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Abstract: Owing to scale-up and complex wake effects, the centralized control that processes the
command from turbines may be unsuitable, as it incurs high communication overhead and computa-
tional complexity for a large offshore wind farm (OWF). This paper proposes a novel decentralized
non-convex optimization strategy for maxing power conversion of a large OWF based on a modified
beetle antennae search (BAS) algorithm. First, an adaptive threshold algorithm which to establish
a pruned wake direction graph while preserving the most critical wake propagation relationship
among wind turbines are presented. The adaptive graph constraints were used to create wake
sub-digraphs that split the wind farm into nearly uncoupled clustering communication subsets. On
this basis, a Monte Carlo-based beetle annealing search (MC-BAS) nonlinear optimization strategy
was secondly designed to adjust the yaw angles and axial factors for the maximum power conversion
of each turbine subgroup. Finally, the simulation results demonstrated that a similar gain could be
achieved as a centralized control method at power conversion and reduces the computational cost,
allowing it to solve the nonlinear problem and real-time operations of the OWF.

Keywords: beetle antennae search optimization; wake propagation; direct graph; offshore wind
farm; clustering subset; graph adaptive pruning

1. Introduction

With increasing environmental problems, such as the greenhouse effect, clean energy
has become a critical issue that needs to be solved worldwide. Wind energy has become
very competitive in comparison with other green energy production technologies for the
mature control technology, such as the control approach to improve the performance of
wind turbines in different conditions [1], model predictive control [2], etc. Moreover, the ex-
ploitation of wind energy is mainly fulfilled by wind turbines in arrays or groups to reduce
the cost of energy [3,4]. Additionally, energy storage is also a very important branch [5].

To increase the total output power, the optimization methodology [6] plays a vital
role by considering the topography, prevailing wind direction environment [7], and the
space of turbines. For a designed wind farm, there are also some other methodologies for
improving the total output power [8–10], decreasing the thrust load [11], improving the
lifetime of turbines [12], and tracking power reference signals to improve wind integration
into the power grid [13–16]. Researchers have recently proposed some control methods
for optimizing power conversion in large wind farms without considering wake infec-
tion [17,18]. Some kinds of literature [19–21] propose novel graph theories. The production
of generating an interaction matrix is treated in the same way. However, the difference
is the kinetic energy deficits with considering the wind speed and direction probabilities,
which is explained in detail in Equation (7) in paper [18]. Additionally, in this paper, we
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focus on the variations of wind velocity between the upstream and downstream turbines.
However, the constraints of the offshore land limit the space of turbines, not infinitely
long. Therefore, the wake effects in a wind farm are inevitable, and the closely spaced
turbines will produce little output power. The reason is that wake affects the downstream
wind speed. Moreover, the relationship between the upstream and downstream turbines is
inseparable from the basic turbine model, and the existing turbine models currently contain
Jensen’s model [22], Frandsen’s model [23], CFD-wake model [24], etc. The Jensen and
Frandsen models have assumed “top-hat” shape distributions for the wake velocity deficit.
In fact, the actual distribution is Gaussian as in [21,25], which is based on self-similarity
theory and is often used in free shear flows. It has become a hot topic that the optimization
algorithm performs the search of the values of optimal axial and yaw angle to maximize
the output power and mitigate the wake interference.

For large-scale wind farms, the burden of communication with the central unit is
significantly large, and the speed of centralized implementation is no longer suited for
real-time control [15,16]. More recent studies have investigated decentralized control,
distributed control [26], and cooperate control [27] which are proposed to decrease the
communication burden and improve control speed by dividing whole turbines into several
decoupled subsets. Centralized control only suits a small-scale wind farm because there
is much large information sharing between turbines and the central controller, and every
turbine needs no other turbines’ information. Distributed control method was proposed
in [26]; there are several controllers in local groups instead of the central controller, and
some key information of shared turbines will be transmitted between them. Moreover,
every turbine considers the power information of itself and the neighbors to set the control
actions. Additionally, a cooperative optimization problem is designed in [27], the informa-
tion of the whole wind farm output power is transmitted to every turbine, and the control
variable is axial induction factors.

For example, an equivalent model for wind farm reduction was proposed in [28] to
cluster the same-feature wind turbines into a group. However, for a complex wake, the
same feature presented a difficult problem to find the k-means clustering algorithm [29,30],
k-median clustering algorithm [31], and k-nearest physical neighbor [32], which were
proposed to uncover the clustered index. Moreover, the disadvantage of [33,34] was the
clustering index with one-dimensional data, which only focuses on wind speed without con-
sidering the wake effect. However, for a large-scale offshore wind farms, one-dimensional
data cannot explain the wake relationship matrix of the wake effect, and two-dimensional
data, considering the wind speed and the wake effect are more suitable. Therefore, based on
a clustering index with two-dimensional data, another possible solution was to propose a
novel clustering approach that can construct decouple communication architecture. In [35],
the turbines were clustered into some groups through the singular value decomposition
(SVD) clustering algorithm. However, those clustering algorithms were assumed to be-
have similarly and were only valid for limited wind directions without considering the
differences in the incoming wind.

As mentioned previously, there is a lack of efficient cluster methods to cluster the
subset of communication neighbors of the turbines considering complex wake effects. To
solve this problem, in this paper, we propose an adaptive pruning wake digraph to divide
the large-scale offshore wind farm (OWF) into decoupled groups, then cluster the neighbors
into the same subset by setting the k-median of two turbines’ wake imperfect weights
as the clustering index. The wind farm control and the optimization problem in every
subset are non-convex, so it is critical to devise an efficient optimization algorithm. By
combining the wake model and the single objective function, there are some optimization
methods proposed in the literature [26,36–39]: in [38], a gradient-based method on wind
farm layout optimization is presented; however, a gradient-based optimization algorithm is
based on an analytical wind farm function which is simplified, so it cannot precisely reflect
the wind farm control. Therefore, without the wind farm function, only some necessary
measurement data for data-driven optimization algorithms are proposed, for example,
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in [26,37]. However, the high model complexity of the measurable data will become
significantly large. Moreover, the performance may not be good with noisy measurement
data unavoidable in real applications. The authors of [36] explored a cooperative greedy
algorithm optimizing energy production of wind farms; because of the wake effects, the
downstream turbine could not generate much energy, so the total output power was
not maximum.

Due to the large amount of large-scale wind farm data and nonlinear and non-convex
characteristics, the above-mentioned control methods become unsuitable for obtaining the
global optimum. Evolutionary algorithms (EAs) are one class of novel nature-inspired
global optimization algorithms that are proposed in the literature [40,41]. For maximiz-
ing the total output power of wind farms, other algorithms such as modified grey wolf
(GW) [42,43], particle swarm optimization (PSO) [44,45], and genetic algorithm (GA) [46]
have been proposed. The authors of [44] present PSO intelligent algorithms for power
conversion maximization using a nonlinear wake model. Importantly, no one algorithm
can fit all systems. The above-mentioned algorithms are prone to premature convergence
leading to a local optimum, not a global optimum, because of some unsuitable parame-
ters. Therefore, we use a novel intelligent algorithm dubbed the beetle antennae search
(BAS) [47] to improve calculation performance and searching ability to maximize wind
farm power conversion. The BAS may generally converge early and fall into the optimal
local solution for the unsuitable step size. In addition, the Monte Carlo (MC) method can
be used to prevent the evolutionary algorithm from stagnating at a local optimum.

To summarize, in this paper, we first define an adaptive wake digraph to cluster
a subset of communication neighbors of turbines. Secondly, we propose an MC-BAS
optimization algorithm based on adaptive communication network topology to solve the
non-convex power optimization problem. Finally, the yaw angles and axial factors are
optimized to increase the power output by simulating a wind farm with 2 × 2 turbines,
3 × 3 turbines, and 5 × 5 turbines. The main contributions are summarized as follows:

• A decentralized coordination control scheme is achieved by controlling the yaw angles
and axial factors to maximize power conversion on the wind farm. Large-scale wind
farms are divided into several decoupled subsets, and then the local controller only
controls the local subset’s data. The proposed control scheme enables efficiency in
the real-time application by optimizing the decentralized coordination to reduce
computational burden and information exchange.

• A wake-based graph adaptive pruning approach is presented to split a large wind
farm into several clustering subsets. This approach aims to find a decoupled sub-graph
that can preserve essential distribution characteristics of the original wake direction
graph. We adopt a graph clustering algorithm to divide turbines via wake graphs
adaptive pruning constraint, and threshold εk which is a vital point parameter to
control the number of groups of the pruned wake digraph.

• We develop a modified BSA optimization algorithm based on adaptive pruned com-
munication architectures. The Monte Carlo (MC) law of Simulate Anneal (SA) is
introduced to improve the BAS, which significantly improves the reproducibility and
stability of the algorithm. Finally, the improved algorithm is applied for wake steering
control and maximum power conversion on the wind farm.

This study is organized as follows: Section 2 introduces the Gaussian-based wake
model considering yaw angle. Section 3 introduces the algorithm to cluster turbine via
adaptive pruning wake digraph through setting the suitable global threshold εp. In
Section 4, the new MC-BAS control strategy in OWF is proposed to optimize the axial vale
and yaw angle in every subset. Section 5 presents the simulated result of the proposed
algorithm, the efficiency of power optimization and minimizing the calculating time is
verified, and some important look-up tables are constructed. Finally, some important
conclusions and summaries are presented in Section 6.
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2. Gaussian-Based Wake Model Considering Yaw Angle

This section describes the wind turbine wake model for total output power optimiza-
tion through axial induction and yaw angle control. The three-dimensional wind velocity
deficit behind the upstream turbine i is defined as Gaussian shape, which was derived
through Navier–Stokes equation [25]:

V(x, y, z)
V∞

= 1− Ce−(y−δ)2/2σ2
y e−(z−zh)

2/2σ2
z (1)

where V denotes the velocity in the wake, V∞ denotes the free-stream inflow wind velocity
of the wind farm, x, y, z is the direction of streamwise, horizontal spanwise, and vertical
spanwise, a decoupled topology, δ is the wake centerline, zh is the hub height, σy, σz is the
wake expansion in y, z direction, and C is the velocity deficit at the wake center. The main
parameters are shown in Appendix A.

The relationship of α, and γ, can be defined as [21,25]:

α ≈ 0.3γ

cos γ

(
1−

√
1− CT cos γ

)
(2)

where CT denotes the thrust coefficient.
The relationship between the initial lateral deflection of wake deflection δ0 as denied

as in [25], x0 is the length of the near wake as defined in [25], and the wake deflection angle
α can be defined as the following equation [21]:

δ0 = δ0 tan α (3)

δ = δ0 +
θE0

5.2

√
σy0σz0

kykz M0
ln

(1.6 +
√

M0
)(

1.6
√

σyσz
σy0σz0

−
√

M0

)
(
1.6−

√
M0
)(

1.6
√

σyσz
σy0σz0

+
√

M0

)
 (4)

After describing the atmospheric wake model of the wind field, the turbine model
used in this paper is introduced. The turbine model consists of a power coefficient Cp and
thrust coefficient CT which are all based on wind speed, tip speed ratio, and a blade pitch
angle. In this paper, the Cp and CT curves are used to form the fitting data of FAST and the
National Renewable Energy Laboratory’s (NREL’s) 5 MW turbine [48].

To calculate the output power P of a wind turbine, the formula can be shown as
follows [30]:

Pj
(
αj, γj; Vj

)
=

1
2

ηρAjCP cos
(
αj, γj

)1.88V3
j (5)

where η denotes generator efficiency; ρ is the air density; Aj is the rotor swept area;

cos
(
αj, γj

)1.88 represents the correction factor of axial factors αj and yaw misalignment
angle γj; wind velocity Vj can be calculated from Equation (1).

As depicted in Equations (1)–(5), the power conversion can be optimized by adjusting
the axial factors αj and yaw angle γj. The interested reader can read a more detailed
description of wake deflection in [19].

3. Clustering Turbine via Pruning Wake Digraph

This section will partition the large-scale OWF into several decoupled subsets based
on the weights calculated from the k-Median clustering algorithm [31].

The adaptive pruning wake digraph process can be summarized in Figure 1, including
the wake farm model, original digraph generation, digraph pruning, and turbines cluster-
ing. The decision variable is the magnitude of the strength between turbines wij as shown
in Figure 1c,e,g, then the large-scale OWF can be defined into several decoupled subsets.
The section is focused on how to obtain adaptive wake digraphs of the large-scale OWF
with wake interaction.
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Figure 1. The proposed whole decentralized control scheme on a 3 × 3 matrix OWF with V∞ = 8 m/s, ϕ = 15◦: (a) Wind
Farm; (b) wake field; (c) original wake digraph; (d) turbine original matrix; (e) pruned wake digraph with k = 3.2; (f) turbine
pruned matrix with k = 3.2; (g) pruned wake digraph with k = 5.1; (h) turbine pruned matrix with k = 5.1.
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3.1. The Original Wake Graph of Wind Farm

An autonomous wind farm can be modeled as a weighted directed graph with wake
impact from upstream turbines i to downstream turbines j [49]. Under this paradigm,
the digraph is determined by the wind speed direction and wind farm layout. Assuming
that there are N turbines in the OWF, we will explain how to construct the original wake
digraph G in detail.

To demonstrate the advanced approach, some definitions as follows are necessary:

Definition 1. The original wake digraph G = (V , E) where vertices V , V = {vii = 1, 2, . . . , N}
denote the turbines. Edges E , E ⊂ V × V represents the wake distribution between every pair of
upstream turbine and downstream turbine.

E can also be used the weight to indicate the strength of interactions between
two nodes [30]:

E =
{

wij : i, j ∈ V
}

(6)

where wij is a non-negative value. When the upstream turbine vi exerts a wake effect on
the downstream turbine vj, the following equation can describe it:

wij =


Aoverlap i,j∗Vwake

x/D , shadowing,
0, no shadowing.

(7)

where Vwake =
V∞−Vj

V∞
, the wake overlap effect area Aoverlap i,j is described in Figure 2, x

represents the physical distance between the upstream turbine Vi and downstream turbine
Vj; D represents the turbine rotor diameter of all the turbines. It is critical to note that the
wake distribution should remain constant during the control period so that the control
speed is high enough to counteract the changing wake distribution.

• The communication neighbors of vertex (turbine) vi are denoted by Ni =
{

vj|
((

vi, vj
)
∈ E

)}
.

• The set of shared turbine Si in communication neighbors between the subset Ni and
subset Nj, are denoted as Si =

{
Ti|Ti ∈ Ni ∩ Nj

}
where Ti represents the shared

turbine numbers in different subsets.
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Figure 2. An example of a two-turbine wake redirection control through setting the yaw misalignment
angle. γ is the upstream turbine i’s yaw angle, α is the deflection angle, and δ denotes the wake
deflection. The black dashed lines represent the wake of the upstream turbine i with no yaw control,
and the red lines indicate the wake of the upstream turbine i with yaw control. Aoverlap

i→j represents
the area overlap ratio that the wake effect area A(Ti|Tj) of the upstream turbine i to the downstream
turbine j and the rotor area A(Tj) of downstream turbine j.
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3.2. Decoupled Communication Scheme of Wind Farm Based on Adaptive Pruned Algorithm

For most turbines, the coupling degree of one turbine with other turbines may be
high or low. Therefore, the pruned wake digraph Gp can be pruned from the original wake
digraph G.

Definition 2. The pruned wake digraph Gp =
(
V , Ep,

)
, pruning edges Ep set Ep ⊂ V × V ,

Ep =
{

wijp : i, j ∈ V
}

where

wijp =

{
wij wij ≥ εk,
0, wij < εk

(8)

• The adaptive threshold εk = k ∗ ε, k is one hyper-parameter, and ε is the basic threshold.
• Basic threshold ε is defined as the geometric median of the whole wake weight

coefficients. The central idea of the geometric median is as follows: given the set
of n2 points w11, w12 . . . , wij, . . . , wnn find a value ε that minimizes the sum of
Euclidean distance:

f (x) def
=

N

∑
i=1

N

∑
j=1
‖x−Wij‖2 (9)

where εε argmin( f (x)).

A decoupled topology in this section will be achieved by using the adaptive pruned
wake digraph algorithm. However, determining the degree of pruning digraph has not
been deeply studied, and there is little literature discussing it. This paper proposes an
adaptive pruned algorithm to find a suitable threshold εk to solve the grouped problem by
obtaining more reasonable decoupled subsets.

Based on the pruned wake digraph Gp =
(
V , Ep

)
, for each angle ϕ ∈ {ϕ 1, . . . , ϕ w},

there are clustering subsets Nl , l ≥ 1. A given direction ϕ has a corresponding cluster
subset Ni ∈ {N1, . . . , NM}, M is the number of subsets. Then, according to the wind farm
layout, we build the original wake digraph G and calculate the weight coefficient matrix wij
to find the communication neighborhood of turbines. The algorithm for turbine clustering
via adaptive pruned wake digraph is shown as follows (Algorithm 1):

Algorithm 1: The method of clustering turbine via pruning wake digraph (Adaptive pruned wake digraph algorithm)

Step 1: Based on the layout of the position of the wind farm (X, Y), collect all relevant parameters, including wind direction Φ,
wind speed V∞. Additionally, the parameters of the wind turbines, for example, the rotor diameter D, the physical distance x
between WTs, and the overlap wake area Aoverlap

i→j , etc.
Step 2: Calculate the threshold E , and set the initial hyper-parameter k, step hyper-parameter ∆k.
Step 3: Obtain the pruned digraph Gp from the original wake digraph G according to the global threshold εk according to the
global threshold εk.
Step 4: Digraph clustering. Firstly, define the leading turbines for each subset that is experiencing free-stream velocity V∞.
Secondly, each leading turbine decides the communication neighbors through the connectivity information of the digraph Gp by a
depth-first tree search (BFS) algorithm into the same subset Ni.
Step 5: If there is a set of shared turbines Si, we need to continue to tune the value of k by set k = k + ∆k, go back to Step 3. If not,
go directly to step 6.
Step 6: Calculate the output power and calculating time with the k value from step 5, save the parameters.
Step 7: If the coefficients of Gp are not all 0, continue to tune the k value by setting k = k + ∆k, go back to Step 2. If the coefficients
of Gp are all 0, go to step 8.
Step 8: Based on the adaptive pruned wake digraph Gp, we can establish turbine clustering subsets Ni and analyze all the
parameters with different k, and select the suitable value k2.

Overall, the adaptive pruned digraph and the contribution can be simplified as follows:
Firstly: for one, considered wind speed and wind direction, to satisfy the pruned wake

digraph are decoupled (no shared wind turbines between all the subsets), the range of k
can be found out to be k ∈ [k1, k3], k1 is the minimum value, and k3 is the maximum value
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of k. In most literature, the k is one random value between the range so that the result may
be suboptimal.

Secondly: by comparing the performance of output power and calculating time,
deduce a suitable value k2.

Thirdly: change the wind speed and direction by the above method and obtain another
corresponding suitably k2.

Lastly: create a line-off query look-up table using the obtained result, which can be used
for quick reference with input winds velocity V∞ and wind direction ϕ, the output is k2.

The contributions are mainly to select suitable parameter k2 with the proposed algo-
rithm. Based on this condition, the control optimization can obtain the best result. The
procedure will be demonstrated in Section 5 by one simulation example.

4. Wind Farm Control Strategy

Upon establishing the pruned wake digraph and clustering subsets, the overall OWF
is controlled by multiple individual independents rather than by a single controller. The
decentralized optimization process is described in this section. In order to achieve the
control objectives of real-time output power optimization, a decentralized control scheme
is proposed for the large-scale OWF, as shown in Figure 3. This control scheme is divided
into two steps. First, wind farms are decoupled into several independent wind turbine
clusters, and their communication neighbors are determined by the network topology
of the adaptive pruned wake digraph. Therefore, a decentralized control strategy for
OWF is proposed to realize the power control of the host computer. Second, we use the
beetle antennae search (BAS) algorithm approach to optimize the yaw setting and the axial
induction factor setting in the OWF to maximize the total wind plant power conversion.
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4.1. The Output Power Optimization Problem

For a given decoupled clustering subsets Ni, the corresponding decentralized power
control is based on the optimization objective: minimizing the power output of wind farms
in Equation (4). Each wind turbine cluster is composed of several neighbor wind turbines
that are decentralized on different communication network topologies of adaptive pruned
wake digraphs. The proposed decentralized control scheme is shown in Figure 3. The
corresponding decentralized power control for a given clustering subset Ni is based on the
following single-objective optimization problem. The control variables for the optimization
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are the axial factor α and yaw angle γ of the wind turbines. The whole OWF decentralized
optimization function f (x) can be expressed as follows:

min
x

f (x) = −
M
∑

i=1

K
∑

j=1
(Pi,j(γi,j, αi,j; Vi,j))

s. t.
{
−γmin ≤ γi,j ≤ γmax

αmin ≤ αi,j ≤ αmax

(10)

where i indicates subsets, j indicates turbines in subsets, M indicates the number of
uncoupled subsets on the wind farm, and K indicates the number of turbines in every subset.
The yaw angle γi,j is between the upper bound γmax and the lower bound −γmin; αmin and
αmax represent the lower bound and upper bound range of axial factor αi,j and the power
Pi,j is between the minimum power Plow and the rated power Prate .

4.2. Monte Carlo Law with the BAS(MC-BAS) Controller for Wind Turbines

The OWF cost function is given in Equation (9), which is a nonlinear and non-convex
optimization problem. Many methods do not guarantee to find the optimal global solu-
tion. Herein, we adopt the BAS algorithm to solve optimization problems. Like genetic
algorithms (GA), particle swarm optimization (PSO), and other intelligent algorithms,
BAS does not require prior knowledge of the specific shape of the function or gradient
information to optimize efficiency. The main two steps are the searching process and
the result detection, tuning the adaptive step size until the optimization value is reached.
The advantage of BAS is simple and fast speed to get the optimization object than other
intelligence algorithms. Moreover, the high-speed advantage of BAS over the particle
swarm optimization algorithm is that it requires only one individual, a longicorn beetle.

The Monte Carlo (MC) law of the annealing algorithm (SA) is introduced to improve
the repeatability and stability of the algorithm. The improved algorithm is then applied to
wake steering control so as to maximize power conversion on the wind farm. The optimal
target value of the object is determined by simulating the annealing process, and the lowest
energy of the target and simulated annealing incorporates random variables during the
search process. For example, it embraces a worse solution than the current solution with a
certain probability, increasing the possibility of exiting local optimization. The Modified
MC-BAS algorithm is shown below (Algorithm 2).

1. Random direction vector
To simulate the search behavior of longicorn, its direction vector is defined as [47]:

→
b =

rand(k, 1)
‖ rand(k, 1) ‖ (11)

where rand(k, 1) denotes a random function, and k represents position dimensions.
2. The coordinate of both right-hand and left-hand sides of the antennae of beetles are

presented as [47]:

xr = xt + dt
→
b

xl = xt − dt
→
b

(12)

where t represents the number of iterations; xr and xl denote the spatial position of the
right and left beetles of longicorn beetles in the t iteration, respectively; dt represents
the exploitability of antennae sensing length in the t iteration.

3. Fitness value: {
fright = f (xr)
fle f t = f (xl)

(13)
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where fright and fle f t denote the fitness value of the right beetle and the left beard in
the current spatial position; f (·) is the fitness function as Equation (9).

Algorithm 2: The grouped MC-BAS methodology for wind farm power production (MC-BAS Algorithm)

Result: The best yaw angles and the best axial factors xbst
n and the best output power f bst

n .
Input: Establish output objective function f

(
xt

n
)
, where variable xt

n =
[
xt

1, xt
2, . . . , xt

N
]

and initialize the parameters
x0, d0, δ0, ηd, ηδ, MT ,N, α, δcriterion , tmax.
While (n < N) do
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1. Random direction vector 
To simulate the search behavior of longicorn, its direction vector is defined as [47]: 

풃⃗ =
rand (푘, 1)

∥ rand (푘, 1) ∥
 (11)

where rand (푘, 1) denotes a random function, and k represents position dimensions. 
2. The coordinate of both right-hand and left-hand sides of the antennae of beetles are 

presented as [47]:  

풙 = 풙 + 푑 풃⃗
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End

4. Pre-update position:

xt = xt−1 + δt
→
b sign

(
fright − fle f t

)
(14)

Pre-update the position of the beetles based on the iteration, and the sign(·) is a
symbol function; δt is the step size factor of the algorithm in the t iteration.

5. Accepted solution using the Monte Carlo law
The Monte Carlo law of the SA algorithm is embedding into BAS. In the iterative
process, the probability P is used to accept the inferior solution to improve the global
optimization ability of BAS:

Lp =

1, f
(
xt) < f

(
xt−1)

exp
(
− f (xt)− f (xt−1)

MT

)
, f

(
xt) ≥ f

(
xt−1) (15)

where f
(

xt) denotes a pre-update position, f
(
xt−1) denotes the best position in the

last iteration; exp (.) represents the exponential function; MT is the higher temperature.
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6. Step size:

dt = ηddt−1 + d0

δt = ηδδt−1 + δ0 (16)

where d and δ denote antennae length and step size, d0 and δ0 is the initial value,
where dt and δt is the step size factor of the algorithm in the t iteration, and the two
parameters ηd and ηδ are set by the user.

The Monte Carlo law is mixed with the BAS algorithm. The basic steps of the grouped
MC-BAS algorithm can be summarized as the pseudo-code shown in MC-BAS algorithm.

5. Validation and Discussion

Due to the randomness and intermittence, there are no constant wind speed and
constant wind direction. For simplification, based on the probability of the known wind
rose, we can calculate the average value of them in 10 min, then obtain an approximately
constant value to describe them. In this experiment, assume that the average wind speed
V∞ = 8 m/s, the range of wind direction is ϕ = {0◦, 15◦, 30◦, . . . , 180◦}, with which the
baseline direction is the x-axis direction and under the assumption that it is constant within
one control cycle.

The reason is that the wake is affected not much by the wind speed V∞ but by the
wind direction ϕ, so we only study the one wind speed V∞ = 8 m/s, however, the whole
wind direction is ϕ ∈ [0◦, 360◦], with considering the symmetricity in the square wind
farm, we only need to study the wind direction ϕ ∈ [0◦, 180◦], and in this Simulink, we
choose 5◦ as the step size in wind direction.

The wake digraph is the basic digraph from the wake field, as shown in Figure 4.
The performance of proposed optimization approaches will be verified in this section
by simulation results with the same NREL-5 MW Type III WT [48] turbine. The main
parameters are given in Table A1 (Appendix A). The layout structure of OWF with lateral
distance X = 500 m, longitudinal distance Y = 200 m, and rotor diameter D = 126 m, and
nominal power P = 5 MW. The test is conducted for a 10-minute average of free wind speed
and the direction range belongs to ϕ ∈ [0◦, 180◦] at 15◦ increment. Furthermore, to verify
the scalability and the feasibility of the proposed algorithm, in this paper, we study three
different scales of wind farms with the different numbers of turbines N = 4, N = 9, and
N = 25, respectively. The initial yaw angles γ are set to 0 with a range of γ ∈ [−30◦, 30◦],
and the initial factors are set to 1/3 with a range of α ∈ [0, 1/3]. It was observed that
the numerical results showed that the proposed control method could reach an improved
increase rate with a larger wind farm by comparing the result of 2 × 2, 3 × 3, 5 × 5 matrix
turbine wind farms. In other words, verification of the proposed method means that it is
suited for a large-scale wind farm.

5.1. Processing the Adaptive Pruning Wake Redirect Digraph

In this section, the cluster method splits the large OWF into several independent
subsets using the proposed pruned wake digraph clustering approach (see Section 3). The
5 × 5 wind farm location under different wind directions is shown in the proposed wake
digraph. In this case, we consider a wind direction of Φ = 45◦, 90◦, the wake original
digraph G, pruned digraph Gp as illustrated in Figures 5 and 6, respectively. In addition,
the decoupled communication topology comes from the suitably pruned wake digraph.



Energies 2021, 14, 7326 12 of 24

Energies 2021, 14, x FOR PEER REVIEW 12 of 24 
 

 

nominal power P = 5 MW. The test is conducted for a 10-minute average of free wind 
speed and the direction range belongs to 𝜑 ∈ [0∘, 180∘] at 15 ∘ increment. Furthermore, 
to verify the scalability and the feasibility of the proposed algorithm, in this paper, we 
study three different scales of wind farms with the different numbers of turbines N = 4, N 
= 9, and N = 25, respectively. The initial yaw angles 𝛾 are set to 0 with a range of 𝛾 ∈[−30∘, 30∘], and the initial factors are set to 1/3 with a range of α ∈ [0,1/3]. It was observed 
that the numerical results showed that the proposed control method could reach an 
improved increase rate with a larger wind farm by comparing the result of 2 × 2, 3 × 3, 5 × 
5 matrix turbine wind farms. In other words, verification of the proposed method means 
that it is suited for a large-scale wind farm. 

 
Figure 4. The original wake digraph 𝒢 under different wind turbines 𝜑 = 90 : (a) 2 × 2 turbines 
wake field; (b) 2 × 2 turbines original wake digraph; (c) 3 × 3 turbines wake field; (d) 3 × 3 turbines 
original wake digraph; (e) 5 × 5 turbines wake field; (f) 5 × 5 turbines original wake digraph. 

5.1. Processing the Adaptive Pruning Wake Redirect Digraph 
In this section, the cluster method splits the large OWF into several independent 

subsets using the proposed pruned wake digraph clustering approach (see Section 3). The 
5 × 5 wind farm location under different wind directions is shown in the proposed wake 
digraph. In this case, we consider a wind direction of 𝛷 = 45°, 90°, the wake original 

Figure 4. The original wake digraph G under different wind turbines ϕ = 90◦: (a) 2 × 2 turbines
wake field; (b) 2 × 2 turbines original wake digraph; (c) 3 × 3 turbines wake field; (d) 3 × 3 turbines
original wake digraph; (e) 5 × 5 turbines wake field; (f) 5 × 5 turbines original wake digraph.

Energies 2021, 14, x FOR PEER REVIEW 13 of 24 
 

 

digraph 𝒢, pruned digraph 𝒢  as illustrated in Figures 5 and 6, respectively. In addition, 
the decoupled communication topology comes from the suitably pruned wake digraph. 

 
Figure 5. The wake digraph (𝜀 = 0.157481474) with wind direction 𝜑 = 90°: (a) wake field; (b) original wake digraph 
(𝑘 =0.1); (c) pruned wake digraph (𝑘 = 3.2). 

Figure 5 shows that the original wake digraph is the same as the pruned wake 
digraph. This is because when the wind direction is 𝜑 = 90°, the entire wake effect is 
concentrated on the downstream turbines without any diffused. However, when the wind 
direction changes to 𝜑 = 45°, the power conversion of the OWF is increased since the 
influence of wake interaction becomes low. 

As shown in Figure 6, the original wake digraph 𝒢 differs in the adaptive pruned 
wake digraph 𝒢 . The pruned wake digraph 𝒢  is different with varying 𝑘. From Figure 
6b to Figure 6c, the threshold 𝜀 = 𝑘 ∗ ε, 𝑘 ∈ [0.5,2.6], so the edges which are smaller than 𝜀  are cut off, such as the edges ℰ , , etc. From Figure 6c to Figure 6d, the global 
threshold 𝜀  become bigger 𝑘, with the range of 𝑘 ∈ [2.7,4.6], then the edges which are 
smaller than 𝜀  are cut off, for example, the edge ℰ , , ℰ , , ℰ , , etc. Lastly, from 
Figure 6d to Figure 6e, get bigger 𝑘 at the range of 𝑘 ∈ [4.7,7.2], the more edges are cut 
off, for example, the edges ℰ , , ℰ , , etc. and then the wake field is divided into 13 
subsets with no shared turbine. 

Figure 6 illustrates that the wake topology is parameter-dependent, as the external 
relevant variables (𝜑, 𝑘) influence the wake effect. For a given 𝜑, the suitable 𝑘 is vital for 
pruning the wake digraph to obtain the optimization decoupled subsets. The method 
regarding tuning the hyperparameters 𝑘  will be discussed in the next step, which is 
shown in Tables 1 and 2 as follows. 

Figure 5. The wake digraph (ε = 0.157481474) with wind direction ϕ = 90◦: (a) wake field; (b) original wake digraph
(k = 0.1); (c) pruned wake digraph (k = 3.2).



Energies 2021, 14, 7326 13 of 24
Energies 2021, 14, x FOR PEER REVIEW 14 of 24 
 

 

 
Figure 6. The process of adaptive pruning wake digraph method with varying 𝑘 for the wake digraph (𝜀 = 0.0122) with 
wind direction 𝜑 = 45 : (a) wake field; (b–e) pruned wake digraph 𝒢  with different 𝑘. 

Table 1. The relationship of subsets and shared turbines (ST) with different 𝑘. 𝒌  No of Subsets With ST or Not 
0–0.4 9 Yes 

0.5–2.6 13 Yes 
2.7–4.6 13 No 
4.7–7.2 16 No 

7.3 21 NO 

Table 2. Comparing the results of different pruning wakes under different 𝑘. 𝒌 Baseline Power  Total Power (W) Groups T(s) ∆P 
2.7 3.23E+07 3.62 × 107 13 2.84 × 102 12.19% 
2.8 3.23E+07 3.62 × 107 13 2.44 × 102 12.19% 
3.3 3.23E+07 3.62 × 107 13 2.42 × 102 12.19% 
3.8 3.23E+07 3.62 × 107 13 2.36 × 102 12.19% 
4.3 3.23E+07 3.58 × 107 13 2.35 × 102 10.95% 
4.8 3.23E+07 3.58 × 107 13 2.32 × 102 10.95% 
5.3 3.23E+07 3.51 × 107 13 2.30 × 102 8.78% 
5.7 3.23E+07 3.43 × 107 13 2.26 × 102 6.30% 
5.8 3.23E+07 3.03 × 107 16 3.57 × 102 −6.10% 
6.3 3.23E+07 3.03 × 107 16 3.59 × 102 −6.10% 
6.8 3.23E+07 3.01 × 107 16 3.66 × 102 −6.72% 
7.3 3.23E+07 3.01 × 107 21 3.66 × 102 −6.72% 

Table 1 shows that there are shared turbines in the subsets depending on the value 
of 𝑘. In this paper, we focus on the range of 2.7 ≤ 𝑘 ≤ 7.3 because of no shared wind 
turbine. In other words, the subsets are all decoupled. Then, there is another problem of 

Figure 6. The process of adaptive pruning wake digraph method with varying k for the wake digraph (ε = 0.0122) with
wind direction ϕ = 45◦: (a) wake field; (b–e) pruned wake digraph Gp with different k.

Figure 5 shows that the original wake digraph is the same as the pruned wake digraph.
This is because when the wind direction is ϕ = 90◦, the entire wake effect is concentrated
on the downstream turbines without any diffused. However, when the wind direction
changes to ϕ = 45◦, the power conversion of the OWF is increased since the influence of
wake interaction becomes low.

As shown in Figure 6, the original wake digraph G differs in the adaptive pruned
wake digraph Gp. The pruned wake digraph Gp is different with varying k. From Figure 6b
to Figure 6c, the threshold εp = k∗ε, k ∈ [0.5, 2.6], so the edges which are smaller than εp
are cut off, such as the edges E11,25, etc. From Figure 6c to Figure 6d, the global threshold εp
become bigger k, with the range of k ∈ [2.7, 4.6], then the edges which are smaller than εp
are cut off, for example, the edge E1,15, E16,25, E22,25, etc. Lastly, from Figure 6d to Figure 6e,
get bigger k at the range of k ∈ [4.7, 7.2], the more edges are cut off, for example, the edges
E13,20, E18,25, etc. and then the wake field is divided into 13 subsets with no shared turbine.

Figure 6 illustrates that the wake topology is parameter-dependent, as the external
relevant variables (ϕ, k) influence the wake effect. For a given ϕ, the suitable k is vital
for pruning the wake digraph to obtain the optimization decoupled subsets. The method
regarding tuning the hyperparameters k will be discussed in the next step, which is shown
in Tables 1 and 2 as follows.

Table 1. The relationship of subsets and shared turbines (ST) with different k.

k No of Subsets With ST or Not

0–0.4 9 Yes
0.5–2.6 13 Yes
2.7–4.6 13 No
4.7–7.2 16 No

7.3 21 NO
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Table 2. Comparing the results of different pruning wakes under different k.

k Baseline Power Total Power (W) Groups T(s) ∆P

2.7 3.23E+07 3.62 × 107 13 2.84 × 102 12.19%
2.8 3.23E+07 3.62 × 107 13 2.44 × 102 12.19%
3.3 3.23E+07 3.62 × 107 13 2.42 × 102 12.19%
3.8 3.23E+07 3.62 × 107 13 2.36 × 102 12.19%
4.3 3.23E+07 3.58 × 107 13 2.35 × 102 10.95%
4.8 3.23E+07 3.58 × 107 13 2.32 × 102 10.95%
5.3 3.23E+07 3.51 × 107 13 2.30 × 102 8.78%
5.7 3.23E+07 3.43 × 107 13 2.26 × 102 6.30%
5.8 3.23E+07 3.03 × 107 16 3.57 × 102 −6.10%
6.3 3.23E+07 3.03 × 107 16 3.59 × 102 −6.10%
6.8 3.23E+07 3.01 × 107 16 3.66 × 102 −6.72%
7.3 3.23E+07 3.01 × 107 21 3.66 × 102 −6.72%

Table 1 shows that there are shared turbines in the subsets depending on the value of
k. In this paper, we focus on the range of 2.7 ≤ k ≤ 7.3 because of no shared wind turbine.
In other words, the subsets are all decoupled. Then, there is another problem of how to set
the suitable value k. In this paper, the proposed adaptive pruning algorithm can solve this
problem. An adaptive threshold εp can be proposed by comparing the output power and
calculating time, and the comparison results are displayed in Table 2. It is essential to note
that in Table 2, considering the objective of the real-time control, we choose the suitable
value k2 that focuses more on computational efficiency and an increased power rate by
more than 4%. Moreover, when k is set as 5.3 as in Table 2, the control time is 226 s which is
smaller than others. The high control speed is a very vital parameter during the control
process. Therefore, we can find the suit k2 = 5.3.

From Table 2, we chose k = 5.7 as a suitable value. The reason is that when k > 5.7,
the output power is smaller than the baseline value, which is not permitted in this paper.
Moreover, the calculation time is the smallest at the range of 0 ≤ k ≤ 5.7. The controller
speed is important for the objection of real-time control. In this condition, the pruned wake
digraph will be divided into 13 decoupled subsets, and the clustered turbines’ neighbor tur-
bines of every subset are N1 = {T1, T8, T15}, N2 = {T2, T9}, N3 = {T3, T10}, N4 = {T4},
N5 = {T5}, N6 = {T6, T13, T20}, N7 = {T7, T14}, N8 = {T11, T18, T25}, N9 = {T12, T19},
N10 = {T16, T23}, N11 = {T17, T24}, N12 = {T21}, N13 = {T22}.

Using the above-mentioned method, the range of wind direction extends to 0◦ ≤ ϕ ≤ 90◦

with an increment of 15◦. Under different wind directions, to obtain decoupled communi-
cation topology by pruning the wake digraph, the experimental range of k is k1 ≤ k ≤ k3
and k2 is the suitable value, which can be obtained from the proposed adaptive prun-
ing algorithm.

In this way, wind speed keeps V∞ = 8 m/s, we can also obtain the suitable value k2
when wind direction ϕ varies from the range of [ 0◦, 90◦ ] which is shown in Table 3 as
follows. When wind speed V∞ and wind direction ϕ changed, a look-up table of k2 can be
obtained by the proposed adaptive algorithm, which is shown in Appendix B—Table A2.

5.2. The Combined Evaluation of the Decentralized MC-BAS Algorithm

When V∞ = 8 m/s, ϕ = 45◦, and k = 5.7, as shown in Tables 1 and 2, the OWF wake
digraph can be divided into 13 decoupled subsets. Taking the subset N2, for example,
it concludes two neighbor turbines in cluster N2, the upstream turbine WT2 and the
downstream turbine WT9. In this paper, the control actions and wake infection only work
in the same subset. To maximize the output power of OWF, the yaw angles γ and the axial
factors α are activated in an optimally decentralized manner. We will explain the sensitive
relationship between the control actions α, γ, the output power P, and the consequent
wind speed direction ϕ of the neighbor wind turbine in one subset as shown in Figure 7.
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Taking subset N2, for example, in the range of wind direction ϕ ∈ [90◦, 180◦], the
upstream turbine WT2, the output power of MC-BAS is larger than that with the greedy
method as shown in Figure 7b,c. Moreover, for the downstream WT9, the output power of
MC-BAS is larger than that of the greedy method. However, the reason is not because of
controlling the axial factors α and the yaw angle γ of WT2 but the decreasing wake effect
of WT2, which is clearly shown in Figure 7e,f. For WT9 having no downstream turbines,
the control parameters do not need to change the value significantly. This method is also
applicable to other wind direction ranges and some other subsets. For brevity, we will not
repeat the description in this paper.

When the wind direction is in the range of wind direction ϕ ∈ [20◦, 50◦], WT2 and WT9
are in the same subset. In other words, WT2 and WT9 are neighbor turbines. Essentially,
when wind direction ϕ changes significantly, the communication topology will also vary.
The wind turbine will infect each other for the same subset, and for different subsets,
the wind turbines are all independent. In this way, every wind turbine in all subsets
with varying wind direction is optimized, allowing the total output power to reach the
maximum value. The result is shown in Figure 8 and Table 4.

Table 3. The different adaptive k with the varying wind direction ϕ.

ϕ k P(W) ∆P T(s)

ϕ = 0
◦

Baseline 2.4556 × 107 0% 0.1896
k1 = 0.1 2.8528 × 107 16.18% 276.245
k2 = 5.6 2.8526 × 107 16.17% 211.5501

k3 = 11.7 2.0173 × 107 −17.85% 243.3781

ϕ = 15
◦

Baseline 2.4973 × 107 0% 0.1659
k1 = 1.6 2.8554 × 107 14.34% 268.4627
k2 = 2.4 2.8152 × 107 12.73% 138.1018
k3 = 2.7 2.1252 × 107 −14.90% 189.6079s

ϕ = 30
◦

Baseline 3.1375 × 107 0% 0.1595
k1 = 1.9 3.3643 × 107 7.23% 276.8732
k2 = 3.5 3.2142 × 107 2.45% 239.3284
k3 = 4.1 2.9763 × 107 −5.14% 293.1692

ϕ = 45◦
Baseline 3.9268 × 107 0% 0.1402
k1 = 2.5 4.1118 × 107 4.57% 284.4385
k2 = 5.7 4.0926 × 107 4.16% 226.5321
k3 = 7.3 3.8126 × 107 −2.97% 366.5429

ϕ = 60◦
Baseline 3.0271 × 107 0.00% 0.1385
k1 = 0.9 3.2014 × 107 5.76% 259.6893
k2 = 6.8 3.1139 × 107 2.87% 271.8649
k3 = 7.9 2.7853 × 107 −7.99% 350.6543

ϕ = 75
◦

Baseline 2.3257 × 107 0% 0.1243
k1 = 0.6 2.5473 × 107 9.53% 174.9643

k2 = 16.5 2.4385 × 107 4.85% 136.9856
k3 = 27.3 2.1072 × 107 −9.39% 181.6532

ϕ = 90◦
Baseline 1.8731 × 107 0% 0.1133
k1 = 0.0 2.2795 × 107 21.70% 112.5742 s

k2 = 31.6 2.1596 × 107 15.30% 98.7756 s
k3 = 83.7 1.6765 × 107 −12.00% 117.329 s
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Table 4. Comparison of power output and calculating time on OWF using centralized and decentralized algorithms on
5 × 5 matrix wind farm.

Wind Direction Control Method P_Total (w) ∆P_Total T_Total (s)

ϕ = 0◦
Centralized Greedy 2.4556 × 107 0.00% 0.1896

Centralized MC-BAS 2.8529 × 107 16.18% 636.5711
Decentralized MC-BAS (k1 = 0.1) 2.8528 × 107 16.17% 276.245
Decentralized MC-BAS (k2 = 5.6) 2.8526 × 107 16.17% 211.5501

ϕ = 25◦
Centralized Greedy 3.1281 × 107 0.00% 0.1279

Centralized MC-BAS 3.4255 × 107 9.51% 466.0449
Decentralized MC-BAS (k1 = 1.6) 3.4254 × 107 9.50% 218.4627
Decentralized MC-BAS (k2 = 2.4) 3.4252 × 107 9.50% 138.1018

ϕ = 45◦
Centralized Greedy 3.9268 × 107 0.00% 0.1102

Centralized MC-BAS 4.2164 × 107 7.37% 286.72145
Decentralized MC-BAS (k1 = 2.5) 4.1118 × 107 4.57% 284.4385
Decentralized MC-BAS (k2 = 5.7) 4.0926 × 107 4.16% 226.5321

ϕ = 90◦
Centralized Greedy 1.8731 × 107 0.00% 0.1133

Centralized MC-BAS 2.3853 × 107 27.35% 399.0926
Decentralized MC-BAS (k1 = 0.0) 2.2795 × 107 21.70% 112.5742
Decentralized MC-BAS (k2 = 31.6) 2.1596 × 107 15.24% 98.7756

Figure 8 presents the results of the respective power output, while Table 4 shows the
comparison of total power output. Generally, when the MC-BAS control method is used to
implement a centralized and decentralized approach, the total produced power increases
compared to the greedy control method. The decoupled cluster subset with wind direction
ϕ = 45◦ can be obtained from Table 4. For example, one cluster subset N1 includes turbines
T1, T8, and T15, symbolled as blue hexagon lines. Figure 8 shows that, with the greedy
control algorithm, the lead wind turbine T1 produces the maximum power output, while
the communication neighbors T8 and T15 only produce minimal power output without
regulating the wake effect. Furthermore, the upstream wind turbine can cause significant
wake disruption, reducing wind speed and lowering power conversion of the downstream
wind turbine [17]. The wake effect is taken into account in the MC-BAS decentralized and
centralized control scheme for optimizing overall power output. The majority of upstream
turbines reduce output power, whereas downstream turbines increase power conversion,
thereby increasing the entire power conversion. Furthermore, subsets N4, N5, N12, N13
have only one turbine, which is symbolized as a little red diamond on WT4, WT5, WT21,
and WT22, and, respectively, the output power has no significant difference in the three
different control methods since they are unconcerned about the downstream turbine. Other
wind directions can be analyzed in the same way. However, the methodologies were not
described in this paper to maintain brevity.

The calculated time differs between the decentralized and centralized methods. The
control speed of decentralized control is higher than the centralized control because there
are fewer turbines to solve, as shown in Table 4. The rate of power (∆P_total) is the
increased power at the baseline of P_total of the greedy centralized algorithm. Table 4
shows that ∆P_total increases at varying degrees in the decentralized MC-BAS control and
centralized MC-BAS method under different wind directions. Moreover, the decentralized
MC-BAS computation time (T_total) is reduced to less than 1/3 times of the centralized
approach. The mean total power generated by the centralized MC-BAS algorithm and
decentralized MC-BAS algorithm improves by 14.4% and 11.3676%, respectively, compared
to the baseline. This indicates about 3.0324% power loss in the decentralized MC-BAS
compared to the centralized MC-BAS method. Thus, the proposed control strategy is
practical for increasing power output and improving calculation speed from the perspective
of real-time control and the profit of the large-scale OWF. For different wind directions,
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we set the appropriate value k2 so as to improve the calculation efficiency. Moreover, the
importance of the adaptive pruned algorithm is also verified in Table 4.

5.3. The Advantage of MC-BAS over Other Algorithms

Generally, the higher the number of iterations, the more accurate the computation.
This section aims to take the least number of iterations possible to reach the optimum
control actions, resulting in improved total power conversion and communication burden.

According to Figure 9, the calculating time will increase significantly as the number
of iterations increases by 100 to 300 in 20 increments, verifying the statements made in
Section 3.1. The number of iterations plays a crucial role in reducing the calculation time,
therefore reducing the communication burden. Consequently, the exact iteration value is a
significant tuning value for optimization algorithms. The MC-BAS algorithm takes far less
calculating time than the other three control algorithms and is about 1/9 time of the PSO
method and 1/4 time of the GA method. Thus, the proposed centralized MC-BAS method
outperforms other intelligent methods (GA and PSO) in terms of calculating speed.

Figure 10 shows the power conversion depending on wind directions and iterations
with four different control algorithms. The PSO method can produce more power than
others in most iterations. However, when the number of iterations exceeds 140, the total
production in the PSO algorithm is equal to that of the MC-BAS algorithm. Consequently,
we set the number of iterations to 140 to obtain better total power conversions with the
proposed MC-BAS. The main drawback of the GA algorithm is the unstable output power,
which varies at different iterations, as shown in Figure 10b,d. Therefore, the GA algorithm
is not a suitable choice for OWF. The convergence of the algorithm can be measured by
error variation and the number of iterations. In this paper, in order to test the influence of
the number of iterations on the results, the number of iterations is used as the condition for
the end of the simulation.
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Moreover, we demonstrate the effectiveness and scalability of the proposed methodol-
ogy. The range of wind direction is ϕ ∈ [0◦, 10◦, . . . , 180◦] and the number of turbines is a
2 × 2 matrix and 3 × 3 matrix as shown in Figure 11.
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Figure 11a,c shows that the total power conversion of MC-BAS is exactly the same as
that of PSO, which is better than the value produced by the greedy algorithm in most wind
directions. In addition, the MC-BAS algorithm takes less calculation time than the PSO
algorithm on the 2 × 2 matrix and 3 × 3 matrix wind farms (Figure 11b,d). Notably, the
ordinate scale of Figure 11c is 10 times that of Figure 11a,d and is 10 times that of Figure 11b.
A more detailed analysis with the increasing output is displayed in Tables 5 and 6.

Table 5. The total power conversion improvement rate compared to the baseline with the
3 × 3 matrix OWF.

ϕ 0◦ 5◦ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦ 50◦ 55◦ 60◦

NMCBAS 9% 7% 5% 4% 4% 3% 2% 2% 1% 1% 1% 1% 1%

NPSO 9% 7% 5% 4% 4% 3% 2% 2% 1% 1% 1% 1% 1%

ϕ 65◦ 70◦ 75◦ 80◦ 85◦ 90◦ 95◦ 100◦ 105◦ 110◦ 115◦ 120◦ 125◦

NMCBAS 3% 5% 7% 11% 14% 16% 15% 13% 9% 7% 3% 2% 1%

NPSO 3% 5% 7% 11% 14% 16% 15% 13% 9% 7% 3% 2% 1%

ϕ 130◦ 135◦ 140◦ 145◦ 150◦ 155◦ 160◦ 165◦ 170◦ 175◦ 180◦

NMCBAS 1% 0% 1% 2% 2% 3% 4% 4% 3% 7% 9%

NPSO 1% 0% 1% 2% 2% 3% 4% 4% 3% 7% 9%

Table 6. The total power conversion improvement rate compared to the baseline in 2 × 2 matrix WF.

ϕ 0◦ 5◦ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦ 50◦ 55◦ 60◦

NMCBAS 6% 6% 6% 2% 0% 0% 2% 3% 2% 3% 1% 0% 0%

NPSO 6% 6% 6% 2% 0% 0% 2% 3% 2% 3% 1% 0% 0%

ϕ 65◦ 70◦ 75◦ 80◦ 85◦ 90◦ 95◦ 100◦ 105◦ 110◦ 115◦ 120◦ 125◦

NMCBAS 0% 0% 2% 5% 7% 7% 6% 6% 3% 1% 0% 0% 0%

NPSO 0% 0% 2% 5% 6% 6% 6% 6% 3% 1% 0% 0% 0%

ϕ 130◦ 135◦ 140◦ 145◦ 150◦ 155◦ 160◦ 165◦ 170◦ 175◦ 180◦

NMCBAS 1% 3% 2% 2% 2% 1% 0% 1% 4% 7% 6%

NPSO 1% 3% 2% 2% 2% 1% 0% 1% 4% 7% 6%

Tables 5 and 6 show the total production improvement rate is relative to the baseline
of greedy control with 2 × 2 matrix turbines and 3 × 3 matrix turbines. It can be observed
in some wind directions that the increased power rate is zero, such as ϕ = 20◦, 25◦, etc.,
in Table 6 and ϕ = 135◦ in Table 5. The advantage of the proposed MC-BAS algorithm
was verified by comparing it with several other algorithms, especially in increasing the
output power and decreasing the calculating time. Additionally, in a large-scale OWF, an
adaptive pruned wake digraph is proposed to divide it into several decoupled subsets.
Then, the same controller works on every subset to ensure real-time control. By analyzing
the data in Tables 3–6, we can conclude that the ∆P with the MC-BAS algorithm increases
with a greater number of wind turbines on the wind farm. For example, when ϕ = 15◦,
∆P = 2%, 4%, 12.73% on the 2 × 2, 3 × 3, and 5 × 5 matrix wind farms, respectively. We
anticipate that the proposed algorithm will demonstrate a good performance of large-scale
wind farms.

6. Conclusions

This paper proposed a decentralized real-time power optimization for large-scale
OWFs using an adaptive pruned wake digraph approach. The results of this paper can be
summarized as follows:



Energies 2021, 14, 7326 21 of 24

1. The proposed adaptive pruning algorithm fully considers the real-time power opti-
mization control goals, providing a suitable method of grouping to avoid obtaining
a sub-optimization result due to the unsuitable communication topology. The vital
point of the adaptive pruned digraph is to uncover the accurate global threshold εp
corresponding to the different wind by setting the suitable parameter k2. Moreover,
the proposed method was verified to be efficient by the Simulink result, and the
off-line look-up table was constructed in Appendix B.

2. This work presents a modified BAS algorithm to raise BAS’s ability and efficiency for
dealing with high-dimensional nonlinear problems. The BAS can use fewer iterations
to rapidly search for the fitness function maximum in the parameter selection space.
Meanwhile, the Monte Carlo (MC) law of Simulate Anneal (SA) was introduced to
improve the reproducibility and stability of the algorithm by avoiding blind searching
and escaping the local traps minima.

3. For a large-scale wind farm, real-time state information may be excessive for the high
communication and computational burden—centralized control approaches might
fail. However, the adaptive pruned digraph decentralized operation can solve this
problem by dividing the large-scale wind farm into several decoupled subsets; the
local controller only deals with the local subset.

Future work will focus on increasing the control parameters and control objectives of
the large-scale OWF, considering the infection of nonlinear turbulent flow [50,51]. Moreover,
optimizing the wind farm layout with irregularly shaped wind farms will be studied by
decreasing the wake effect.
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Appendix A

Table A1. The main parameters of the 5 MW wind turbine for an offshore wind farm.

P_rate 5 MW

D 126 m

ωmin 6.9 rpm

ωmax 12.1 rpm

βmax 90◦

Gearbox ratio 97:1

Rated wind speed 11.4 m/s

Cmax
p 0.485

Hub height 90 m
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Appendix B

Table A2. The look-up table of different k2 with the varying wind.

V∞ ϕ 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 105◦ 120◦ 135◦ 150◦ 165◦ 180◦

8 m/s k2 5.6 2.4 3.5 4.8 6.8 16.5 31.6 19.9 7.5 5.3 4.3 3.8 6.2

9 m/s k2 5.9 2.8 3.9 5.1 7.4 16.9 31.8 21.3 8.0 5.7 4.5 5.3 6.7

10 m/s k2 6.2 3.3 4.2 5.7 7.6 17.6 41.8 27.3 9.6 6.7 5.8 6.9 7.6

11 m/s k2 6.8 3.9 6.4 8.4 18.9 43.4 29.8 10.9 7.9 6.9 7.3 7.6 9.4
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