−11 (1.74 × 10−16) 3.4 × 10−16 (2.23 × 10−16) 2.4 × 10−16 (5.3 × 10−16)

Type-V

Mahle D-A Universal Sun and Chk

D-A 2.1 × 10−10 (7.98 × 10−4) - - -

Universal 3.1 × 10−12 (1.96 × 10−16) 1.8 × 10−9 (2.21 × 10−16) - -

Sun and Chk 2.7 × 10−5 (1.13 × 10−4) 0.7158 (0.35142) 2.3 × 10−8 (2.36 × 10−16)

Mod Langmuir 2.7 × 10−14 (2.34 × 10−16) 1.6 × 10−12 (1.74 × 10−16) 3.4 × 10−15 (2.23 × 10−16) 2.9 × 10−13 (5.3 × 10−16)

Type-VI

Ben Yahia Universal D-A Mod. Langmuir

Universal 2.2 × 10−2 (2.10 × 10−3) - - -

D-A 3.1 × 10−12 (2.56 × 10−12) 1.3 × 10−12 (3.21 × 10−12) - -

Mod. Langmuir 3.6 × 10−10 (2.51 × 10−13) 3.9 × 10−10 (5.23 × 10−8) 3.5 × 10−10 (7.65 × 10−8)

Mahle 2.8 × 10−9 (3.51 × 10−11) 4.3 × 10−7 (1.74 × 10−12) 3.2 × 10−12 (4.23 × 10−11) 3.6 × 10−14 (3.3 × 10−13)

The null hypothesis of pairwise Tukey HSD test and non-parametric Wilcoxon rank-
sum test state that each pair of models have equal RMSD means, indicating differences is
zero. The p-values for these two tests are presented in Table 5 (Without parenthesis Tukey
HSD and within parenthesis Wilcoxon rank-sum test). The p-value presented in Table
5 is very small, close to zero except for Sun and Chakrabarty vs. D-A of Type-V. So, all
pairs of a specific type except Sun and Chakrabarty vs. D-A of Type-V are significantly
different. So, based on the box-and-whisker plot and the overall and pairwise proportion
test identified that Tóth for Type-I(a) and Type-I(b), modified BET for Type-II, GAB for
Type-III, Universal model for Type-IV(a) and Type-IV(b), Sun and Chakraborty, and D-A
models for Type-V, and Yahia et al. model for Type-VI are significantly optimum isotherm
models.

7.3. Physical Description with Merit and Demerits of the IUPAC Isotherm Model

The Tóth model is determined to be the optimum for both Type-I(a) and Type-I(b)
IUPAC isotherm. This model can be used to explain the monolayer adsorption process
onto microporous adsorbents. Furthermore, the Tóth model well agrees in both Henry
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region and equilibrium at saturation. Whereas the Langmuir model only fits nicely in the
low-pressure region, and the D-A model is well suited for the finite saturation region.

Type II isotherm is for monolayer and multilayer adsorption onto nonporous or
macroporous adsorbents. Mod BET model is most suitable for all the pressure regions and
this type of isotherm. Besides, D-A, Tóth, and universal models are close to the optimum
model. The BET model fails to predict uptake around saturation pressure and can only be
used to explain the multilayer adsorption process near saturation pressure.

The adsorbate–adsorbent interaction is rather weak in Type-III, and the adsorbed
molecules cluster around the most favorable sites on the surface of a nonporous or macrop-
orous material. The GAB model is most appropriate to explain this type of isotherm. GAB
model is an upgrade of the modified BET model which considers all the assumptions of
BET and modified BET model. Moreover, three other physical parameters are also included
in this model that help to fit Type-III isotherms more accurately.

The interactions between the adsorbent and the adsorbate, as well as the interactions
within the molecules in the condensed state, affect adsorption uptake onto the mesoporous
adsorbent. The universal isotherm model, which includes two probability terms and an
energy distribution parameter, has a high degree of agreement with Type-IV isotherms.

The Type-V isotherm is distinguished by its characteristic S-shaped form and the
presence of a hysteresis loop. D-A, Tóth, and Langmuir models, in general, do not clarify
the S-shaped isotherm within suitable error ranges. Sun and Chakrabarty model, on the
other hand, considers (i) porous adsorbent materials structures, (ii) isosteric heat (Qst), and
(iii) shape parameter (m) of the isotherms, all of which helps to explain the S-shape pattern.

The reversible stepwise Type-VI isotherm is characterized by layer-by-layer adsorption
over a highly uniform non-porous surface. The energetic part of the Ben Yahia model
is assumed to be dominant, and the adsorption process is divided into four energies.
This model takes into account the number of molecules per receptor site, the density of
receptor sites, and the molar adsorption energy of gases that correspond well with Type-VI
isotherms.

7.4. Specific Cooling Effect (SCE)

To validate this simulation study, two adsorption pairs, Maxsorb III/ethanol, and silica
gel/water as Type-I(b) IUPAC isotherm, have been considered to calculate specific cooling
effect (SCE) for cooling applications. The three most popular candidate models, namely, D-
A, Tóth, and Langmuir model as Type-I(b) isotherms, have been considered to calculate the
specific cooling effect (SCE). Figure 4 shows the SCE for Maxsorb III/ethanol and Figure 5
depicts SCE for silica gel/water pair for different evaporating temperatures considering
desorption temperatures from 40 ◦C to 100 ◦C. Based on available experimental data,
experimental SCE has been calculated and placed in Figures 4 and 5. Figure 4a indicates
that the SCE, using the Tóth model, is closer to the experimental SCE compared to the
D-A model for Maxsorb III/ethanol pair. Similarly, in Figure 4b, the SCE for Maxsorb
III/ethanol pair using the Tóth model is closer to the experimental SCE relative to the
Langmuir model. For silica gel/water pair, it is found from Figure 5a,b that the SCE of the
Tóth model is closer to the SCE measured from experimental data. So, it is concluded that
the Tóth model is more efficient compared to other models as Type-I(b) IUPAC classified
adsorption isotherm.
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Figure 5. Experimental SCE comparisons with (a) Tóth vs. D-A models and (b) Tóth vs. Langmuir
models of Silica gel/water adsorption pair for different evaporating temperatures.

8. Conclusions

Relevant adsorption isotherm pairs for all of the IUPAC types are chosen for analysis
in this study. Sensitivity analysis of the parameters has been performed and error is
minimized to identify the optimum model. The experimental isotherm data, extracted
from literature, are then fitted with different isotherm models through the GRG non-linear
optimization method. This study provides simulation-based optimum model selection,
where n = 10,000 samples were taken using multivariate normal distribution by varying
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parameters with a standard small range. Box-and-whisker plots are constructed by using
10,000 errors. Two overall mean test ANOVA and Kruskal–Wallis rank-sum test; two
pairwise mean tests Tukey HSD and Wilcoxon rank-sum test confirms that Tòth for Type-
I(a) and Type-I(b); modified BET for Type-II; GAB for Type-III; Universal for Type-IV(a)
and Type-IV(b); Sun and Chakraborty and D-A for Type-V; and Ben Yahia for Type-VI
are the significantly optimum models. The SCE measured by the Tòth model agrees well
with the experimental SCE compared to the D-A and Langmuir models, indicating that
the model suggested in this research is significantly optimum. Researchers can use the
suggested optimum isotherms to execute a thorough investigation of adsorption cooling
systems design.
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